SciPy Reference Guide

Release 0.10.0.dev

Written by the SciPy community

CONTENTS

1 SciPy Tutorial 3
1.1 Introduction 3
1.2 Basic functions in Numpy (and top-level scipy) 6
1.3 Special functions (scipy.special) 10
1.4 Integration (scipy.integrate) 11
1.5 Optimization (optimize) 15
1.6 Interpolation (scipy.interpolate) 29
1.7 Fourier Transforms (scipy.fftpack) 41
1.8 Signal Processing (signal) 43
1.9 Linear Algebra 50
1.10 Statistics 61
1.11 Multi-dimensional image processing (ndimage) 70
1.12 File IO (scipy.io) 92
1.13 Weave 98
2 Release Notes 133
2.1 SciPy 0.9.0 Release Notes 133
2.2 SciPy 0.8.0 Release Notes 136
2.3 SciPy 0.7.2 Release Notes 141
2.4 SciPy 0.7.1 Release Notes 141
2.5 SciPy 0.7.0 Release Notes 143
3 Reference 149
3.1 Clustering package (scipy.cluster) 149
3.2 Constants (scipy.constants) 189
3.3 Fourier transforms (scipy.fftpack) 204
3.4 Integration and ODEs (scipy.integrate) 218
3.5 Interpolation (scipy.interpolate) 233
3.6 Input and output (scipy.io) 262
3.7 Linear algebra (scipy.linalg) 269
3.8 Maximum entropy models (scipy.maxentropy) 303
3.9 Miscellaneous routines (scipy.misc) 323
3.10 Multi-dimensional image processing (scipy.ndimage) 343
3.11 Orthogonal distance regression (scipy.odr) 404
3.12 Optimization and root finding (scipy.optimize) 419
3.13 Signal processing (scipy.signal) 463
3.14 Sparse matrices (scipy. sparse) 507
3.15 Sparse linear algebra (scipy.sparse.linalg) 556
3.16 Spatial algorithms and data structures (scipy.spatial) 580
3.17 Distance computations (scipy.spatial.distance) 599
3.18 Special functions (scipy.special) 615
3.19 Statistical functions (scipy.stats) 641
3.20 C/C++ integration (scipy.weave) 909
Bibliography 915
Python Module Index 923
Index 925

Release

0.10.dev

Date
May 13, 2011
SciPy (pronounced "Sigh Pie") is open-source software for mathematics, science, and engineering.

SCIPY TUTORIAL

1.1 Introduction

Contents

- Introduction
- SciPy Organization
- Finding Documentation

SciPy is a collection of mathematical algorithms and convenience functions built on the Numpy extension for Python. It adds significant power to the interactive Python session by exposing the user to high-level commands and classes for the manipulation and visualization of data. With SciPy, an interactive Python session becomes a data-processing and system-prototyping environment rivaling sytems such as MATLAB, IDL, Octave, R-Lab, and SciLab.

The additional power of using SciPy within Python, however, is that a powerful programming language is also available for use in developing sophisticated programs and specialized applications. Scientific applications written in SciPy benefit from the development of additional modules in numerous niche's of the software landscape by developers across the world. Everything from parallel programming to web and data-base subroutines and classes have been made available to the Python programmer. All of this power is available in addition to the mathematical libraries in SciPy.
This document provides a tutorial for the first-time user of SciPy to help get started with some of the features available in this powerful package. It is assumed that the user has already installed the package. Some general Python facility is also assumed such as could be acquired by working through the Tutorial in the Python distribution. For further introductory help the user is directed to the Numpy documentation.

For brevity and convenience, we will often assume that the main packages (numpy, scipy, and matplotlib) have been imported as:

```
>>> import numpy as np
>>> import scipy as sp
>>> import matplotlib as mpl
>>> import matplotlib.pyplot as plt
```

These are the import conventions that our community has adopted after discussion on public mailing lists. You will see these conventions used throughout NumPy and SciPy source code and documentation. While we obviously don't require you to follow these conventions in your own code, it is highly recommended.

1.1.1 SciPy Organization

SciPy is organized into subpackages covering different scientific computing domains. These are summarized in the following table:

Subpackage	Description
cluster	Clustering algorithms
constants	Physical and mathematical constants
fftpack	Fast Fourier Transform routines
integrate	Integration and ordinary differential equation solvers
interpolate	Interpolation and smoothing splines
io	Input and Output
linalg	Linear algebra
maxentropy	Maximum entropy methods
ndimage	N-dimensional image processing
odr	Orthogonal distance regression
optimize	Optimization and root-finding routines
signal	Signal processing
sparse	Sparse matrices and associated routines
spatial	Spatial data structures and algorithms
special	Special functions
stats	Statistical distributions and functions
weave	C/C++ integration

Scipy sub-packages need to be imported separately, for example:

```
>>> from scipy import linalg, optimize
```

Because of their ubiquitousness, some of the functions in these subpackages are also made available in the scipy namespace to ease their use in interactive sessions and programs. In addition, many basic array functions from numpy are also available at the top-level of the scipy package. Before looking at the sub-packages individually, we will first look at some of these common functions.

1.1.2 Finding Documentation

Scipy and Numpy have HTML and PDF versions of their documentation available at http://docs.scipy.org/, which currently details nearly all available functionality. However, this documentation is still work-in-progress, and some parts may be incomplete or sparse. As we are a volunteer organization and depend on the community for growth, your participation - everything from providing feedback to improving the documentation and code - is welcome and actively encouraged.

Python also provides the facility of documentation strings. The functions and classes available in SciPy use this method for on-line documentation. There are two methods for reading these messages and getting help. Python provides the command help in the pydoc module. Entering this command with no arguments (i.e. >>> help) launches an interactive help session that allows searching through the keywords and modules available to all of Python. Running the command help with an object as the argument displays the calling signature, and the documentation string of the object.
The pydoc method of help is sophisticated but uses a pager to display the text. Sometimes this can interfere with the terminal you are running the interactive session within. A scipy-specific help system is also available under the command sp.info. The signature and documentation string for the object passed to the help command are printed to standard output (or to a writeable object passed as the third argument). The second keyword argument of sp.info defines the maximum width of the line for printing. If a module is passed as the argument to help than a list of the functions and classes defined in that module is printed. For example:

```
>>> sp.info(optimize.fmin)
    fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None,
        full_output=0, disp=1, retall=0, callback=None)
Minimize a function using the downhill simplex algorithm.
Parameters
----------
func : callable func(x,*args)
    The objective function to be minimized.
x0 : ndarray
    Initial guess.
args : tuple
    Extra arguments passed to func, i.e. '`f(x,*args)'`.
callback : callable
    Called after each iteration, as callback(xk), where xk is the
    current parameter vector.
Returns
-------
xopt : ndarray
    Parameter that minimizes function.
fopt : float
    Value of function at minimum: '`fopt = func(xopt)'`.
iter : int
    Number of iterations performed.
funcalls : int
    Number of function calls made.
warnflag : int
    1 : Maximum number of function evaluations made.
    2 : Maximum number of iterations reached.
allvecs : list
    Solution at each iteration.
Other parameters
----------------
xtol : float
    Relative error in xopt acceptable for convergence.
ftol : number
    Relative error in func(xopt) acceptable for convergence.
maxiter : int
    Maximum number of iterations to perform.
maxfun : number
    Maximum number of function evaluations to make.
full_output : bool
    Set to True if fopt and warnflag outputs are desired.
disp : bool
    Set to True to print convergence messages.
retall : bool
    Set to True to return list of solutions at each iteration.
Notes
-----
Uses a Nelder-Mead simplex algorithm to find the minimum of function of
one or more variables.
```

Another useful command is source. When given a function written in Python as an argument, it prints out a listing of the source code for that function. This can be helpful in learning about an algorithm or understanding exactly what
a function is doing with its arguments. Also don't forget about the Python command dir which can be used to look at the namespace of a module or package.

1.2 Basic functions in Numpy (and top-level scipy)

Contents

- Basic functions in Numpy (and top-level scipy)
- Interaction with Numpy
- Top-level scipy routines
* Type handling
* Index Tricks
* Shape manipulation
* Polynomials
* Vectorizing functions (vectorize)
* Other useful functions
- Common functions

1.2.1 Interaction with Numpy

To begin with, all of the Numpy functions have been subsumed into the scipy namespace so that all of those functions are available without additionally importing Numpy. In addition, the universal functions (addition, subtraction, division) have been altered to not raise exceptions if floating-point errors are encountered; instead, NaN's and Inf's are returned in the arrays. To assist in detection of these events, several functions (sp.isnan, sp.isfinite, sp.isinf) are available.

Finally, some of the basic functions like log, sqrt, and inverse trig functions have been modified to return complex numbers instead of NaN's where appropriate (i.e. sp.sqrt (-1) returns 1 j).

1.2.2 Top-level scipy routines

The purpose of the top level of scipy is to collect general-purpose routines that the other sub-packages can use and to provide a simple replacement for Numpy. Anytime you might think to import Numpy, you can import scipy instead and remove yourself from direct dependence on Numpy. These routines are divided into several files for organizational purposes, but they are all available under the numpy namespace (and the scipy namespace). There are routines for type handling and type checking, shape and matrix manipulation, polynomial processing, and other useful functions. Rather than giving a detailed description of each of these functions (which is available in the Numpy Reference Guide or by using the help, info and source commands), this tutorial will discuss some of the more useful commands which require a little introduction to use to their full potential.

Type handling

Note the difference between sp.iscomplex/sp.isreal and sp.iscomplexobj/sp.isrealobj. The former command is array based and returns byte arrays of ones and zeros providing the result of the element-wise test. The latter command is object based and returns a scalar describing the result of the test on the entire object.

Often it is required to get just the real and/or imaginary part of a complex number. While complex numbers and arrays have attributes that return those values, if one is not sure whether or not the object will be complex-valued, it is better to use the functional forms sp.real and sp.imag. These functions succeed for anything that can be turned into
a Numpy array. Consider also the function sp.real_if_close which transforms a complex-valued number with tiny imaginary part into a real number.

Occasionally the need to check whether or not a number is a scalar (Python (long)int, Python float, Python complex, or rank-0 array) occurs in coding. This functionality is provided in the convenient function sp.isscalar which returns a 1 or a 0.
Finally, ensuring that objects are a certain Numpy type occurs often enough that it has been given a convenient interface in SciPy through the use of the sp.cast dictionary. The dictionary is keyed by the type it is desired to cast to and the dictionary stores functions to perform the casting. Thus, sp.cast ['f'] (d) returns an array of sp.float 32 from d. This function is also useful as an easy way to get a scalar of a certain type:

```
>>> sp.cast['f'](sp.pi)
array(3.1415927410125732, dtype=float32)
```


Index Tricks

There are some class instances that make special use of the slicing functionality to provide efficient means for array construction. This part will discuss the operation of sp.mgrid, sp.ogrid, sp. r_{-}, and sp.c_for quickly constructing arrays.

One familiar with MATLAB (R) may complain that it is difficult to construct arrays from the interactive session with Python. Suppose, for example that one wants to construct an array that begins with 3 followed by 5 zeros and then contains 10 numbers spanning the range -1 to 1 (inclusive on both ends). Before SciPy, you would need to enter something like the following

```
>>> concatenate(([3],[0]*5,arange(-1,1.002,2/9.0)))
```

With the r _ command one can enter this as

```
>>> r_[3,[0]*5,-1:1:10j]
```

which can ease typing and make for more readable code. Notice how objects are concatenated, and the slicing syntax is (ab)used to construct ranges. The other term that deserves a little explanation is the use of the complex number 10 j as the step size in the slicing syntax. This non-standard use allows the number to be interpreted as the number of points to produce in the range rather than as a step size (note we would have used the long integer notation, 10L, but this notation may go away in Python as the integers become unified). This non-standard usage may be unsightly to some, but it gives the user the ability to quickly construct complicated vectors in a very readable fashion. When the number of points is specified in this way, the end- point is inclusive.
The "r" stands for row concatenation because if the objects between commas are 2 dimensional arrays, they are stacked by rows (and thus must have commensurate columns). There is an equivalent command c_{-}that stacks 2 d arrays by columns but works identically to $r_{\text {_ }}$ for $1 d$ arrays.

Another very useful class instance which makes use of extended slicing notation is the function mgrid. In the simplest case, this function can be used to construct 1d ranges as a convenient substitute for arange. It also allows the use of complex-numbers in the step-size to indicate the number of points to place between the (inclusive) end-points. The real purpose of this function however is to produce N, N-d arrays which provide coordinate arrays for an N -dimensional volume. The easiest way to understand this is with an example of its usage:

```
>>> mgrid[0:5,0:5]
array([[[0, 0, 0, 0, 0],
    [1, 1, 1, 1, 1],
    [2, 2, 2, 2, 2],
    [3, 3, 3, 3, 3],
    [4, 4, 4, 4, 4]],
    [[0, 1, 2, 3, 4],
        [0, 1, 2, 3, 4],
```

```
    [0, 1, 2, 3, 4],
    [0, 1, 2, 3, 4],
    [0, 1, 2, 3, 4]]])
>>> mgrid[0:5:4j,0:5:4j]
array([[[ 0. , 0. , 0. , 0. ],
    [ 1.6667, 1.6667, 1.6667, 1.6667],
    [ 3.3333, 3.3333, 3.3333, 3.3333],
    [ 5. , 5. , 5. , 5. ]],
    [[ 0. , 1.6667, 3.3333, 5. ],
    [ 0. , 1.6667, 3.3333, 5. ],
    [ 0. , 1.6667, 3.3333, 5. ],
    [ 0. , 1.6667, 3.3333, 5. ]]])
```

Having meshed arrays like this is sometimes very useful. However, it is not always needed just to evaluate some N -dimensional function over a grid due to the array-broadcasting rules of Numpy and SciPy. If this is the only purpose for generating a meshgrid, you should instead use the function ogrid which generates an "open "grid using NewAxis judiciously to create N, N-d arrays where only one dimension in each array has length greater than 1 . This will save memory and create the same result if the only purpose for the meshgrid is to generate sample points for evaluation of an N -d function.

Shape manipulation

In this category of functions are routines for squeezing out length- one dimensions from N -dimensional arrays, ensuring that an array is at least $1-, 2-$, or 3-dimensional, and stacking (concatenating) arrays by rows, columns, and "pages "(in the third dimension). Routines for splitting arrays (roughly the opposite of stacking arrays) are also available.

Polynomials

There are two (interchangeable) ways to deal with 1-d polynomials in SciPy. The first is to use the poly1d class from Numpy. This class accepts coefficients or polynomial roots to initialize a polynomial. The polynomial object can then be manipulated in algebraic expressions, integrated, differentiated, and evaluated. It even prints like a polynomial:

```
>>> p = poly1d([3,4,5])
>>> print p
    2
3x+4x + 5
>>> print p*p
    4 3 2
9x+24x+46x+40x+25
>>> print p.integ(k=6)
    3 2
x + 2 x + 5 x + 6
>>> print p.deriv()
6 x + 4
>>> p([4,5])
array([ 69, 100])
```

The other way to handle polynomials is as an array of coefficients with the first element of the array giving the coefficient of the highest power. There are explicit functions to add, subtract, multiply, divide, integrate, differentiate, and evaluate polynomials represented as sequences of coefficients.

Vectorizing functions (vectorize)

One of the features that NumPy provides is a class vectorize to convert an ordinary Python function which accepts scalars and returns scalars into a "vectorized-function" with the same broadcasting rules as other Numpy functions
(i.e. the Universal functions, or ufuncs). For example, suppose you have a Python function named addsubtract defined as:

```
>>> def addsubtract (a,b):
... if a > b:
... return a - b
... else:
... return a + b
```

which defines a function of two scalar variables and returns a scalar result. The class vectorize can be used to "vectorize "this function so that

```
>>> vec_addsubtract = vectorize(addsubtract)
```

returns a function which takes array arguments and returns an array result:

```
>>> vec_addsubtract([0,3,6,9],[1,3,5,7])
array([1, 6, 1, 2])
```

This particular function could have been written in vector form without the use of vectorize. But, what if the function you have written is the result of some optimization or integration routine. Such functions can likely only be vectorized using vectorize.

Other useful functions

There are several other functions in the scipy_base package including most of the other functions that are also in the Numpy package. The reason for duplicating these functions is to allow SciPy to potentially alter their original interface and make it easier for users to know how to get access to functions

```
>>> from scipy import *
```

Functions which should be mentioned are $\bmod (x, y)$ which can replace $x \div y$ when it is desired that the result take the sign of y instead of x. Also included is fix which always rounds to the nearest integer towards zero. For doing phase processing, the functions angle, and unwrap are also useful. Also, the linspace and logspace functions return equally spaced samples in a linear or \log scale. Finally, it's useful to be aware of the indexing capabilities of Numpy. Mention should be made of the new function select which extends the functionality of where to include multiple conditions and multiple choices. The calling convention is select (condlist, choicelist, default=0) . select is a vectorized form of the multiple if-statement. It allows rapid construction of a function which returns an array of results based on a list of conditions. Each element of the return array is taken from the array in a choicelist corresponding to the first condition in condlist that is true. For example

```
>>> x = r_[-2:3]
>>> x
array([-2, -1, 0, 1, 2])
>>> select([x > 3, x >= 0],[0,x+2])
array([0, 0, 2, 3, 4])
```


1.2.3 Common functions

Some functions depend on sub-packages of SciPy but should be available from the top-level of SciPy due to their common use. These are functions that might have been placed in scipy_base except for their dependence on other sub-packages of SciPy. For example the factorial and comb functions compute n ! and $n!/ k!(n-k)$! using either exact integer arithmetic (thanks to Python's Long integer object), or by using floating-point precision and the gamma function. The functions rand and randn are used so often that they warranted a place at the top level. There are
convenience functions for the interactive use: disp (similar to print), and who (returns a list of defined variables and memory consumption-upper bounded). Another function returns a common image used in image processing: lena.

Finally, two functions are provided that are useful for approximating derivatives of functions using discrete-differences. The function central_diff_weights returns weighting coefficients for an equally-spaced N-point approximation to the derivative of order o. These weights must be multiplied by the function corresponding to these points and the results added to obtain the derivative approximation. This function is intended for use when only samples of the function are avaiable. When the function is an object that can be handed to a routine and evaluated, the function derivative can be used to automatically evaluate the object at the correct points to obtain an N-point approximation to the o-th derivative at a given point.

1.3 Special functions (scipy.special)

The main feature of the scipy.special package is the definition of numerous special functions of mathematical physics. Available functions include airy, elliptic, bessel, gamma, beta, hypergeometric, parabolic cylinder, mathieu, spheroidal wave, struve, and kelvin. There are also some low-level stats functions that are not intended for general use as an easier interface to these functions is provided by the stats module. Most of these functions can take array arguments and return array results following the same broadcasting rules as other math functions in Numerical Python. Many of these functions also accept complex numbers as input. For a complete list of the available functions with a one-line description type >>> help (special). Each function also has its own documentation accessible using help. If you don't see a function you need, consider writing it and contributing it to the library. You can write the function in either C, Fortran, or Python. Look in the source code of the library for examples of each of these kinds of functions.

1.3.1 Bessel functions of real order(jn, jn_zeros)

Bessel functions are a family of solutions to Bessel's differential equation with real or complex order alpha:

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-\alpha^{2}\right) y=0
$$

Among other uses, these functions arise in wave propagation problems such as the vibrational modes of a thin drum head. Here is an example of a circular drum head anchored at the edge:

```
>>> from scipy import *
>>> from scipy.special import jn, jn_zeros
>>> def drumhead_height(n, k, distance, angle, t):
... nth_zero = jn_zeros(n, k)
... return cos(t)*\operatorname{cos(n*angle)*jn(n, distance*nth_zero)}
>>> theta = r_[0:2*pi:50j]
>>> radius = r_[0:1:50j]
>>> x = array([r*cos(theta) for r in radius])
>>> y = array([r*sin(theta) for r in radius])
>>> z = array([drumhead_height(1, 1, r, theta, 0.5) for r in radius])
>>> import pylab
>>> from mpl_toolkits.mplot3d import Axes3D
>>> from matplotlib import cm
>>> fig = pylab.figure()
>>> ax = Axes3D(fig)
>>> ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap=cm.jet)
>>> ax.set_xlabel(' X')
>>> ax.set_ylabel('Y')
```

```
>>> ax.set_zlabel('Z')
>>> pylab.show()
```


1.4 Integration (scipy.integrate)

The scipy.integrate sub-package provides several integration techniques including an ordinary differential equation integrator. An overview of the module is provided by the help command:

```
>>> help(integrate)
    Methods for Integrating Functions given function object.
        quad -- General purpose integration.
        dblquad -- General purpose double integration.
        tplquad -- General purpose triple integration.
        fixed_quad -- Integrate func(x) using Gaussian quadrature of order n.
        quadrature -- Integrate with given tolerance using Gaussian quadrature.
        romberg -- Integrate func using Romberg integration.
    Methods for Integrating Functions given fixed samples.
        trapz -- Use trapezoidal rule to compute integral from samples.
        cumtrapz -- Use trapezoidal rule to cumulatively compute integral.
        simps -- Use Simpson's rule to compute integral from samples.
        romb -- Use Romberg Integration to compute integral from
                                (2**k + 1) evenly-spaced samples.
        See the special module's orthogonal polynomials (special) for Gaussian
            quadrature roots and weights for other weighting factors and regions.
    Interface to numerical integrators of ODE systems.
    odeint -- General integration of ordinary differential equations.
    ode -- Integrate ODE using VODE and ZVODE routines.
```


1.4.1 General integration (quad)

The function quad is provided to integrate a function of one variable between two points. The points can be $\pm \infty(\pm$ inf) to indicate infinite limits. For example, suppose you wish to integrate a bessel function $j v(2.5, x)$ along the interval [0, 4.5].

$$
I=\int_{0}^{4.5} J_{2.5}(x) d x
$$

This could be computed using quad:

```
>>> result = integrate.quad(lambda x: special.jv(2.5,x), 0, 4.5)
>>> print result
(1.1178179380783249, 7.8663172481899801e-09)
>>> I = sqrt(2/pi)*(18.0/27*sqrt(2)*\operatorname{cos(4.5)-4.0/27*sqrt(2)*sin(4.5)+}
    sqrt(2*pi)*special.fresnel(3/sqrt(pi)) [0])
>>> print I
1.117817938088701
>>> print abs(result[0]-I)
1.03761443881e-11
```

The first argument to quad is a "callable" Python object (i.e a function, method, or class instance). Notice the use of a lambda- function in this case as the argument. The next two arguments are the limits of integration. The return value is a tuple, with the first element holding the estimated value of the integral and the second element holding an upper bound on the error. Notice, that in this case, the true value of this integral is

$$
I=\sqrt{\frac{2}{\pi}}\left(\frac{18}{27} \sqrt{2} \cos (4.5)-\frac{4}{27} \sqrt{2} \sin (4.5)+\sqrt{2 \pi} \operatorname{Si}\left(\frac{3}{\sqrt{\pi}}\right)\right)
$$

where

$$
\operatorname{Si}(x)=\int_{0}^{x} \sin \left(\frac{\pi}{2} t^{2}\right) d t
$$

is the Fresnel sine integral. Note that the numerically-computed integral is within 1.04×10^{-11} of the exact result well below the reported error bound.

Infinite inputs are also allowed in quad by using \pm inf as one of the arguments. For example, suppose that a numerical value for the exponential integral:

$$
E_{n}(x)=\int_{1}^{\infty} \frac{e^{-x t}}{t^{n}} d t
$$

is desired (and the fact that this integral can be computed as special. $\operatorname{expn}(n, x)$ is forgotten). The functionality of the function special.expn can be replicated by defining a new function vec_expint based on the routine quad:

```
>>> from scipy.integrate import quad
>>> def integrand(t,n,x):
... return exp (-x*t) / t**n
>>> def expint(n,x):
... return quad(integrand, 1, Inf, args=(n, x)) [0]
>>> vec_expint = vectorize(expint)
>>> vec_expint (3, arange (1.0, 4.0,0.5))
array([ 0.1097, 0.0567, 0.0301, 0.0163, 0.0089, 0.0049])
>>> special.expn(3,arange(1.0,4.0,0.5))
array([ 0.1097, 0.0567, 0.0301, 0.0163, 0.0089, 0.0049])
```

The function which is integrated can even use the quad argument (though the error bound may underestimate the error due to possible numerical error in the integrand from the use of quad). The integral in this case is

$$
I_{n}=\int_{0}^{\infty} \int_{1}^{\infty} \frac{e^{-x t}}{t^{n}} d t d x=\frac{1}{n}
$$

```
>>> result = quad(lambda x: expint(3, x), 0, inf)
>>> print result
(0.33333333324560266, 2.8548934485373678e-09)
>>> I3 = 1.0/3.0
>>> print I3
0.333333333333
>>> print I3 - result[0]
8.77306560731e-11
```

This last example shows that multiple integration can be handled using repeated calls to quad. The mechanics of this for double and triple integration have been wrapped up into the functions dblquad and tplquad. The function, db l quad performs double integration. Use the help function to be sure that the arguments are defined in the correct order. In addition, the limits on all inner integrals are actually functions which can be constant functions. An example of using double integration to compute several values of I_{n} is shown below:

```
>>> from scipy.integrate import quad, dblquad
>>> def I(n):
... return dblquad(lambda t, x: exp(-x*t)/t**n, 0, Inf, lambda x: 1, lambda x: Inf)
>>> print I(4)
(0.25000000000435768, 1.0518245707751597e-09)
>>> print I(3)
(0.33333333325010883, 2.8604069919261191e-09)
>>> print I(2)
(0.49999999999857514, 1.8855523253868967e-09)
```


1.4.2 Gaussian quadrature (integrate.gauss_quadtol)

A few functions are also provided in order to perform simple Gaussian quadrature over a fixed interval. The first is fixed_quad which performs fixed-order Gaussian quadrature. The second function is quadrature which performs Gaussian quadrature of multiple orders until the difference in the integral estimate is beneath some tolerance supplied by the user. These functions both use the module special. orthogonal which can calculate the roots and quadrature weights of a large variety of orthogonal polynomials (the polynomials themselves are available as special functions returning instances of the polynomial class - e.g. special.legendre).

1.4.3 Integrating using samples

There are three functions for computing integrals given only samples: trapz, simps, and romb. The first two functions use Newton-Coates formulas of order 1 and 2 respectively to perform integration. These two functions can handle, non-equally-spaced samples. The trapezoidal rule approximates the function as a straight line between adjacent points, while Simpson's rule approximates the function between three adjacent points as a parabola.

If the samples are equally-spaced and the number of samples available is $2^{k}+1$ for some integer k, then Romberg integration can be used to obtain high-precision estimates of the integral using the available samples. Romberg integration uses the trapezoid rule at step-sizes related by a power of two and then performs Richardson extrapolation on these estimates to approximate the integral with a higher-degree of accuracy. (A different interface to Romberg integration useful when the function can be provided is also available as romberg).

1.4.4 Ordinary differential equations (odeint)

Integrating a set of ordinary differential equations (ODEs) given initial conditions is another useful example. The function odeint is available in SciPy for integrating a first-order vector differential equation:

$$
\frac{d \mathbf{y}}{d t}=\mathbf{f}(\mathbf{y}, t)
$$

given initial conditions $\mathbf{y}(0)=y_{0}$, where \mathbf{y} is a length N vector and \mathbf{f} is a mapping from \mathcal{R}^{N} to \mathcal{R}^{N}. A higher-order ordinary differential equation can always be reduced to a differential equation of this type by introducing intermediate derivatives into the \mathbf{y} vector.

For example suppose it is desired to find the solution to the following second-order differential equation:

$$
\frac{d^{2} w}{d z^{2}}-z w(z)=0
$$

with initial conditions $w(0)=\frac{1}{\sqrt[3]{3^{2}} \Gamma\left(\frac{2}{3}\right)}$ and $\left.\frac{d w}{d z}\right|_{z=0}=-\frac{1}{\sqrt[3]{3} \Gamma\left(\frac{1}{3}\right)}$. It is known that the solution to this differential equation with these boundary conditions is the Airy function

$$
w=\mathrm{Ai}(z),
$$

which gives a means to check the integrator using special. airy.
First, convert this ODE into standard form by setting $\mathbf{y}=\left[\frac{d w}{d z}, w\right]$ and $t=z$. Thus, the differential equation becomes

$$
\frac{d \mathbf{y}}{d t}=\left[\begin{array}{c}
t y_{1} \\
y_{0}
\end{array}\right]=\left[\begin{array}{ll}
0 & t \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]=\left[\begin{array}{cc}
0 & t \\
1 & 0
\end{array}\right] \mathbf{y}
$$

In other words,

$$
\mathbf{f}(\mathbf{y}, t)=\mathbf{A}(t) \mathbf{y} .
$$

As an interesting reminder, if $\mathbf{A}(t)$ commutes with $\int_{0}^{t} \mathbf{A}(\tau) d \tau$ under matrix multiplication, then this linear differential equation has an exact solution using the matrix exponential:

$$
\mathbf{y}(t)=\exp \left(\int_{0}^{t} \mathbf{A}(\tau) d \tau\right) \mathbf{y}(0)
$$

However, in this case, $\mathbf{A}(t)$ and its integral do not commute.
There are many optional inputs and outputs available when using odeint which can help tune the solver. These additional inputs and outputs are not needed much of the time, however, and the three required input arguments and the output solution suffice. The required inputs are the function defining the derivative, fprime, the initial conditions vector, $y 0$, and the time points to obtain a solution, t, (with the initial value point as the first element of this sequence). The output to odeint is a matrix where each row contains the solution vector at each requested time point (thus, the initial conditions are given in the first output row).

The following example illustrates the use of odeint including the usage of the Dfun option which allows the user to specify a gradient (with respect to \mathbf{y}) of the function, $\mathbf{f}(\mathbf{y}, t)$.

```
>>> from scipy.integrate import odeint
>>> from scipy.special import gamma, airy
>>> y1_0 = 1.0/3**(2.0/3.0)/gamma(2.0/3.0)
>>> y0_0 = -1.0/3**(1.0/3.0)/gamma(1.0/3.0)
>>> y0 = [y0_0, y1_0]
>>> def func(y, t):
... return [t*y[1],y[0]]
```

```
>>> def gradient (y,t):
... return [[0,t],[1,0]]
>>> x = arange(0,4.0, 0.01)
>>> t = x
>>> ychk = airy(x)[0]
>>> y = odeint(func, y0, t)
>>> y2 = odeint(func, y0, t, Dfun=gradient)
>>> print ychk[:36:6]
[[\begin{array}{llllllll}{0.355028}&{0.339511}&{0.324068}&{0.308763}&{0.293658}&{0.278806]}\end{array}]
>>> print y[:36:6,1]
[[\begin{array}{lllllll}{0.355028}&{0.339511}&{0.324067}&{0.308763}&{0.293658}&{0.278806]}\end{array}]
>>> print y2[:36:6,1]
[[\begin{array}{llllllll}{0.355028}&{0.339511}&{0.324067}&{0.308763}&{0.293658}&{0.278806]}\end{array}]
```


1.5 Optimization (optimize)

The scipy.optimize package provides several commonly used optimization algorithms. An detailed listing is available: scipy. optimize (can also be found by help (scipy.optimize)).
The module contains:

1. Unconstrained and constrained minimization and least-squares algorithms (e.g., fmin: Nelder-Mead simplex, fmin_bfgs: BFGS, fmin_ncg: Newton Conjugate Gradient, leastsq: Levenberg-Marquardt, fmin_cobyla: COBYLA).
2. Global (brute-force) optimization routines (e.g., anneal)
3. Curve fitting (curve_fit)
4. Scalar function minimizers and root finders (e.g., Brent's method fminbound, and newton)
5. Multivariate equation system solvers (f solve)
6. Large-scale multivariate equation system solvers (e.g. newton_krylov)

Below, several examples demonstrate their basic usage.

1.5.1 Nelder-Mead Simplex algorithm (fmin)

The simplex algorithm is probably the simplest way to minimize a fairly well-behaved function. The simplex algorithm requires only function evaluations and is a good choice for simple minimization problems. However, because it does not use any gradient evaluations, it may take longer to find the minimum. To demonstrate the minimization function consider the problem of minimizing the Rosenbrock function of N variables:

$$
f(\mathbf{x})=\sum_{i=1}^{N-1} 100\left(x_{i}-x_{i-1}^{2}\right)^{2}+\left(1-x_{i-1}\right)^{2} .
$$

The minimum value of this function is 0 which is achieved when $x_{i}=1$. This minimum can be found using the fmin routine as shown in the example below:

```
>>> from scipy.optimize import fmin
>>> def rosen(x) :
... """The Rosenbrock function"""
... return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)
>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
>>> xopt = fmin(rosen, x0, xtol=1e-8)
Optimization terminated successfully.
    Current function value: 0.000000
    Iterations: 339
    Function evaluations: 571
>>> print xopt
[ 1. 1. 1. 1. 1.]
```

Another optimization algorithm that needs only function calls to find the minimum is Powell's method available as fmin_powell.

1.5.2 Broyden-Fletcher-Goldfarb-Shanno algorithm (fmin_bfgs)

In order to converge more quickly to the solution, this routine uses the gradient of the objective function. If the gradient is not given by the user, then it is estimated using first-differences. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method typically requires fewer function calls than the simplex algorithm even when the gradient must be estimated.
To demonstrate this algorithm, the Rosenbrock function is again used. The gradient of the Rosenbrock function is the vector:

$$
\begin{aligned}
\frac{\partial f}{\partial x_{j}} & =\sum_{i=1}^{N} 200\left(x_{i}-x_{i-1}^{2}\right)\left(\delta_{i, j}-2 x_{i-1} \delta_{i-1, j}\right)-2\left(1-x_{i-1}\right) \delta_{i-1, j} \\
& =200\left(x_{j}-x_{j-1}^{2}\right)-400 x_{j}\left(x_{j+1}-x_{j}^{2}\right)-2\left(1-x_{j}\right)
\end{aligned}
$$

This expression is valid for the interior derivatives. Special cases are

$$
\begin{aligned}
\frac{\partial f}{\partial x_{0}} & =-400 x_{0}\left(x_{1}-x_{0}^{2}\right)-2\left(1-x_{0}\right) \\
\frac{\partial f}{\partial x_{N-1}} & =200\left(x_{N-1}-x_{N-2}^{2}\right)
\end{aligned}
$$

A Python function which computes this gradient is constructed by the code-segment:

```
>>> def rosen_der(x):
... xm = x[1:-1]
... xm_m1 = x[:-2]
... xm_p1 = x[2:]
... der = zeros_like(x)
... der[1:-1]=200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)
... der[0] = - 400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])
... der[-1] = 200*(x[-1]-x[-2]**2)
... return der
```

The calling signature for the BFGS minimization algorithm is similar to fmin with the addition of the fprime argument. An example usage of fmin_bfgs is shown in the following example which minimizes the Rosenbrock function.

```
>>> from scipy.optimize import fmin_bfgs
```

```
>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
>>> xopt = fmin_bfgs(rosen, x0, fprime=rosen_der)
Optimization terminated successfully.
    Current function value: 0.000000
    Iterations: 53
    Function evaluations: 65
    Gradient evaluations: 65
>>> print xopt
[ 1. 1. 1. 1. 1.]
```


1.5.3 Newton-Conjugate-Gradient (fmin_ncg)

The method which requires the fewest function calls and is therefore often the fastest method to minimize functions of many variables is $f m i n _$ncg. This method is a modified Newton’s method and uses a conjugate gradient algorithm to (approximately) invert the local Hessian. Newton's method is based on fitting the function locally to a quadratic form:

$$
f(\mathbf{x}) \approx f\left(\mathbf{x}_{0}\right)+\nabla f\left(\mathbf{x}_{0}\right) \cdot\left(\mathbf{x}-\mathbf{x}_{0}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{0}\right)^{T} \mathbf{H}\left(\mathrm{x}_{0}\right)\left(\mathrm{x}-\mathbf{x}_{0}\right) .
$$

where $\mathbf{H}\left(\mathbf{x}_{0}\right)$ is a matrix of second-derivatives (the Hessian). If the Hessian is positive definite then the local minimum of this function can be found by setting the gradient of the quadratic form to zero, resulting in

$$
\mathbf{x}_{\mathrm{opt}}=\mathbf{x}_{0}-\mathbf{H}^{-1} \nabla f .
$$

The inverse of the Hessian is evaluted using the conjugate-gradient method. An example of employing this method to minimizing the Rosenbrock function is given below. To take full advantage of the NewtonCG method, a function which computes the Hessian must be provided. The Hessian matrix itself does not need to be constructed, only a vector which is the product of the Hessian with an arbitrary vector needs to be available to the minimization routine. As a result, the user can provide either a function to compute the Hessian matrix, or a function to compute the product of the Hessian with an arbitrary vector.

Full Hessian example:

The Hessian of the Rosenbrock function is

$$
\begin{aligned}
H_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} & =200\left(\delta_{i, j}-2 x_{i-1} \delta_{i-1, j}\right)-400 x_{i}\left(\delta_{i+1, j}-2 x_{i} \delta_{i, j}\right)-400 \delta_{i, j}\left(x_{i+1}-x_{i}^{2}\right)+2 \delta_{i, j}, \\
& =\left(202+1200 x_{i}^{2}-400 x_{i+1}\right) \delta_{i, j}-400 x_{i} \delta_{i+1, j}-400 x_{i-1} \delta_{i-1, j},
\end{aligned}
$$

if $i, j \in[1, N-2]$ with $i, j \in[0, N-1]$ defining the $N \times N$ matrix. Other non-zero entries of the matrix are

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x_{0}^{2}} & =1200 x_{0}^{2}-400 x_{1}+2, \\
\frac{\partial^{2} f}{\partial x_{0} \partial x_{1}}=\frac{\partial^{2} f}{\partial x_{1} \partial x_{0}} & =-400 x_{0}, \\
\frac{\partial^{2} f}{\partial x_{N-1} \partial x_{N-2}}=\frac{\partial^{2} f}{\partial x_{N-2} \partial x_{N-1}} & =-400 x_{N-2}, \\
\frac{\partial^{2} f}{\partial x_{N-1}^{2}} & =200 .
\end{aligned}
$$

For example, the Hessian when $N=5$ is
$\mathbf{H}=\left[\begin{array}{ccccc}1200 x_{0}^{2}-400 x_{1}+2 & -400 x_{0} & 0 & 0 & 0 \\ -400 x_{0} & 202+1200 x_{1}^{2}-400 x_{2} & -400 x_{1} & 0 & 0 \\ 0 & -400 x_{1} & 202+1200 x_{2}^{2}-400 x_{3} & -400 x_{2} & 0 \\ 0 & 0 & -400 x_{2} & 202+1200 x_{3}^{2}-400 x_{4} & -400 x_{3} \\ 0 & 0 & 0 & -400 x_{3} & 200\end{array}\right]$.

The code which computes this Hessian along with the code to minimize the function using fmin_ncg is shown in the following example:

```
>>> from scipy.optimize import fmin_ncg
>>> def rosen_hess(x):
... x = asarray(x)
... H}=\operatorname{diag}(-400*x[:-1],1) - diag(400*x[:-1],-1
... diagonal = zeros_like(x)
... diagonal[0] = 1200*x[0]-400*x[1]+2
... diagonal[-1] = 200
...diagonal[1:-1]=202 + 1200*x[1:-1]**2 - 400*x[2:]
... H}=H+\operatorname{diag(diagonal)
... return H
>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
>>> xopt = fmin_ncg(rosen, x0, rosen_der, fhess=rosen_hess, avextol=1e-8)
Optimization terminated successfully.
    Current function value: 0.000000
    Iterations: 23
    Function evaluations: 26
    Gradient evaluations: 23
    Hessian evaluations: 23
>>> print xopt
[ 1. 1. 1. 1. 1.]
```


Hessian product example:

For larger minimization problems, storing the entire Hessian matrix can consume considerable time and memory. The Newton-CG algorithm only needs the product of the Hessian times an arbitrary vector. As a result, the user can supply code to compute this product rather than the full Hessian by setting the fhess_p keyword to the desired function. The fhess p function should take the minimization vector as the first argument and the arbitrary vector as the second argument. Any extra arguments passed to the function to be minimized will also be passed to this function. If possible, using Newton-CG with the hessian product option is probably the fastest way to minimize the function.

In this case, the product of the Rosenbrock Hessian with an arbitrary vector is not difficult to compute. If \mathbf{p} is the arbitrary vector, then $\mathbf{H}(\mathbf{x}) \mathbf{p}$ has elements:

$$
\mathbf{H}(\mathbf{x}) \mathbf{p}=\left[\begin{array}{c}
\left(1200 x_{0}^{2}-400 x_{1}+2\right) p_{0}-400 x_{0} p_{1} \\
\vdots \\
-400 x_{i-1} p_{i-1}+\left(202+1200 x_{i}^{2}-400 x_{i+1}\right) p_{i}-400 x_{i} p_{i+1} \\
\vdots \\
-400 x_{N-2} p_{N-2}+200 p_{N-1}
\end{array}\right] .
$$

Code which makes use of the fhess p keyword to minimize the Rosenbrock function using fmin_ncg follows:

```
>>> from scipy.optimize import fmin_ncg
>>> def rosen_hess_p(x,p):
... x = asarray(x)
... Hp = zeros_like(x)
... Hp[0] = (1200*x[0]**2 - 400*x[1] + 2)*p[0] - 400*x[0]*p[1]
... Hp[1:-1] = - 400*x[:-2]*p[:-2]+(202+1200*x[1:-1]**2-400*x[2:])*p[1:-1] \
.. -400*x[1:-1]*p[2:]
... Hp [-1] = -400*x[-2]*p[-2] + 200*p[-1]
... return Hp
```

```
>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
>>> xopt = fmin_ncg(rosen, x0, rosen_der, fhess_p=rosen_hess_p, avextol=1e-8)
Optimization terminated successfully.
    Current function value: 0.000000
    Iterations: 22
    Function evaluations: 25
    Gradient evaluations: 22
    Hessian evaluations: 54
>>> print xopt
[ 1. 1. 1. 1. 1.]
```


1.5.4 Least-square fitting (leastsq)

All of the previously-explained minimization procedures can be used to solve a least-squares problem provided the appropriate objective function is constructed. For example, suppose it is desired to fit a set of data $\left\{\mathbf{x}_{i}, \mathbf{y}_{i}\right\}$ to a known model, $\mathbf{y}=\mathbf{f}(\mathbf{x}, \mathbf{p})$ where \mathbf{p} is a vector of parameters for the model that need to be found. A common method for determining which parameter vector gives the best fit to the data is to minimize the sum of squares of the residuals. The residual is usually defined for each observed data-point as

$$
e_{i}\left(\mathbf{p}, \mathbf{y}_{i}, \mathbf{x}_{i}\right)=\left\|\mathbf{y}_{i}-\mathbf{f}\left(\mathbf{x}_{i}, \mathbf{p}\right)\right\| .
$$

An objective function to pass to any of the previous minization algorithms to obtain a least-squares fit is.

$$
J(\mathbf{p})=\sum_{i=0}^{N-1} e_{i}^{2}(\mathbf{p}) .
$$

The leastsq algorithm performs this squaring and summing of the residuals automatically. It takes as an input argument the vector function $\mathbf{e}(\mathbf{p})$ and returns the value of \mathbf{p} which minimizes $J(\mathbf{p})=\mathbf{e}^{T} \mathbf{e}$ directly. The user is also encouraged to provide the Jacobian matrix of the function (with derivatives down the columns or across the rows). If the Jacobian is not provided, it is estimated.
An example should clarify the usage. Suppose it is believed some measured data follow a sinusoidal pattern

$$
y_{i}=A \sin \left(2 \pi k x_{i}+\theta\right)
$$

where the parameters A, k, and θ are unknown. The residual vector is

$$
e_{i}=\left|y_{i}-A \sin \left(2 \pi k x_{i}+\theta\right)\right| .
$$

By defining a function to compute the residuals and (selecting an appropriate starting position), the least-squares fit routine can be used to find the best-fit parameters $\hat{A}, \hat{k}, \hat{\theta}$. This is shown in the following example:

```
>>> from numpy import *
>>> x = arange (0,6e-2,6e-2/30)
>>> A,k,theta = 10, 1.0/3e-2, pi/6
>>> y_true = A* sin(2*pi*k*x+theta)
>>> y_meas = y_true + 2*random.randn(len(x))
>>> def residuals(p, y, x):
... A,k,theta = p
... err = y-A*sin(2*pi*k*x+theta)
... return err
>>> def peval(x, p):
... return p[0]*sin(2*pi*p[1]*x+p[2])
```

```
>>> p0 = [8, 1/2.3e-2, pi/3]
>>> print array(p0)
[ 8. 43.4783 1.0472]
>>> from scipy.optimize import leastsq
>>> plsq = leastsq(residuals, p0, args=(y_meas, x))
>>> print plsq[0]
[ 10.9437 33.3605 0.5834]
>>> print array([A, k, theta])
[ 10. 33.3333 0.5236]
>>> import matplotlib.pyplot as plt
>>> plt.plot(x,peval(x,plsq[0]),x,y_meas,'o',x,y_true)
>>> plt.title('Least-squares fit to noisy data')
>>> plt.legend(['Fit', 'Noisy', 'True'])
>>> plt.show()
```


1.5.5 Sequential Least-square fitting with constraints (fmin_slsqp)

This module implements the Sequential Least SQuares Programming optimization algorithm (SLSQP).

$$
\begin{array}{lll}
\min F(x) & & \\
\text { subject to } & C_{j}(X)=0, & j=1, \ldots, \text { MEQ } \\
& C_{j}(x) \geq 0, & j=\text { MEQ }+1, \ldots, M \\
X L \leq x \leq X U, & I=1, \ldots, N .
\end{array}
$$

The following script shows examples for how constraints can be specified.

```
"""
This script tests fmin_slsqp using Example 14.4 from Numerical Methods for
Engineers by Steven Chapra and Raymond Canale. This example maximizes the
function }f(x)=2*x*y+2*x-x**2-2*y**2, which has a maximum at x=2,y=1
" ""
from scipy.optimize import fmin_slsqp
```

```
from numpy import array, asfarray, finfo,ones, sqrt, zeros
def testfunc(d, *args):
    """
    Parameters
    ----------
    d : list
        A list of two elements, where d[0] represents }x\mathrm{ and
        d[I] represents }y\mathrm{ in the following equation.
    sign : float
        A multiplier for f. Since we want to optimize it, and the scipy
        optimizers can only minimize functions, we need to multiply it by
        -1 to achieve the desired solution.
    Returns
    -------
    res : float
        The result, equal to '' }2*x*y+2*x-x**2 - 2*y**2''.
        " ""
    try:
        sign = args[0]
    except:
        sign = 1.0
    x = d[0]
    y = d[1]
    return sign*(2*x*y + 2*x - x**2 - 2*y**2)
def testfunc_deriv(d,*args):
    """ This is the derivative of testfunc, returning a numpy array
    representing df/dx and df/dy
    """
    try:
        sign = args[0]
    except:
        sign = 1.0
    x = d[0]
    y = d[1]
    dfdx = sign*(-2*x + 2*y + 2)
    dfdy = sign*(2*x - 4*y)
    return array([ dfdx, dfdy ],float)
from time import time
print '\n\n'
print "Unbounded optimization. Derivatives approximated."
t0 = time()
x = fmin_slsqp(testfunc, [-1.0,1.0], args=(-1.0,), iprint=2, full_output=1)
print "Elapsed time:", 1000*(time()-t0), "ms"
print "Results",x
print "\n\n"
print "Unbounded optimization. Derivatives provided."
t0 = time()
x = fmin_slsqp(testfunc, [-1.0,1.0], args=(-1.0,), iprint=2, full_output=1)
```


SciPy Reference Guide, Release 0.10.0.dev

```
print "Elapsed time:", 1000*(time()-t0), "ms"
print "Results",x
print "\n\n"
print "Bound optimization. Derivatives approximated."
t0 = time()
x = fmin_slsqp(testfunc, [-1.0,1.0], args=(-1.0,),
                eqcons=[lambda x, y: x[0]-x[1] ], iprint=2, full_output=1)
print "Elapsed time:", 1000*(time()-t0), "ms"
print "Results",x
print "\n\n"
print "Bound optimization (equality constraints). Derivatives provided."
t0 = time()
x = fmin_slsqp(testfunc, [-1.0,1.0], fprime=testfunc_deriv, args=(-1.0,),
                eqcons=[lambda x, y: x[0]-x[1] ], iprint=2, full_output=1)
print "Elapsed time:", 1000*(time()-t0), "ms"
print "Results",x
print "\n\n"
print "Bound optimization (equality and inequality constraints)."
print "Derivatives provided."
t0 = time()
x = fmin_slsqp(testfunc, [-1.0,1.0], fprime=testfunc_deriv, args=(-1.0,),
    eqcons=[lambda x, y: x[0]-x[1] ],
    ieqcons=[lambda x, y: x[0]-.5], iprint=2, full_output=1)
print "Elapsed time:", 1000*(time()-t0), "ms"
print "Results",x
print "\n\n"
def test_eqcons(d,*args):
    try:
        sign = args[0]
    except:
            sign = 1.0
    x = d[0]
    y = d[1]
    return array([ x**3-y ])
def test_ieqcons(d,*args):
    try:
            sign = args[0]
    except:
            sign = 1.0
    x = d[0]
    y = d[1]
    return array([ y-1 ])
print "Bound optimization (equality and inequality constraints)."
print "Derivatives provided via functions."
t0 = time()
x = fmin_slsqp(testfunc, [-1.0,1.0], fprime=testfunc_deriv, args=(-1.0,),
                        f_eqcons=test_eqcons, f_ieqcons=test_ieqcons,
    iprint=2, full_output=1)
print "Elapsed time:", 1000*(time()-t0), "ms"
```

```
print "Results",x
print "\n\n"
def test_fprime_eqcons(d,*args):
    try:
        sign = args[0]
    except:
        sign = 1.0
    x = d[0]
    y = d[1]
    return array([ 3.0*(x**2.0), -1.0 ])
def test_fprime_ieqcons(d,*args):
    try:
        sign = args[0]
    except:
        sign = 1.0
    x = d[0]
    y = d[1]
    return array([ 0.0, 1.0 ])
print "Bound optimization (equality and inequality constraints)."
print "Derivatives provided via functions."
print "Constraint jacobians provided via functions"
t0 = time()
x = fmin_slsqp(testfunc, [-1.0,1.0], fprime=testfunc_deriv, args=(-1.0, ),
    f_eqcons=test_eqcons, f_ieqcons=test_ieqcons,
    fprime_eqcons=test_fprime_eqcons,
    fprime_ieqcons=test_fprime_ieqcons, iprint=2, full_output=1)
print "Elapsed time:", 1000*(time()-t0), "ms"
print "Results",x
print "\n\n"
```


1.5.6 Scalar function minimizers

Often only the minimum of a scalar function is needed (a scalar function is one that takes a scalar as input and returns a scalar output). In these circumstances, other optimization techniques have been developed that can work faster.

Unconstrained minimization (brent)

There are actually two methods that can be used to minimize a scalar function (brent and golden), but golden is included only for academic purposes and should rarely be used. The brent method uses Brent's algorithm for locating a minimum. Optimally a bracket should be given which contains the minimum desired. A bracket is a triple (a, b, c) such that $f(a)>f(b)<f(c)$ and $a<b<c$. If this is not given, then alternatively two starting points can be chosen and a bracket will be found from these points using a simple marching algorithm. If these two starting points are not provided 0 and 1 will be used (this may not be the right choice for your function and result in an unexpected minimum being returned).

Bounded minimization (fminbound)

Thus far all of the minimization routines described have been unconstrained minimization routines. Very often, however, there are constraints that can be placed on the solution space before minimization occurs. The fminbound
function is an example of a constrained minimization procedure that provides a rudimentary interval constraint for scalar functions. The interval constraint allows the minimization to occur only between two fixed endpoints.
For example, to find the minimum of $J_{1}(x)$ near $x=5$, fminbound can be called using the interval $[4,7]$ as a constraint. The result is $x_{\text {min }}=5.3314$:

```
>>> from scipy.special import j1
>>> from scipy.optimize import fminbound
>>> xmin = fminbound(j1, 4, 7)
>>> print xmin
5.33144184241
```


1.5.7 Root finding

Sets of equations

To find the roots of a polynomial, the command roots is useful. To find a root of a set of non-linear equations, the command f solve is needed. For example, the following example finds the roots of the single-variable transcendental equation

$$
x+2 \cos (x)=0
$$

and the set of non-linear equations

$$
\begin{aligned}
x_{0} \cos \left(x_{1}\right) & =4 \\
x_{0} x_{1}-x_{1} & =5
\end{aligned}
$$

The results are $x=-1.0299$ and $x_{0}=6.5041, x_{1}=0.9084$.

```
>>> def func(x):
... return x + 2* cos(x)
>>> def func2(x):
... out = [x[0]*\operatorname{cos}(x[1]) - 4]
... out.append(x[1]*x[0] - x[1] - 5)
... return out
>>> from scipy.optimize import fsolve
>> x0 = fsolve(func, 0.3)
>>> print x0
-1.02986652932
>>> x02 = fsolve(func2, [1, 1])
>>> print x02
[ 6.50409711 0.90841421]
```


Scalar function root finding

If one has a single-variable equation, there are four different root finder algorithms that can be tried. Each of these root finding algorithms requires the endpoints of an interval where a root is suspected (because the function changes signs). In general brent q is the best choice, but the other methods may be useful in certain circumstances or for academic purposes.

Fixed-point solving

A problem closely related to finding the zeros of a function is the problem of finding a fixed-point of a function. A fixed point of a function is the point at which evaluation of the function returns the point: $g(x)=x$. Clearly the fixed point of g is the root of $f(x)=g(x)-x$. Equivalently, the root of f is the fixed_point of $g(x)=f(x)+x$. The routine fixed_point provides a simple iterative method using Aitkens sequence acceleration to estimate the fixed point of g given a starting point.

1.5.8 Root finding: Large problems

The f solve function cannot deal with a very large number of variables (N), as it needs to calculate and invert a dense $N x N$ Jacobian matrix on every Newton step. This becomes rather inefficent when N grows.

Consider for instance the following problem: we need to solve the following integrodifferential equation on the square $[0,1] \times[0,1]:$

$$
\left(\partial_{x}^{2}+\partial_{y}^{2}\right) P+5\left(\int_{0}^{1} \int_{0}^{1} \cosh (P) d x d y\right)^{2}=0
$$

with the boundary condition $P(x, 1)=1$ on the upper edge and $P=0$ elsewhere on the boundary of the square. This can be done by approximating the continuous function P by its values on a grid, $P_{n, m} \approx P(n h, m h)$, with a small grid spacing h. The derivatives and integrals can then be approximated; for instance $\partial_{x}^{2} P(x, y) \approx(P(x+h, y)-$ $2 P(x, y)+P(x-h, y)) / h^{2}$. The problem is then equivalent to finding the root of some function residual (P), where P is a vector of length $N_{x} N_{y}$.
Now, because $N_{x} N_{y}$ can be large, fsolve will take a long time to solve this problem. The solution can however be found using one of the large-scale solvers in scipy.optimize, for example newton_krylov, broyden2, or anderson. These use what is known as the inexact Newton method, which instead of computing the Jacobian matrix exactly, forms an approximation for it.

The problem we have can now be solved as follows:

```
import numpy as np
from scipy.optimize import newton_krylov
from numpy import cosh, zeros_like, mgrid, zeros
# parameters
nx, ny = 75, 75
hx, hy = 1./(nx-1), 1./(ny-1)
P_left, P_right = 0, 0
P_top, P_bottom = 1, 0
def residual(P):
    d2x = zeros_like(P)
    d2y = zeros_like(P)
    d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2]) / hx/hx
    d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx
    d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx
    d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy
    d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy
    d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy
    return d2x + d2y + 5*\operatorname{cosh(P).mean()**2}
```

```
# solve
guess = zeros((nx, ny), float)
sol = newton_krylov(residual, guess, verbose=1)
#sol = broyden2(residual, guess, max_rank=50, verbose=1)
#Sol = anderson(residual, guess, M=10, verbose=1)
print 'Residual', abs(residual(sol)).max()
# visualize
import matplotlib.pyplot as plt
x, y = mgrid[0:1:(nx*1j), 0:1:(ny*1j)]
plt.pcolor(x, y, sol)
plt.colorbar()
plt.show()
```


Still too slow? Preconditioning.

When looking for the zero of the functions $f_{i}(\mathbf{x})=0, i=1,2, \ldots, N$, the newton $_$krylov solver spends most of its time inverting the Jacobian matrix,

$$
J_{i j}=\frac{\partial f_{i}}{\partial x_{j}}
$$

If you have an approximation for the inverse matrix $M \approx J^{-1}$, you can use it for preconditioning the linear inversion problem. The idea is that instead of solving $J \mathbf{s}=\mathbf{y}$ one solves $M J \mathbf{s}=M \mathbf{y}$: since matrix $M J$ is "closer" to the identity matrix than J is, the equation should be easier for the Krylov method to deal with.

The matrix M can be passed to newton_krylov as the inner_ M parameter. It can be a (sparse) matrix or a scipy.sparse.linalg.LinearOperator instance.

For the problem in the previous section, we note that the function to solve consists of two parts: the first one is application of the Laplace operator, $\left[\partial_{x}^{2}+\partial_{y}^{2}\right] P$, and the second is the integral. We can actually easily compute the

Jacobian corresponding to the Laplace operator part: we know that in one dimension

$$
\partial_{x}^{2} \approx \frac{1}{h_{x}^{2}}\left(\begin{array}{cccc}
-2 & 1 & 0 & 0 \cdots \\
1 & -2 & 1 & 0 \cdots \\
0 & 1 & -2 & 1 \cdots \\
\cdots & & &
\end{array}\right)=h_{x}^{-2} L
$$

so that the whole 2-D operator is represented by

$$
J_{1}=\partial_{x}^{2}+\partial_{y}^{2} \simeq h_{x}^{-2} L \otimes I+h_{y}^{-2} I \otimes L
$$

The matrix J_{2} of the Jacobian corresponding to the integral is more difficult to calculate, and since all of it entries are nonzero, it will be difficult to invert. J_{1} on the other hand is a relatively simple matrix, and can be inverted by scipy.sparse.linalg.splu (or the inverse can be approximated by scipy.sparse.linalg.spilu). So we are content to take $M \approx J_{1}^{-1}$ and hope for the best.

In the example below, we use the preconditioner $M=J_{1}^{-1}$.

```
import numpy as np
from scipy.optimize import newton_krylov
from scipy.sparse import spdiags, spkron
from scipy.sparse.linalg import spilu, LinearOperator
from numpy import cosh, zeros_like, mgrid, zeros, eye
# parameters
nx, ny = 75, 75
hx, hy = 1./(nx-1), 1./(ny-1)
P_left, P_right = 0, 0
P_top, P_bottom = 1, 0
def get_preconditioner():
    """Compute the preconditioner M"""
    diags_x = zeros((3, nx))
    diags_x[0,:] = 1/hx/hx
    diags_x[1,:] = -2/hx/hx
    diags_x[2,:] = 1/hx/hx
    Lx = spdiags(diags_x, [-1,0,1], nx, nx)
    diags_y = zeros((3, ny))
    diags_y[0,:] = 1/hy/hy
    diags_y[1,:] = -2/hy/hy
    diags_y[2,:] = 1/hy/hy
    Ly = spdiags(diags_y, [-1,0,1], ny, ny)
    J1 = spkron(Lx, eye(ny)) + spkron(eye(nx), Ly)
    # Now we have the matrix 'J_l'. We need to find its inverse 'M' --
    # however, since an approximate inverse is enough, we can use
    # the *incomplete LU* decomposition
    J1_ilu = spilu(J1)
    # This returns an object with a method .solve() that evaluates
    # the corresponding matrix-vector product. We need to wrap it into
    # a LinearOperator before it can be passed to the Krylov methods:
    M = LinearOperator(shape=(nx*ny, nx*ny), matvec=J1_ilu.solve)
    return M
```

```
def solve(preconditioning=True):
    """Compute the solution"""
    count = [0]
    def residual(P):
        count[0] += 1
        d2x = zeros_like(P)
        d2y = zeros_like(P)
        d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2])/hx/hx
        d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx
        d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx
        d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy
        d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy
        d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy
        return d2x + d2y + 5*cosh(P).mean()**2
    # preconditioner
    if preconditioning:
        M = get_preconditioner()
    else:
        M = None
    # solve
    guess = zeros((nx, ny), float)
    sol = newton_krylov(residual, guess, verbose=1, inner_M=M)
    print 'Residual', abs(residual(sol)).max()
    print 'Evaluations', count[0]
    return sol
def main():
    sol = solve(preconditioning=True)
    # visualize
    import matplotlib.pyplot as plt
    x, y = mgrid[0:1:(nx*1j), 0:1:(ny*1j)]
    plt.clf()
    plt.pcolor(x, y, sol)
    plt.clim(0, 1)
    plt.colorbar()
    plt.show()
if __name__ == "__main__":
    main()
```

Resulting run, first without preconditioning:

```
    |F(x)| = 803.614; step 1; tol 0.000257947
    |F(x)| = 345.912; step 1; tol 0.166755
    |F(x)| = 139.159; step 1; tol 0.145657
    |F(x)| = 27.3682; step 1; tol 0.0348109
    |F(x)| = 1.03303; step 1; tol 0.00128227
    |F(x)| = 0.0406634; step 1; tol 0.00139451
```

```
6: |F(x)| = 0.00344341; step 1; tol 0.00645373
7: |F(x)| = 0.000153671; step 1; tol 0.00179246
8: |F(x)| = 6.7424e-06; step 1; tol 0.00173256
Residual 3.57078908664e-07
Evaluations 317
```

and then with preconditioning:

```
0: |F(x)| = 136.993; step 1; tol 7.49599e-06
1: |F(x)| = 4.80983; step 1; tol 0.00110945
2: |F(x)| = 0.195942; step 1; tol 0.00149362
3: |F(x)| = 0.000563597; step 1; tol 7.44604e-06
4: |F(x)| = 1.00698e-09; step 1; tol 2.87308e-12
Residual 9.29603061195e-11
Evaluations }7
```

Using a preconditioner reduced the number of evaluations of the residual function by a factor of 4. For problems where the residual is expensive to compute, good preconditioning can be crucial - it can even decide whether the problem is solvable in practice or not.
Preconditioning is an art, science, and industry. Here, we were lucky in making a simple choice that worked reasonably well, but there is a lot more depth to this topic than is shown here.

References

Some further reading and related software:

1.6 Interpolation (scipy.interpolate)

Contents

- Interpolation (scipy.interpolate)
- 1-D interpolation (interp1d)
- Multivariate data interpolation (griddata)
- Spline interpolation
* Spline interpolation in 1-d: Procedural (interpolate.splXXX)
* Spline interpolation in 1-d: Object-oriented (UnivariateSpline)
* Two-dimensional spline representation: Procedural (bisplrep)
* Two-dimensional spline representation: Object-oriented (BivariateSpline)
- Using radial basis functions for smoothing/interpolation
* 1-d Example
* 2-d Example

There are several general interpolation facilities available in SciPy, for data in 1, 2, and higher dimensions:

- A class representing an interpolant (interp1d) in 1-D, offering several interpolation methods.
- Convenience function griddata offering a simple interface to interpolation in N dimensions $(\mathrm{N}=1,2,3,4$, ...). Object-oriented interface for the underlying routines is also available.
- Functions for 1- and 2-dimensional (smoothed) cubic-spline interpolation, based on the FORTRAN library FITPACK. There are both procedural and object-oriented interfaces for the FITPACK library.
- Interpolation using Radial Basis Functions.

1.6.1 1-D interpolation (interp1d)

The interp1d class in scipy.interpolate is a convenient method to create a function based on fixed data points which can be evaluated anywhere within the domain defined by the given data using linear interpolation. An instance of this class is created by passing the 1-d vectors comprising the data. The instance of this class defines a \qquad method and can therefore by treated like a function which interpolates between known data values to obtain unknown values (it also has a docstring for help). Behavior at the boundary can be specified at instantiation time. The following example demonstrates its use, for linear and cubic spline interpolation:

```
>>> from scipy.interpolate import interpld
>>> x = np.linspace(0, 10, 10)
>>> y = np.exp(-x/3.0)
>>> f = interpld(x, y)
>>> f2 = interp1d(x, y, kind='cubic')
>>> xnew = np.linspace(0, 10, 40)
>>> import matplotlib.pyplot as plt
>>> plt.plot (x,y,'o',xnew,f(xnew),' -', xnew, f2(xnew),' --')
>>> plt.legend(['data', 'linear', 'cubic'], loc='best')
>>> plt.show()
```


1.6.2 Multivariate data interpolation (griddata)

Suppose you have multidimensional data, for instance for an underlying function $f(x, y)$ you only know the values at points $(x[i], y[i])$ that do not form a regular grid.
Suppose we want to interpolate the 2-D function

```
>>> def func(x, y):
>>> return x*(1-x)*np\cdotcos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2
```

on a grid in $[0,1] x[0,1]$

```
>>> grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j]
```

but we only know its values at 1000 data points:

```
>>> points = np.random.rand(1000, 2)
>>> values = func(points[:,0], points[:,1])
```

This can be done with griddata - below we try out all of the interpolation methods:

```
>>> from scipy.interpolate import griddata
>>> grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest')
>>> grid_zl = griddata(points, values, (grid_x, grid_y), method='linear')
>>> grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic')
```

One can see that the exact result is reproduced by all of the methods to some degree, but for this smooth function the piecewise cubic interpolant gives the best results:

```
>>> import matplotlib.pyplot as plt
>>> plt.subplot(221)
>>> plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin=' lower')
>>> plt.plot(points[:,0], points[:,1], 'k.' , ms=1)
>>> plt.title('Original')
>>> plt.subplot(222)
>>> plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Nearest')
>>> plt.subplot(223)
>>> plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Linear')
>>> plt.subplot(224)
>>> plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Cubic')
>>> plt.gcf().set_size_inches(6, 6)
>>> plt.show()
```


1.6.3 Spline interpolation

Spline interpolation in 1-d: Procedural (interpolate.spIXXX)

Spline interpolation requires two essential steps: (1) a spline representation of the curve is computed, and (2) the spline is evaluated at the desired points. In order to find the spline representation, there are two different ways to represent a curve and obtain (smoothing) spline coefficients: directly and parametrically. The direct method finds the spline representation of a curve in a two- dimensional plane using the function splrep. The first two arguments are the only ones required, and these provide the x and y components of the curve. The normal output is a 3-tuple, (t, c, k), containing the knot-points, t, the coefficients c and the order k of the spline. The default spline order is cubic, but this can be changed with the input keyword, k.

For curves in N-dimensional space the function splprep allows defining the curve parametrically. For this function only 1 input argument is required. This input is a list of N-arrays representing the curve in N-dimensional space. The length of each array is the number of curve points, and each array provides one component of the N-dimensional data point. The parameter variable is given with the keword argument, u, which defaults to an equally-spaced monotonic
sequence between 0 and 1 . The default output consists of two objects: a 3-tuple, (t, c, k), containing the spline representation and the parameter variable u.
The keyword argument, s, is used to specify the amount of smoothing to perform during the spline fit. The default value of s is $s=m-\sqrt{2 m}$ where m is the number of data-points being fit. Therefore, if no smoothing is desired a value of $s=0$ should be passed to the routines.
Once the spline representation of the data has been determined, functions are available for evaluating the spline (splev) and its derivatives (splev, spalde) at any point and the integral of the spline between any two points (splint). In addition, for cubic splines ($k=3$) with 8 or more knots, the roots of the spline can be estimated (sproot). These functions are demonstrated in the example that follows.

```
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate
```

Cubic-spline

```
>>> x = np.arange(0,2*np.pi+np.pi/4,2*np.pi/8)
>>> y = np.sin(x)
>>> tck = interpolate.splrep(x,y,s=0)
>>> xnew = np.arange(0, 2*np.pi,np.pi/50)
>>> ynew = interpolate.splev(xnew,tck,der=0)
>>> plt.figure()
>>> plt.plot(x,y,' x', xnew,ynew, xnew, np.sin(xnew), x,y,' 'b')
>>> plt.legend(['Linear','Cubic Spline', 'True'])
>>> plt.axis([-0.05,6.33,-1.05,1.05])
>>> plt.title('Cubic-spline interpolation')
>>> plt.show()
```

Cubic-spline interpolation

Derivative of spline

```
>>> yder = interpolate.splev(xnew,tck,der=1)
>>> plt.figure()
>>> plt.plot(xnew,yder,xnew,np.cos(xnew),'--')
>>> plt.legend(['Cubic Spline', 'True'])
>>> plt.axis([-0.05,6.33,-1.05,1.05])
>>> plt.title('Derivative estimation from spline')
```

>>> plt.show()

Integral of spline

```
>>> def integ(x,tck,constant=-1):
>>> x = np.atleast_1d(x)
>>> out = np.zeros(x.shape, dtype=x.dtype)
>>> for n in xrange(len(out)):
>>> out[n] = interpolate.splint(0,x[n],tck)
>>> out += constant
>>> return out
>>>
>>> yint = integ(xnew,tck)
>>> plt.figure()
>>> plt.plot(xnew,yint,xnew,-np.cos(xnew),' --')
>>> plt.legend(['Cubic Spline', 'True'])
>>> plt.axis([-0.05,6.33,-1.05,1.05])
>>> plt.title('Integral estimation from spline')
>>> plt.show()
```


Roots of spline

```
>>> print interpolate.sproot(tck)
[ 0. 3.1416]
```

Parametric spline

```
>>> t = np.arange(0,1.1,.1)
>>> x = np.sin(2*np.pi*t)
>>> y = np.cos(2*np.pi*t)
>>> tck,u = interpolate.splprep([x,y],s=0)
>>> unew = np.arange(0,1.01,0.01)
>>> out = interpolate.splev(unew,tck)
>>> plt.figure()
>>> plt.plot(x,y,'x',out[0],out[1],np.sin(2*np.pi*unew),np.cos(2*np.pi*unew),x,y,'b')
>>> plt.legend(['Linear','Cubic Spline', 'True'])
>>> plt.axis([-1.05,1.05,-1.05,1.05])
>>> plt.title('Spline of parametrically-defined curve')
>>> plt.show()
```


Spline interpolation in 1-d: Object-oriented (UnivariateSpline)

The spline-fitting capabilities described above are also available via an objected-oriented interface. The one dimensional splines are objects of the UnivariateSpline class, and are created with the x and y components of the curve provided as arguments to the constructor. The class defines \qquad call \qquad , allowing the object to be called with the x-axis values at which the spline should be evaluated, returning the interpolated y-values. This is shown in the example below for the subclass InterpolatedUnivariateSpline. The methods integral, derivatives, and roots methods are also available on UnivariateSpline objects, allowing definite integrals, derivatives, and roots to be computed for the spline.

The UnivariateSpline class can also be used to smooth data by providing a non-zero value of the smoothing parameter s, with the same meaning as the s keyword of the splrep function described above. This results in a spline that has fewer knots than the number of data points, and hence is no longer strictly an interpolating spline, but rather a smoothing spline. If this is not desired, the InterpolatedUnivariateSpline class is available. It is a subclass of UnivariateSpline that always passes through all points (equivalent to forcing the smoothing parameter to 0). This class is demonstrated in the example below.
The LSQUnivarateSpline is the other subclass of UnivarateSpline. It allows the user to specify the number and location of internal knots as explicitly with the parameter t. This allows creation of customized splines with non-linear spacing, to interpolate in some domains and smooth in others, or change the character of the spline.

```
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate
```

InterpolatedUnivariateSpline

```
>>> x = np.arange(0,2*np.pi+np.pi/4,2*np.pi/8)
>>> y = np.sin(x)
>>> s = interpolate.InterpolatedUnivariateSpline(x,y)
>>> xnew = np.arange(0,2*np.pi,np.pi/50)
>>> ynew = s(xnew)
>>> plt.figure()
>>> plt.plot(x,y,' x', xnew,ynew, xnew, np.sin(xnew), x,y,' b')
>>> plt.legend(['Linear','InterpolatedUnivariateSpline', 'True'])
>>> plt.axis([-0.05,6.33,-1.05,1.05])
```

>>> plt.title('InterpolatedUnivariateSpline')
>>> plt.show()

LSQUnivarateSpline with non-uniform knots

```
>>> t = [np.pi/2-.1,np.pi/2+.1,3*np.pi/2-.1,3*np.pi/2+.1]
>>> s = interpolate.LSQUnivariateSpline(x,y,t,k=2)
>>> ynew = s(xnew)
>>> plt.figure()
>>> plt.plot(x,y,' x', xnew,ynew, xnew, np.sin(xnew),x,y,' b')
>>> plt.legend(['Linear','LSQUnivariateSpline', 'True'])
>>> plt.axis([-0.05,6.33,-1.05,1.05])
>>> plt.title('Spline with Specified Interior Knots')
>>> plt.show()
```


Two-dimensional spline representation: Procedural (bisplrep)

For (smooth) spline-fitting to a two dimensional surface, the function bisplrep is available. This function takes as required inputs the $\mathbf{1 - D}$ arrays x, y, and z which represent points on the surface $z=f(x, y)$. The default output is a list $[t x, t y, c, k x, k y]$ whose entries represent respectively, the components of the knot positions, the coefficients of the spline, and the order of the spline in each coordinate. It is convenient to hold this list in a single object, tck, so that it can be passed easily to the function bisplev. The keyword, s, can be used to change the amount of smoothing performed on the data while determining the appropriate spline. The default value is $s=m-\sqrt{2 m}$ where m is the number of data points in the x, y, and z vectors. As a result, if no smoothing is desired, then $s=0$ should be passed to bisplrep.

To evaluate the two-dimensional spline and it's partial derivatives (up to the order of the spline), the function bisplev is required. This function takes as the first two arguments two 1-D arrays whose cross-product specifies the domain over which to evaluate the spline. The third argument is the tck list returned from bisplrep. If desired, the fourth and fifth arguments provide the orders of the partial derivative in the x and y direction respectively.
It is important to note that two dimensional interpolation should not be used to find the spline representation of images. The algorithm used is not amenable to large numbers of input points. The signal processing toolbox contains more appropriate algorithms for finding the spline representation of an image. The two dimensional interpolation commands are intended for use when interpolating a two dimensional function as shown in the example that follows. This example uses the numpy.mgrid command in SciPy which is useful for defining a "mesh-grid "in many dimensions. (See also the numpy. ogrid command if the full-mesh is not needed). The number of output arguments and the number of dimensions of each argument is determined by the number of indexing objects passed in numpy.mgrid.

```
>>> import numpy as np
>>> from scipy import interpolate
>>> import matplotlib.pyplot as plt
```

Define function over sparse 20x20 grid

```
>>> x,y = np.mgrid[-1:1:20j,-1:1:20j]
>>> z = (x+y)*np.exp(-6.0*(x*x+y*y))
>>> plt.figure()
>>> plt.pcolor(x,y,z)
>>> plt.colorbar()
>>> plt.title("Sparsely sampled function.")
>>> plt.show()
```


Interpolate function over new 70x70 grid

```
>>> xnew,ynew = np.mgrid[-1:1:70j,-1:1:70j]
>>> tck = interpolate.bisplrep(x,y,z,s=0)
>>> znew = interpolate.bisplev(xnew[:,0],ynew[0,:],tck)
>>> plt.figure()
>>> plt.pcolor(xnew,ynew, znew)
>>> plt.colorbar()
>>> plt.title("Interpolated function.")
>>> plt.show()
```


Two-dimensional spline representation: Object-oriented (BivariateSpline)

The BivariateSpline class is the 2-dimensional analog of the UnivariateSpline class. It and its subclasses implement the FITPACK functions described above in an object oriented fashion, allowing objects to be instantiated that can be called to compute the spline value by passing in the two coordinates as the two arguments.

1.6.4 Using radial basis functions for smoothing/interpolation

Radial basis functions can be used for smoothing/interpolating scattered data in n-dimensions, but should be used with caution for extrapolation outside of the observed data range.

1-d Example

This example compares the usage of the Rbf and UnivariateSpline classes from the scipy.interpolate module.

```
>>> import numpy as np
>>> from scipy.interpolate import Rbf, InterpolatedUnivariateSpline
>>> import matplotlib.pyplot as plt
>>> # setup data
>>> x = np.linspace(0, 10, 9)
>>> y = np.sin(x)
>>> xi = np.linspace(0, 10, 101)
```

```
>>> # use fitpack2 method
>>> ius = InterpolatedUnivariateSpline(x, y)
>>> yi = ius(xi)
>>> plt.subplot(2, 1, 1)
>>> plt.plot(x, y, 'bo')
>>> plt.plot(xi, yi, 'g')
>>> plt.plot(xi, np.sin(xi), 'r')
>>> plt.title('Interpolation using univariate spline')
>>> # use RBF method
>>> rbf = Rbf(x, y)
>>> fi = rbf(xi)
>>> plt.subplot(2, 1, 2)
>>> plt.plot(x, y, 'bo')
>>> plt.plot(xi, fi, 'g')
>>> plt.plot(xi, np.sin(xi), 'r')
>>> plt.title('Interpolation using RBF - multiquadricS')
>>> plt.show()
```


2-d Example

This example shows how to interpolate scattered 2d data.

```
>>> import numpy as np
>>> from scipy.interpolate import Rbf
>>> import matplotlib.pyplot as plt
>>> from matplotlib import cm
>>> # 2-d tests - setup scattered data
>>> x = np.random.rand(100)*4.0-2.0
>>> y = np.random.rand(100)*4.0-2.0
>>> z = x*np.exp(-x**2-y**2)
>>> ti = np.linspace(-2.0, 2.0, 100)
>>> XI, YI = np.meshgrid(ti, ti)
```

```
>>> # use RBF
>>> rbf = Rbf(x, y, z, epsilon=2)
>>> ZI = rbf(XI, YI)
>>> # plot the result
>>> n = plt.normalize(-2., 2.)
>>> plt.subplot(1, 1, 1)
>>> plt.pcolor(XI, YI, ZI, cmap=cm.jet)
>>> plt.scatter(x, y, 100, z, cmap=cm.jet)
>>> plt.title('RBF interpolation - multiquadrics')
>>> plt.xlim(-2, 2)
>>> plt.ylim(-2, 2)
>>> plt.colorbar()
```


1.7 Fourier Transforms (scipy.fftpack)

Warning: This is currently a stub page

Contents

- Fourier Transforms (scipy.fftpack)
- Fast Fourier transforms
- One dimensional discrete Fourier transforms
- Two and n dimensional discrete Fourier transforms
- Discrete Cosine Transforms
* type I
* type II
* type III
* References
- FFT convolution

Fourier analysis is fundamentally a method for expressing a function as a sum of periodic components, and for recovering the signal from those components. When both the function and its Fourier transform are replaced with discretized counterparts, it is called the discrete Fourier transform (DFT). The DFT has become a mainstay of numerical computing in part because of a very fast algorithm for computing it, called the Fast Fourier Transform (FFT), which was known to Gauss (1805) and was brought to light in its current form by Cooley and Tukey [CT]. Press et al. [NR] provide an accessible introduction to Fourier analysis and its applications.

1.7.1 Fast Fourier transforms

1.7.2 One dimensional discrete Fourier transforms

fft, ifft, rfft, irfft

1.7.3 Two and n dimensional discrete Fourier transforms

fft in more than one dimension

1.7.4 Discrete Cosine Transforms

Return the Discrete Cosine Transform [Mak] of arbitrary type sequence x .
For a single dimension array x, $\operatorname{dct}(x$, norm $=$ ' ortho') is equal to MATLAB $\operatorname{dct}(x)$.
There are theoretically 8 types of the DCT [WP], only the first 3 types are implemented in scipy. 'The' DCT generally refers to DCT type 2, and 'the' Inverse DCT generally refers to DCT type 3.

type I

There are several definitions of the DCT-I; we use the following (for norm=None):

$$
y_{k}=x_{0}+(-1)^{k} x_{N-1}+2 \sum_{n=1}^{N-2} x_{n} \cos \left(\frac{\pi n k}{N-1}\right), \quad 0 \leq k<N
$$

Only None is supported as normalization mode for DCT-I. Note also that the DCT-I is only supported for input size > 1

type II

There are several definitions of the DCT-II; we use the following (for norm=None):

$$
y_{k}=2 \sum_{n=0}^{N-1} x_{n} \cos \left(\frac{\pi(2 n+1) k}{2 N}\right) \quad 0 \leq k<N
$$

If norm=' ortho', y_{k} is multiplied by a scaling factor f :

$$
f= \begin{cases}\sqrt{1 /(4 N)}, & \text { if } k=0 \\ \sqrt{1 /(2 N)}, & \text { otherwise }\end{cases}
$$

Which makes the corresponding matrix of coefficients orthonormal $\left(O O^{\prime}=I d\right)$.

type III

There are several definitions, we use the following (for norm=None):

$$
y_{k}=x_{0}+2 \sum_{n=1}^{N-1} x_{n} \cos \left(\frac{\pi n(2 k+1)}{2 N}\right) \quad 0 \leq k<N
$$

or, for norm=' ortho':

$$
y_{k}=\frac{x_{0}}{\sqrt{N}}+\frac{1}{\sqrt{N}} \sum_{n=1}^{N-1} x_{n} \cos \left(\frac{\pi n(2 k+1)}{2 N}\right) \quad 0 \leq k<N
$$

The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up to a factor $2 N$. The orthonormalized DCT-III is exactly the inverse of the orthonormalized DCT-II.

References

1.7.5 FFT convolution

scipy.fftpack.convolve performs a convolution of two one-dimensional arrays in frequency domain.

1.8 Signal Processing (signal)

The signal processing toolbox currently contains some filtering functions, a limited set of filter design tools, and a few B-spline interpolation algorithms for one- and two-dimensional data. While the B-spline algorithms could technically be placed under the interpolation category, they are included here because they only work with equally-spaced data and make heavy use of filter-theory and transfer-function formalism to provide a fast B-spline transform. To understand this section you will need to understand that a signal in SciPy is an array of real or complex numbers.

1.8.1 B-splines

A B-spline is an approximation of a continuous function over a finite- domain in terms of B-spline coefficients and knot points. If the knot- points are equally spaced with spacing Δx, then the B -spline approximation to a 1-dimensional function is the finite-basis expansion.

$$
y(x) \approx \sum_{j} c_{j} \beta^{o}\left(\frac{x}{\Delta x}-j\right)
$$

In two dimensions with knot-spacing Δx and Δy, the function representation is

$$
z(x, y) \approx \sum_{j} \sum_{k} c_{j k} \beta^{o}\left(\frac{x}{\Delta x}-j\right) \beta^{o}\left(\frac{y}{\Delta y}-k\right)
$$

In these expressions, $\beta^{o}(\cdot)$ is the space-limited B -spline basis function of order, o. The requirement of equallyspaced knot-points and equally-spaced data points, allows the development of fast (inverse-filtering) algorithms for determining the coefficients, c_{j}, from sample-values, y_{n}. Unlike the general spline interpolation algorithms, these algorithms can quickly find the spline coefficients for large images.

The advantage of representing a set of samples via B-spline basis functions is that continuous-domain operators (derivatives, re- sampling, integral, etc.) which assume that the data samples are drawn from an underlying continuous function can be computed with relative ease from the spline coefficients. For example, the second-derivative of a spline is

$$
y^{\prime \prime}(x)=\frac{1}{\Delta x^{2}} \sum_{j} c_{j} \beta^{o \prime \prime}\left(\frac{x}{\Delta x}-j\right)
$$

Using the property of B-splines that

$$
\frac{d^{2} \beta^{o}(w)}{d w^{2}}=\beta^{o-2}(w+1)-2 \beta^{o-2}(w)+\beta^{o-2}(w-1)
$$

it can be seen that

$$
y^{\prime \prime}(x)=\frac{1}{\Delta x^{2}} \sum_{j} c_{j}\left[\beta^{o-2}\left(\frac{x}{\Delta x}-j+1\right)-2 \beta^{o-2}\left(\frac{x}{\Delta x}-j\right)+\beta^{o-2}\left(\frac{x}{\Delta x}-j-1\right)\right] .
$$

If $o=3$, then at the sample points,

$$
\begin{aligned}
\left.\Delta x^{2} y^{\prime}(x)\right|_{x=n \Delta x} & =\sum_{j} c_{j} \delta_{n-j+1}-2 c_{j} \delta_{n-j}+c_{j} \delta_{n-j-1} \\
& =c_{n+1}-2 c_{n}+c_{n-1}
\end{aligned}
$$

Thus, the second-derivative signal can be easily calculated from the spline fit. if desired, smoothing splines can be found to make the second-derivative less sensitive to random-errors.

The savvy reader will have already noticed that the data samples are related to the knot coefficients via a convolution operator, so that simple convolution with the sampled B-spline function recovers the original data from the spline coefficients. The output of convolutions can change depending on how boundaries are handled (this becomes increasingly more important as the number of dimensions in the data- set increases). The algorithms relating to B -splines in the signal- processing sub package assume mirror-symmetric boundary conditions. Thus, spline coefficients are computed based on that assumption, and data-samples can be recovered exactly from the spline coefficients by assuming them to be mirror-symmetric also.

Currently the package provides functions for determining second- and third-order cubic spline coefficients from equally spaced samples in one- and two-dimensions (signal.qspline1d, signal.qspline2d, signal.cspline1d, signal.cspline2d). The package also supplies a function (signal.bspline) for evaluating the bspline basis function, $\beta^{o}(x)$ for arbitrary order and x. For large o, the B -spline basis function can be approximated well by a zero-mean Gaussian function with standard-deviation equal to $\sigma_{o}=(o+1) / 12$:

$$
\beta^{o}(x) \approx \frac{1}{\sqrt{2 \pi \sigma_{o}^{2}}} \exp \left(-\frac{x^{2}}{2 \sigma_{o}}\right) .
$$

A function to compute this Gaussian for arbitrary x and o is also available (signal.gauss_spline). The following code and Figure uses spline-filtering to compute an edge-image (the second-derivative of a smoothed spline) of Lena's face which is an array returned by the command lena. The command signal.sepfir2d was used to apply a separable two-dimensional FIR filter with mirror- symmetric boundary conditions to the spline coefficients. This function is ideally suited for reconstructing samples from spline coefficients and is faster than signal. convolve2d which convolves arbitrary two-dimensional filters and allows for choosing mirror-symmetric boundary conditions.

```
>>> from numpy import *
>>> from scipy import signal, misc
>>> import matplotlib.pyplot as plt
>>> image = misc.lena().astype(float32)
>>> derfilt = array([1.0,-2,1.0],float32)
>>> ck = signal.cspline2d(image,8.0)
>>> deriv = signal.sepfir2d(ck, derfilt, [1]) + \
>>> signal.sepfir2d(ck, [1], derfilt)
```

Alternatively we could have done:

```
laplacian = array([[0,1,0],[1,-4,1],[0,1,0]],float32)
deriv2 = signal.convolve2d(ck,laplacian,mode='same',boundary='symm')
```

```
>>> plt.figure()
>>> plt.imshow(image)
>>> plt.gray()
>>> plt.title('Original image')
>>> plt.show()
```


>>> plt.figure()
>>> plt.imshow(deriv)
>>> plt.gray()
>>> plt.title('Output of spline edge filter')
>>> plt.show()

Output of spline edge filter

1.8.2 Filtering

Filtering is a generic name for any system that modifies an input signal in some way. In SciPy a signal can be thought of as a Numpy array. There are different kinds of filters for different kinds of operations. There are two broad kinds
of filtering operations: linear and non-linear. Linear filters can always be reduced to multiplication of the flattened Numpy array by an appropriate matrix resulting in another flattened Numpy array. Of course, this is not usually the best way to compute the filter as the matrices and vectors involved may be huge. For example filtering a 512×512 image with this method would require multiplication of a $512^{2} \times 512^{2}$ matrix with a 512^{2} vector. Just trying to store the $512^{2} \times 512^{2}$ matrix using a standard Numpy array would require $68,719,476,736$ elements. At 4 bytes per element this would require 256 GB of memory. In most applications most of the elements of this matrix are zero and a different method for computing the output of the filter is employed.

Convolution/Correlation

Many linear filters also have the property of shift-invariance. This means that the filtering operation is the same at different locations in the signal and it implies that the filtering matrix can be constructed from knowledge of one row (or column) of the matrix alone. In this case, the matrix multiplication can be accomplished using Fourier transforms.

Let $x[n]$ define a one-dimensional signal indexed by the integer n. Full convolution of two one-dimensional signals can be expressed as

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k] .
$$

This equation can only be implemented directly if we limit the sequences to finite support sequences that can be stored in a computer, choose $n=0$ to be the starting point of both sequences, let $K+1$ be that value for which $y[n]=0$ for all $n>K+1$ and $M+1$ be that value for which $x[n]=0$ for all $n>M+1$, then the discrete convolution expression is

$$
y[n]=\sum_{k=\max (n-M, 0)}^{\min (n, K)} x[k] h[n-k] .
$$

For convenience assume $K \geq M$. Then, more explicitly the output of this operation is

$$
\begin{aligned}
y[0] & =x[0] h[0] \\
y[1] & =x[0] h[1]+x[1] h[0] \\
y[2] & =x[0] h[2]+x[1] h[1]+x[2] h[0] \\
\vdots & \vdots \\
y[M] & =x[0] h[M]+x[1] h[M-1]+\cdots+x[M] h[0] \\
y[M+1] & =x[1] h[M]+x[2] h[M-1]+\cdots+x[M+1] h[0] \\
\vdots & \vdots \\
y[K] & =x[K-M] h[M]+\cdots+x[K] h[0] \\
y[K+1] & =x[K+1-M] h[M]+\cdots+x[K] h[1] \\
\vdots & \vdots \\
y[K+M-1] & =x[K-1] h[M]+x[K] h[M-1] \\
y[K+M] & =x[K] h[M] .
\end{aligned}
$$

Thus, the full discrete convolution of two finite sequences of lengths $K+1$ and $M+1$ respectively results in a finite sequence of length $K+M+1=(K+1)+(M+1)-1$.

One dimensional convolution is implemented in SciPy with the function signal.convolve. This function takes as inputs the signals x, h, and an optional flag and returns the signal y. The optional flag allows for specification of which part of the output signal to return. The default value of 'full' returns the entire signal. If the flag has a value of 'same' then only the middle K values are returned starting at $y\left[\left\lfloor\frac{M-1}{2}\right\rfloor\right]$ so that the output has the same length as the largest input. If the flag has a value of 'valid' then only the middle $K-M+1=(K+1)-(M+1)+1$ output values are returned where z depends on all of the values of the smallest input from $h[0]$ to $h[M]$. In other words only the values $y[M]$ to $y[K]$ inclusive are returned.

This same function signal. convolve can actually take N-dimensional arrays as inputs and will return the N -dimensional convolution of the two arrays. The same input flags are available for that case as well.
Correlation is very similar to convolution except for the minus sign becomes a plus sign. Thus

$$
w[n]=\sum_{k=-\infty}^{\infty} y[k] x[n+k]
$$

is the (cross) correlation of the signals y and x. For finite-length signals with $y[n]=0$ outside of the range $[0, K]$ and $x[n]=0$ outside of the range $[0, M]$, the summation can simplify to

$$
w[n]=\sum_{k=\max (0,-n)}^{\min (K, M-n)} y[k] x[n+k] .
$$

Assuming again that $K \geq M$ this is

$$
\begin{aligned}
w[-K] & =y[K] x[0] \\
w[-K+1] & =y[K-1] x[0]+y[K] x[1] \\
\vdots & \vdots \\
w[M-K] & =y[K-M] x[0]+y[K-M+1] x[1]+\cdots+y[K] x[M] \\
w[M-K+1] & =y[K-M-1] x[0]+\cdots+y[K-1] x[M] \\
\vdots & \vdots \\
w[-1] & =y[1] x[0]+y[2] x[1]+\cdots+y[M+1] x[M] \\
w[0] & =y[0] x[0]+y[1] x[1]+\cdots+y[M] x[M] \\
w[1] & =y[0] x[1]+y[1] x[2]+\cdots+y[M-1] x[M] \\
w[2] & =y[0] x[2]+y[1] x[3]+\cdots+y[M-2] x[M] \\
\vdots & \vdots \\
w[M-1] & =y[0] x[M-1]+y[1] x[M] \\
w[M] & =y[0] x[M] .
\end{aligned}
$$

The SciPy function signal. correlate implements this operation. Equivalent flags are available for this operation to return the full $K+M+1$ length sequence ('full') or a sequence with the same size as the largest sequence starting at $w\left[-K+\left\lfloor\frac{M-1}{2}\right\rfloor\right]$ ('same') or a sequence where the values depend on all the values of the smallest sequence ('valid'). This final option returns the $K-M+1$ values $w[M-K]$ to $w[0]$ inclusive.
The function signal.correlate can also take arbitrary N-dimensional arrays as input and return the N dimensional convolution of the two arrays on output.
When $N=2$, signal. correlate and/or signal.convolve can be used to construct arbitrary image filters to perform actions such as blurring, enhancing, and edge-detection for an image.

Convolution is mainly used for filtering when one of the signals is much smaller than the other ($K \gg M$), otherwise linear filtering is more easily accomplished in the frequency domain (see Fourier Transforms).

Difference-equation filtering

A general class of linear one-dimensional filters (that includes convolution filters) are filters described by the difference equation

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

where $x[n]$ is the input sequence and $y[n]$ is the output sequence. If we assume initial rest so that $y[n]=0$ for $n<0$, then this kind of filter can be implemented using convolution. However, the convolution filter sequence $h[n]$ could be infinite if $a_{k} \neq 0$ for $k \geq 1$. In addition, this general class of linear filter allows initial conditions to be placed on $y[n]$ for $n<0$ resulting in a filter that cannot be expressed using convolution.
The difference equation filter can be thought of as finding $y[n]$ recursively in terms of it's previous values

$$
a_{0} y[n]=-a_{1} y[n-1]-\cdots-a_{N} y[n-N]+\cdots+b_{0} x[n]+\cdots+b_{M} x[n-M] .
$$

Often $a_{0}=1$ is chosen for normalization. The implementation in SciPy of this general difference equation filter is a little more complicated then would be implied by the previous equation. It is implemented so that only one signal needs to be delayed. The actual implementation equations are (assuming $a_{0}=1$).

$$
\begin{aligned}
y[n] & =b_{0} x[n]+z_{0}[n-1] \\
z_{0}[n] & =b_{1} x[n]+z_{1}[n-1]-a_{1} y[n] \\
z_{1}[n] & =b_{2} x[n]+z_{2}[n-1]-a_{2} y[n] \\
\vdots & \vdots \\
z_{K-2}[n] & =b_{K-1} x[n]+z_{K-1}[n-1]-a_{K-1} y[n] \\
z_{K-1}[n] & =b_{K} x[n]-a_{K} y[n],
\end{aligned}
$$

where $K=\max (N, M)$. Note that $b_{K}=0$ if $K>M$ and $a_{K}=0$ if $K>N$. In this way, the output at time n depends only on the input at time n and the value of z_{0} at the previous time. This can always be calculated as long as the K values $z_{0}[n-1] \ldots z_{K-1}[n-1]$ are computed and stored at each time step.

The difference-equation filter is called using the command signal.lfilter in SciPy. This command takes as inputs the vector b, the vector, a, a signal x and returns the vector y (the same length as x) computed using the equation given above. If x is N-dimensional, then the filter is computed along the axis provided. If, desired, initial conditions providing the values of $z_{0}[-1]$ to $z_{K-1}[-1]$ can be provided or else it will be assumed that they are all zero. If initial conditions are provided, then the final conditions on the intermediate variables are also returned. These could be used, for example, to restart the calculation in the same state.
Sometimes it is more convenient to express the initial conditions in terms of the signals $x[n]$ and $y[n]$. In other words, perhaps you have the values of $x[-M]$ to $x[-1]$ and the values of $y[-N]$ to $y[-1]$ and would like to determine what values of $z_{m}[-1]$ should be delivered as initial conditions to the difference-equation filter. It is not difficult to show that for $0 \leq m<K$,

$$
z_{m}[n]=\sum_{p=0}^{K-m-1}\left(b_{m+p+1} x[n-p]-a_{m+p+1} y[n-p]\right)
$$

Using this formula we can find the intial condition vector $z_{0}[-1]$ to $z_{K-1}[-1]$ given initial conditions on y (and x). The command signal.lfiltic performs this function.

Other filters

The signal processing package provides many more filters as well.

Median Filter

A median filter is commonly applied when noise is markedly non- Gaussian or when it is desired to preserve edges. The median filter works by sorting all of the array pixel values in a rectangular region surrounding the point of interest. The sample median of this list of neighborhood pixel values is used as the value for the output array. The sample median is the middle array value in a sorted list of neighborhood values. If there are an even number of elements in the neighborhood, then the average of the middle two values is used as the median. A general purpose median filter that works on N-dimensional arrays is signal.medfilt. A specialized version that works only for two-dimensional arrays is available as signal.medfilt2d.

Order Filter

A median filter is a specific example of a more general class of filters called order filters. To compute the output at a particular pixel, all order filters use the array values in a region surrounding that pixel. These array values are sorted and then one of them is selected as the output value. For the median filter, the sample median of the list of array values is used as the output. A general order filter allows the user to select which of the sorted values will be used as the output. So, for example one could choose to pick the maximum in the list or the minimum. The order filter takes an additional argument besides the input array and the region mask that specifies which of the elements in the sorted list of neighbor array values should be used as the output. The command to perform an order filter is signal.order_filter.

Wiener filter

The Wiener filter is a simple deblurring filter for denoising images. This is not the Wiener filter commonly described in image reconstruction problems but instead it is a simple, local-mean filter. Let x be the input signal, then the output is

$$
y=\left\{\begin{array}{cl}
\frac{\sigma^{2}}{\sigma_{x}^{2}} m_{x}+\left(1-\frac{\sigma^{2}}{\sigma_{x}^{2}}\right) x & \sigma_{x}^{2} \geq \sigma^{2} \\
m_{x} & \sigma_{x}^{2}<\sigma^{2}
\end{array}\right.
$$

Where m_{x} is the local estimate of the mean and σ_{x}^{2} is the local estimate of the variance. The window for these estimates is an optional input parameter (default is 3×3). The parameter σ^{2} is a threshold noise parameter. If σ is not given then it is estimated as the average of the local variances.

Hilbert filter

The Hilbert transform constructs the complex-valued analytic signal from a real signal. For example if $x=\cos \omega n$ then $y=\operatorname{hilbert}(x)$ would return (except near the edges) $y=\exp (j \omega n)$. In the frequency domain, the hilbert transform performs

$$
Y=X \cdot H
$$

where H is 2 for positive frequencies, 0 for negative frequencies and 1 for zero-frequencies.

1.8.3 Least-Squares Spectral Analysis (spectral)

Least-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum, based on a least squares fit of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in long gapped records; LSSA mitigates such problems.

Lomb-Scargle Periodograms (spectral. lombscargle)

The Lomb-Scargle method performs spectral analysis on unevenly sampled data and is known to be a powerful way to find, and test the significance of, weak periodic signals.
For a time series comprising N_{t} measurements $X_{j} \equiv X\left(t_{j}\right)$ sampled at times t_{j} where $\left(j=1, \ldots, N_{t}\right)$, assumed to have been scaled and shifted such that its mean is zero and its variance is unity, the normalized Lomb-Scargle periodogram at frequency f is

$$
P_{n}(f) \frac{1}{2}\left\{\frac{\left[\sum_{j}^{N_{t}} X_{j} \cos \omega\left(t_{j}-\tau\right)\right]^{2}}{\sum_{j}^{N_{t}} \cos ^{2} \omega\left(t_{j}-\tau\right)}+\frac{\left[\sum_{j}^{N_{t}} X_{j} \sin \omega\left(t_{j}-\tau\right)\right]^{2}}{\sum_{j}^{N_{t}} \sin ^{2} \omega\left(t_{j}-\tau\right)}\right\}
$$

Here, $\omega \equiv 2 \pi f$ is the angular frequency. The frequency dependent time offset τ is given by

$$
\tan 2 \omega \tau=\frac{\sum_{j}^{N_{t}} \sin 2 \omega t_{j}}{\sum_{j}^{N_{t}} \cos 2 \omega t_{j}}
$$

The lombscargle function calculates the periodogram using a slightly modified algorithm due to Townsend ${ }^{1}$ which allows the periodogram to be calculated using only a single pass through the input arrays for each frequency.
The equation is refactored as:

$$
P_{n}(f)=\frac{1}{2}\left[\frac{\left(c_{\tau} X C+s_{\tau} X S\right)^{2}}{c_{\tau}^{2} C C+2 c_{\tau} s_{\tau} C S+s_{\tau}^{2} S S}+\frac{\left(c_{\tau} X S-s_{\tau} X C\right)^{2}}{c_{\tau}^{2} S S-2 c_{\tau} s_{\tau} C S+s_{\tau}^{2} C C}\right]
$$

and

$$
\tan 2 \omega \tau=\frac{2 C S}{C C-S S}
$$

Here,

$$
c_{\tau}=\cos \omega \tau, \quad s_{\tau}=\sin \omega \tau
$$

while the sums are

$$
\begin{aligned}
X C & =\sum_{j}^{N_{t}} X_{j} \cos \omega t_{j} \\
X S & =\sum_{j}^{N_{t}} X_{j} \sin \omega t_{j} \\
C C & =\sum_{j}^{N_{t}} \cos ^{2} \omega t_{j} \\
S S & =\sum_{j}^{N_{t}} \sin ^{2} \omega t_{j} \\
C S & =\sum_{j}^{N_{t}} \cos \omega t_{j} \sin \omega t_{j}
\end{aligned}
$$

This requires $N_{f}\left(2 N_{t}+3\right)$ trigonometric function evaluations giving a factor of ~ 2 speed increase over the straightforward implementation.

References

Some further reading and related software:
data", Astrophysics and Space Science, vol 39, pp. 447-462, 1976
Statistical aspects of spectral analysis of unevenly spaced data", The Astrophysical Journal, vol 263, pp. 835-853, 1982
periodogram using graphics processing units.", The Astrophysical Journal Supplement Series, vol 191, pp. 247-253, 2010

1.9 Linear Algebra

When SciPy is built using the optimized ATLAS LAPACK and BLAS libraries, it has very fast linear algebra capabilities. If you dig deep enough, all of the raw lapack and blas libraries are available for your use for even more speed. In this section, some easier-to-use interfaces to these routines are described.
All of these linear algebra routines expect an object that can be converted into a 2-dimensional array. The output of these routines is also a two-dimensional array. There is a matrix class defined in Numpy, which you can initialize with an appropriate Numpy array in order to get objects for which multiplication is matrix-multiplication instead of the default, element-by-element multiplication.

[^0]
1.9.1 Matrix Class

The matrix class is initialized with the SciPy command mat which is just convenient short-hand for numpy.matrix. If you are going to be doing a lot of matrix-math, it is convenient to convert arrays into matrices using this command. One advantage of using the mat command is that you can enter two-dimensional matrices using MATLAB-like syntax with commas or spaces separating columns and semicolons separting rows as long as the matrix is placed in a string passed to mat .

1.9.2 Basic routines

Finding Inverse

The inverse of a matrix \mathbf{A} is the matrix \mathbf{B} such that $\mathbf{A B}=\mathbf{I}$ where \mathbf{I} is the identity matrix consisting of ones down the main diagonal. Usually \mathbf{B} is denoted $\mathbf{B}=\mathbf{A}^{-1}$. In SciPy, the matrix inverse of the Numpy array, A, is obtained using linalg.inv (A), or using A. I if A is a Matrix. For example, let

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 5 & 1 \\
2 & 3 & 8
\end{array}\right]
$$

then

$$
\mathbf{A}^{-\mathbf{1}}=\frac{\mathbf{1}}{\mathbf{2 5}}\left[\begin{array}{ccc}
-37 & 9 & 22 \\
14 & 2 & -9 \\
4 & -3 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-1.48 & 0.36 & 0.88 \\
0.56 & 0.08 & -0.36 \\
0.16 & -0.12 & 0.04
\end{array}\right]
$$

The following example demonstrates this computation in SciPy

```
>> A = mat('[1 [ 3 5; 2 5 1; 2 3 8]')
>>> A
matrix([[1, 3, 5],
    [2, 5, 1],
    [2, 3, 8]])
>> A.I
matrix([[-1.48, 0.36, 0.88],
    [ 0.56, 0.08, -0.36],
    [ 0.16, -0.12, 0.04]])
>>> from scipy import linalg
>>> linalg.inv(A)
array([[-1.48, 0.36, 0.88],
    [ 0.56, 0.08, -0.36],
    [0.16, -0.12, 0.04]])
```


Solving linear system

Solving linear systems of equations is straightforward using the scipy command linalg.solve. This command expects an input matrix and a right-hand-side vector. The solution vector is then computed. An option for entering a symmetrix matrix is offered which can speed up the processing when applicable. As an example, suppose it is desired to solve the following simultaneous equations:

$$
\begin{aligned}
x+3 y+5 z & =10 \\
2 x+5 y+z & =8 \\
2 x+3 y+8 z & =3
\end{aligned}
$$

We could find the solution vector using a matrix inverse:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 5 & 1 \\
2 & 3 & 8
\end{array}\right]^{-1}\left[\begin{array}{c}
10 \\
8 \\
3
\end{array}\right]=\frac{1}{25}\left[\begin{array}{c}
-232 \\
129 \\
19
\end{array}\right]=\left[\begin{array}{c}
-9.28 \\
5.16 \\
0.76
\end{array}\right]
$$

However, it is better to use the linalg.solve command which can be faster and more numerically stable. In this case it however gives the same answer as shown in the following example:

```
>>> A = mat('[1 3 5; 2 5 1; 2 3 8]')
>>> b = mat(' [10;8;3]')
>>> A.I*b
matrix([[-9.28],
    [ 5.16],
    [ 0.76]])
>>> linalg.solve(A,b)
array([[-9.28],
    [ 5.16],
    [0.76]])
```


Finding Determinant

The determinant of a square matrix \mathbf{A} is often denoted $|\mathbf{A}|$ and is a quantity often used in linear algebra. Suppose $a_{i j}$ are the elements of the matrix \mathbf{A} and let $M_{i j}=\left|\mathbf{A}_{i j}\right|$ be the determinant of the matrix left by removing the $i^{\text {th }}$ row and $j^{\text {th }}$ column from \mathbf{A}. Then for any row i,

$$
|\mathbf{A}|=\sum_{j}(-1)^{i+j} a_{i j} M_{i j}
$$

This is a recursive way to define the determinant where the base case is defined by accepting that the determinant of a 1×1 matrix is the only matrix element. In SciPy the determinant can be calculated with linalg. det. For example, the determinant of

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 5 & 1 \\
2 & 3 & 8
\end{array}\right]
$$

is

$$
\begin{aligned}
|\mathbf{A}| & =1\left|\begin{array}{cc}
5 & 1 \\
3 & 8
\end{array}\right|-3\left|\begin{array}{cc}
2 & 1 \\
2 & 8
\end{array}\right|+5\left|\begin{array}{cc}
2 & 5 \\
2 & 3
\end{array}\right| \\
& =1(5 \cdot 8-3 \cdot 1)-3(2 \cdot 8-2 \cdot 1)+5(2 \cdot 3-2 \cdot 5)=-25
\end{aligned}
$$

In SciPy this is computed as shown in this example:

```
>> A = mat('[1 [ 3 5; 2 5 1; 2 3 8]')
>>> linalg.det(A)
-25.000000000000004
```


Computing norms

Matrix and vector norms can also be computed with SciPy. A wide range of norm definitions are available using different parameters to the order argument of linalg.norm. This function takes a rank-1 (vectors) or a rank-2 (matrices) array and an optional order argument (default is 2). Based on these inputs a vector or matrix norm of the requested order is computed.

For vector x, the order parameter can be any real number including inf or -inf. The computed norm is

$$
\|\mathbf{x}\|=\left\{\begin{array}{cl}
\max \left|x_{i}\right| & \text { ord }=\inf \\
\min \left|x_{i}\right| & \text { ord }=-\mathrm{inf} \\
\left(\sum_{i}\left|x_{i}\right|^{\text {ord }}\right)^{1 / \text { ord }} & \mid \text { ord } \mid<\infty
\end{array}\right.
$$

For matrix \mathbf{A} the only valid values for norm are $\pm 2, \pm 1, \pm i n f$, and 'fro' (or ' f ') Thus,

$$
\|\mathbf{A}\|=\left\{\begin{array}{cc}
\max _{i} \sum_{j}\left|a_{i j}\right| & \text { ord }=\inf \\
\min _{i} \sum_{j}\left|a_{i j}\right| & \text { ord }=-\mathrm{inf} \\
\max _{j} \sum_{i}\left|a_{i j}\right| & \text { ord }=1 \\
\min _{j} \sum_{i}\left|a_{i j}\right| & \text { ord }=-1 \\
\max \sigma_{i} & \text { ord }=2 \\
\min \sigma_{i} & \text { ord }=-2 \\
\sqrt{\operatorname{trace}\left(\mathbf{A}^{H} \mathbf{A}\right)} & \text { ord }=\text { 'fro' }
\end{array}\right.
$$

where σ_{i} are the singular values of \mathbf{A}.

Solving linear least-squares problems and pseudo-inverses

Linear least-squares problems occur in many branches of applied mathematics. In this problem a set of linear scaling coefficients is sought that allow a model to fit data. In particular it is assumed that data y_{i} is related to data \mathbf{x}_{i} through a set of coefficients c_{j} and model functions $f_{j}\left(\mathbf{x}_{i}\right)$ via the model

$$
y_{i}=\sum_{j} c_{j} f_{j}\left(\mathbf{x}_{i}\right)+\epsilon_{i}
$$

where ϵ_{i} represents uncertainty in the data. The strategy of least squares is to pick the coefficients c_{j} to minimize

$$
J(\mathbf{c})=\sum_{i}\left|y_{i}-\sum_{j} c_{j} f_{j}\left(x_{i}\right)\right|^{2}
$$

Theoretically, a global minimum will occur when

$$
\frac{\partial J}{\partial c_{n}^{*}}=0=\sum_{i}\left(y_{i}-\sum_{j} c_{j} f_{j}\left(x_{i}\right)\right)\left(-f_{n}^{*}\left(x_{i}\right)\right)
$$

or

$$
\begin{aligned}
\sum_{j} c_{j} \sum_{i} f_{j}\left(x_{i}\right) f_{n}^{*}\left(x_{i}\right) & =\sum_{i} y_{i} f_{n}^{*}\left(x_{i}\right) \\
\mathbf{A}^{H} \mathbf{A} \mathbf{c} & =\mathbf{A}^{H} \mathbf{y}
\end{aligned}
$$

where

$$
\{\mathbf{A}\}_{i j}=f_{j}\left(x_{i}\right) .
$$

When $\mathbf{A}^{\mathbf{H}} \mathbf{A}$ is invertible, then

$$
\mathbf{c}=\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H} \mathbf{y}=\mathbf{A}^{\dagger} \mathbf{y}
$$

where \mathbf{A}^{\dagger} is called the pseudo-inverse of \mathbf{A}. Notice that using this definition of \mathbf{A} the model can be written

$$
\mathbf{y}=\mathbf{A} \mathbf{c}+\boldsymbol{\epsilon}
$$

The command linalg.lstsq will solve the linear least squares problem for \mathbf{c} given \mathbf{A} and \mathbf{y}. In addition linalg.pinv or linalg.pinv2 (uses a different method based on singular value decomposition) will find \mathbf{A}^{\dagger} given \mathbf{A}.

The following example and figure demonstrate the use of linalg.lstsq and linalg.pinv for solving a datafitting problem. The data shown below were generated using the model:

$$
y_{i}=c_{1} e^{-x_{i}}+c_{2} x_{i}
$$

where $x_{i}=0.1 i$ for $i=1 \ldots 10, c_{1}=5$, and $c_{2}=4$. Noise is added to y_{i} and the coefficients c_{1} and c_{2} are estimated using linear least squares.

```
>>> from numpy import *
>>> from scipy import linalg
>>> import matplotlib.pyplot as plt
>>> c1,c2= 5.0,2.0
>>> i = r_[1:11]
>>> xi = 0.1*i
>>> yi = c1*exp(-xi)+c2*xi
>>> zi = yi + 0.05*max(yi)*random.randn(len(yi))
>>> A = c_[exp(-xi)[:,newaxis],xi[:,newaxis]]
>>> c,resid,rank,sigma = linalg.lstsq(A,zi)
>>> xi2 = r_[0.1:1.0:100j]
>>> yi2 = c[0]*exp(-xi2) + c[1]*xi2
>>> plt.plot(xi,zi,'x',xi2,yi2)
>>> plt.axis([0,1.1,3.0,5.5])
>>> plt.xlabel('$x_i$')
>>> plt.title('Data fitting with linalg.lstsq')
>>> plt.show()
```


Generalized inverse

The generalized inverse is calculated using the command linalg.pinv or linalg.pinv2. These two commands differ in how they compute the generalized inverse. The first uses the linalg.lstsq algorithm while the second uses singular value decomposition. Let \mathbf{A} be an $M \times N$ matrix, then if $M>N$ the generalized inverse is

$$
\mathbf{A}^{\dagger}=\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H}
$$

while if $M<N$ matrix the generalized inverse is

$$
\mathbf{A}^{\#}=\mathbf{A}^{H}\left(\mathbf{A} \mathbf{A}^{H}\right)^{-1}
$$

In both cases for $M=N$, then

$$
\mathbf{A}^{\dagger}=\mathbf{A}^{\#}=\mathbf{A}^{-1}
$$

as long as \mathbf{A} is invertible.

1.9.3 Decompositions

In many applications it is useful to decompose a matrix using other representations. There are several decompositions supported by SciPy.

Eigenvalues and eigenvectors

The eigenvalue-eigenvector problem is one of the most commonly employed linear algebra operations. In one popular form, the eigenvalue-eigenvector problem is to find for some square matrix \mathbf{A} scalars λ and corresponding vectors \mathbf{v} such that

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}
$$

For an $N \times N$ matrix, there are N (not necessarily distinct) eigenvalues - roots of the (characteristic) polynomial

$$
|\mathbf{A}-\lambda \mathbf{I}|=0
$$

The eigenvectors, \mathbf{v}, are also sometimes called right eigenvectors to distinguish them from another set of left eigenvectors that satisfy

$$
\mathbf{v}_{L}^{H} \mathbf{A}=\lambda \mathbf{v}_{L}^{H}
$$

or

$$
\mathbf{A}^{H} \mathbf{v}_{L}=\lambda^{*} \mathbf{v}_{L}
$$

With it's default optional arguments, the command linalg. eig returns λ and \mathbf{v}. However, it can also return \mathbf{v}_{L} and just λ by itself (linalg.eigvals returns just λ as well).

In addtion, linalg.eig can also solve the more general eigenvalue problem

$$
\begin{aligned}
\mathbf{A} \mathbf{v} & =\lambda \mathbf{B} \mathbf{v} \\
\mathbf{A}^{H} \mathbf{v}_{L} & =\lambda^{*} \mathbf{B}^{H} \mathbf{v}_{L}
\end{aligned}
$$

for square matrices \mathbf{A} and \mathbf{B}. The standard eigenvalue problem is an example of the general eigenvalue problem for $\mathbf{B}=\mathbf{I}$. When a generalized eigenvalue problem can be solved, then it provides a decomposition of \mathbf{A} as

$$
\mathbf{A}=\mathbf{B V} \mathbf{\Lambda} \mathbf{V}^{-1}
$$

where \mathbf{V} is the collection of eigenvectors into columns and $\boldsymbol{\Lambda}$ is a diagonal matrix of eigenvalues.
By definition, eigenvectors are only defined up to a constant scale factor. In SciPy, the scaling factor for the eigenvectors is chosen so that $\|\mathbf{v}\|^{2}=\sum_{i} v_{i}^{2}=1$.

As an example, consider finding the eigenvalues and eigenvectors of the matrix

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 5 & 2 \\
2 & 4 & 1 \\
3 & 6 & 2
\end{array}\right]
$$

The characteristic polynomial is

$$
\begin{aligned}
|\mathbf{A}-\lambda \mathbf{I}|= & (1-\lambda)[(4-\lambda)(2-\lambda)-6]- \\
& 5[2(2-\lambda)-3]+2[12-3(4-\lambda)] \\
= & -\lambda^{3}+7 \lambda^{2}+8 \lambda-3
\end{aligned}
$$

The roots of this polynomial are the eigenvalues of \mathbf{A} :

$$
\begin{aligned}
& \lambda_{1}=7.9579 \\
& \lambda_{2}=-1.2577 \\
& \lambda_{3}=0.2997
\end{aligned}
$$

The eigenvectors corresponding to each eigenvalue can be found using the original equation. The eigenvectors associated with these eigenvalues can then be found.

```
>>> from scipy import linalg
>>> A = mat('[1 5 2; 2 4 1; 3 6 2]')
>>> la,v = linalg.eig(A)
>>> l1,l2,13 = la
>>> print l1, 12, 13
(7.95791620491+0j) (-1.25766470568+0j) (0.299748500767+0j)
>>> print v[:,0]
[-0.5297175 -0.44941741 -0.71932146]
>>> print v[:,1]
[-0.90730751 0.28662547 0.30763439]
>>> print v[:,2]
[ 0.28380519 -0.39012063 0.87593408]
>>> print sum(abs(v**2), axis=0)
[ 1. 1. 1.]
>>> v1 = mat(v[:,0]).T
>>> print max(ravel(abs(A*v1-l1*v1)))
8.881784197e-16
```


Singular value decomposition

Singular Value Decompostion (SVD) can be thought of as an extension of the eigenvalue problem to matrices that are not square. Let \mathbf{A} be an $M \times N$ matrix with M and N arbitrary. The matrices $\mathbf{A}^{H} \mathbf{A}$ and $\mathbf{A} \mathbf{A}^{H}$ are square hermitian matrices ${ }^{2}$ of size $N \times N$ and $M \times M$ respectively. It is known that the eigenvalues of square hermitian matrices are real and non-negative. In addtion, there are at most $\min (M, N)$ identical non-zero eigenvalues of $\mathbf{A}^{H} \mathbf{A}$ and $\mathbf{A} \mathbf{A}^{H}$. Define these positive eigenvalues as σ_{i}^{2}. The square-root of these are called singular values of \mathbf{A}. The eigenvectors of $\mathbf{A}^{H} \mathbf{A}$ are collected by columns into an $N \times N$ unitary ${ }^{3}$ matrix \mathbf{V} while the eigenvectors of $\mathbf{A} \mathbf{A}^{H}$ are collected by columns in the unitary matrix \mathbf{U}, the singular values are collected in an $M \times N$ zero matrix $\boldsymbol{\Sigma}$ with main diagonal entries set to the singular values. Then

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{H}
$$

is the singular-value decomposition of \mathbf{A}. Every matrix has a singular value decomposition. Sometimes, the singular values are called the spectrum of \mathbf{A}. The command linalg.svd will return $\mathbf{U}, \mathbf{V}^{H}$, and σ_{i} as an array of the singular values. To obtain the matrix $\boldsymbol{\Sigma}$ use linalg.diagsvd. The following example illustrates the use of linalg.svd.

[^1]```
>>> A = mat('[[1 3 2; 1 2 3]')
>>> M,N = A.shape
>>> U,S,Vh = linalg.svd(A)
>>> Sig = mat(linalg.diagsvd(S,M,N))
>>> U, Vh = mat(U), mat(Vh)
>>> print U
[[-0.70710678 -0.70710678]
 [-0.70710678 0.70710678]]
>>> print Sig
[[5.19615242 0. 0.]
 [0. 1. 0.]]
>>> print Vh
[[[-2.72165527e-01 -6.80413817e-01 -6.80413817e-01]}
 [-6.18652536e-16 -7.07106781e-01 7.07106781e-01]
 [[-9.62250449e-01 1.92450090e-01 1.92450090e-01]]
>>> print A
[[11 3 2]
 [1 1 2 3]]
>>> print U*Sig*Vh
[[1. 3. 2.]
 [1. 2. 3.]]
```


## LU decomposition

The LU decompostion finds a representation for the $M \times N$ matrix $\mathbf{A}$ as

$$
\mathbf{A}=\mathbf{P L U}
$$

where $\mathbf{P}$ is an $M \times M$ permutation matrix (a permutation of the rows of the identity matrix), $\mathbf{L}$ is in $M \times K$ lower triangular or trapezoidal matrix ( $K=\min (M, N)$ ) with unit-diagonal, and $\mathbf{U}$ is an upper triangular or trapezoidal matrix. The SciPy command for this decomposition is linalg.lu.

Such a decomposition is often useful for solving many simultaneous equations where the left-hand-side does not change but the right hand side does. For example, suppose we are going to solve

$$
\mathbf{A x}_{i}=\mathbf{b}_{i}
$$

for many different $\mathbf{b}_{i}$. The LU decomposition allows this to be written as

$$
\mathbf{P L U x}_{i}=\mathbf{b}_{i} .
$$

Because $\mathbf{L}$ is lower-triangular, the equation can be solved for $\mathbf{U} \mathbf{x}_{i}$ and finally $\mathbf{x}_{i}$ very rapidly using forward- and back-substitution. An initial time spent factoring A allows for very rapid solution of similar systems of equations in the future. If the intent for performing LU decomposition is for solving linear systems then the command linalg.lu_factor should be used followed by repeated applications of the command linalg.lu_solve to solve the system for each new right-hand-side.

## Cholesky decomposition

Cholesky decomposition is a special case of LU decomposition applicable to Hermitian positive definite matrices. When $\mathbf{A}=\mathbf{A}^{H}$ and $\mathbf{x}^{H} \mathbf{A x} \geq 0$ for all $\mathbf{x}$, then decompositions of $\mathbf{A}$ can be found so that

$$
\begin{aligned}
\mathbf{A} & =\mathbf{U}^{H} \mathbf{U} \\
\mathbf{A} & =\mathbf{L L}^{H}
\end{aligned}
$$

where $\mathbf{L}$ is lower-triangular and $\mathbf{U}$ is upper triangular. Notice that $\mathbf{L}=\mathbf{U}^{H}$. The command linagl. cholesky computes the cholesky factorization. For using cholesky factorization to solve systems of equations there are also linalg.cho_factor and linalg.cho_solve routines that work similarly to their LU decomposition counterparts.

## QR decomposition

The QR decomposition (sometimes called a polar decomposition) works for any $M \times N$ array and finds an $M \times M$ unitary matrix $\mathbf{Q}$ and an $M \times N$ upper-trapezoidal matrix $\mathbf{R}$ such that

$$
\mathbf{A}=\mathbf{Q R}
$$

Notice that if the SVD of $\mathbf{A}$ is known then the QR decomposition can be found

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{H}=\mathbf{Q R}
$$

implies that $\mathbf{Q}=\mathbf{U}$ and $\mathbf{R}=\boldsymbol{\Sigma} \mathbf{V}^{H}$. Note, however, that in SciPy independent algorithms are used to find QR and SVD decompositions. The command for QR decomposition is linalg. qr .

## Schur decomposition

For a square $N \times N$ matrix, $\mathbf{A}$, the Schur decomposition finds (not-necessarily unique) matrices $\mathbf{T}$ and $\mathbf{Z}$ such that

$$
\mathbf{A}=\mathbf{Z} \mathbf{T} \mathbf{Z}^{H}
$$

where $\mathbf{Z}$ is a unitary matrix and $\mathbf{T}$ is either upper-triangular or quasi-upper triangular depending on whether or not a real schur form or complex schur form is requested. For a real schur form both $\mathbf{T}$ and $\mathbf{Z}$ are real-valued when $\mathbf{A}$ is real-valued. When $\mathbf{A}$ is a real-valued matrix the real schur form is only quasi-upper triangular because $2 \times 2$ blocks extrude from the main diagonal corresponding to any complex- valued eigenvalues. The command linalg.schur finds the Schur decomposition while the command linalg.rsf2csf converts $\mathbf{T}$ and $\mathbf{Z}$ from a real Schur form to a complex Schur form. The Schur form is especially useful in calculating functions of matrices.

The following example illustrates the schur decomposition:

```
>>> from scipy import linalg
>>> A = mat('[1 3 2; 1 4 5; 2 3 6]')
>>> T,Z = linalg.schur(A)
>>> T1,Z1 = linalg.schur(A,' complex')
>>> T2,Z2 = linalg.rsf2csf(T,Z)
>>> print T
[[[9.90012467 1.78947961 -0.65498528]
 [0. 0.54993766-1.57754789]
 [0. 0.51260928 0.54993766]]
>>> print T2
[[9.90012467 +0.00000000e+00j -0.32436598 +1.55463542e+00j
 -0.88619748 +5.69027615e-01j]
 [0.00000000 +0.000000000e+00j 0.54993766 +8.99258408e-01j
 1.06493862 +1.37016050e-17j]
 [0.00000000 +0.000000000e+00j 0.000000000 +0.00000000ee+00j
 0.54993766 -8.99258408e-01j]]
>>> print abs(T1-T2) # different
[[[1.24357637e-14 2.09205364e+00 6.56028192e-01]
 [0.00000000e+00 4.00296604e-16 1.83223097e+00]
 [0.00000000e+00 0.00000000e+00 4.57756680e-16]]
>>> print abs(Z1-Z2) # different
[[0.06833781 1.10591375 0.23662249]
```

```
 [0.11857169 0.5585604 0.29617525]
 [0.12624999 0.75656818 0.22975038]]
>>> T,Z,T1,Z1,T2,Z2 = map(mat,(T,Z,T1,Z1,T2,Z2))
>>> print abs(A-Z*T*Z.H) # same
[[[1.11022302e-16 4.44089210e-16 4.44089210e-16]
 [4.44089210e-16 1.33226763e-15 8.88178420e-16]
 [8.88178420e-16 4.44089210e-16 2.66453526e-15]]
>>> print abs(A-Z1*T1*Z1.H) # same
[[[1.00043248e-15 2.22301403e-15 5.55749485e-15]
 [2.88899660e-15 8.44927041e-15 9.77322008e-15]
 [3.11291538e-15 1.15463228e-14 1.15464861e-14]]
>>> print abs(A-Z2*T2*Z2.H) # same
[[[3.34058710e-16 8.88611201e-16 4.18773089e-18]
 [1.48694940e-16 8.95109973e-16 8.92966151e-16]
 [1.33228956e-15 1.33582317e-15 3.55373104e-15]]
```


### 1.9.4 Matrix Functions

Consider the function $f(x)$ with Taylor series expansion

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k} .
$$

A matrix function can be defined using this Taylor series for the square matrix $\mathbf{A}$ as

$$
f(\mathbf{A})=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} \mathbf{A}^{k}
$$

While, this serves as a useful representation of a matrix function, it is rarely the best way to calculate a matrix function.

## Exponential and logarithm functions

The matrix exponential is one of the more common matrix functions. It can be defined for square matrices as

$$
e^{\mathbf{A}}=\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^{k}
$$

The command linalg. expm3 uses this Taylor series definition to compute the matrix exponential. Due to poor convergence properties it is not often used.
Another method to compute the matrix exponential is to find an eigenvalue decomposition of $\mathbf{A}$ :

$$
\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{-1}
$$

and note that

$$
e^{\mathbf{A}}=\mathbf{V} e^{\boldsymbol{\Lambda}} \mathbf{V}^{-1}
$$

where the matrix exponential of the diagonal matrix $\boldsymbol{\Lambda}$ is just the exponential of its elements. This method is implemented in linalg. expm2.

The preferred method for implementing the matrix exponential is to use scaling and a Padé approximation for $e^{x}$. This algorithm is implemented as linalg. expm.

The inverse of the matrix exponential is the matrix logarithm defined as the inverse of the matrix exponential.

$$
\mathbf{A} \equiv \exp (\log (\mathbf{A}))
$$

The matrix logarithm can be obtained with linalg.logm.

## Trigonometric functions

The trigonometric functions sin, cos, and tan are implemented for matrices in linalg.sinm, linalg.cosm, and linalg.tanm respectively. The matrix sin and cosine can be defined using Euler's identity as

$$
\begin{aligned}
\sin (\mathbf{A}) & =\frac{e^{j \mathbf{A}}-e^{-j \mathbf{A}}}{2 j} \\
\cos (\mathbf{A}) & =\frac{e^{j \mathbf{A}}+e^{-j \mathbf{A}}}{2}
\end{aligned}
$$

The tangent is

$$
\tan (x)=\frac{\sin (x)}{\cos (x)}=[\cos (x)]^{-1} \sin (x)
$$

and so the matrix tangent is defined as

$$
[\cos (\mathbf{A})]^{-1} \sin (\mathbf{A})
$$

## Hyperbolic trigonometric functions

The hyperbolic trigonemetric functions $\sinh$, cosh, and tanh can also be defined for matrices using the familiar definitions:

$$
\begin{aligned}
\sinh (\mathbf{A}) & =\frac{e^{\mathbf{A}}-e^{-\mathbf{A}}}{2} \\
\cosh (\mathbf{A}) & =\frac{e^{\mathbf{A}}+e^{-\mathbf{A}}}{2} \\
\tanh (\mathbf{A}) & =[\cosh (\mathbf{A})]^{-1} \sinh (\mathbf{A})
\end{aligned}
$$

These matrix functions can be found using linalg.sinhm, linalg.coshm, and linalg.tanhm.

## Arbitrary function

Finally, any arbitrary function that takes one complex number and returns a complex number can be called as a matrix function using the command linalg. funm. This command takes the matrix and an arbitrary Python function. It then implements an algorithm from Golub and Van Loan's book "Matrix Computations "to compute function applied to the matrix using a Schur decomposition. Note that the function needs to accept complex numbers as input in order to work with this algorithm. For example the following code computes the zeroth-order Bessel function applied to a matrix.

```
>>> from scipy import special, random, linalg
>>> A = random.rand (3,3)
>>> B = linalg.funm(A,lambda x: special.jv(0,x))
>>> print A
[[[0.72578091 0.34105276 0.79570345]
 [[0.65767207 0.73855618}00.541453]
 [0.78397086 0.68043507 0.4837898]}
>>> print B
[[0.72599893 -0.20545711 -0.22721101]
 [-0.27426769 0.77255139 -0.23422637]
 [-0.27612103 -0.21754832 0.7556849]}
>>> print linalg.eigvals(A)
[1.91262611+0.j 0.21846476+0.j -0.18296399+0.j]
>>> print special.jv(0, linalg.eigvals(A))
[0.27448286+0.j 0.98810383+0.j 0.99164854+0.j]
>>> print linalg.eigvals(B)
[0.27448286+0.j 0.98810383+0.j 0.99164854+0.j]
```

Note how, by virtue of how matrix analytic functions are defined, the Bessel function has acted on the matrix eigenvalues.

### 1.9.5 Special matrices

SciPy and NumPy provide several functions for creating special matrices that are frequently used in engineering and science.

| Type | Function | Description |
| :--- | :--- | :--- |
| block diagonal | scipy.linalg.block_diag | Create a block diagonal matrix from the provided arrays. |
| circulant | scipy.linalg.circulant | Construct a circulant matrix. |
| companion | scipy.linalg.companion | Create a companion matrix. |
| Hadamard | scipy.linalg.hadamard | Construct a Hadamard matrix. |
| Hankel | scipy.linalg.hankel | Construct a Hankel matrix. |
| Leslie | scipy.linalg.leslie | Create a Leslie matrix. |
| Toeplitz | scipy.linalg.toeplitz | Construct a Toeplitz matrix. |
| Van der Monde | numpy.vander | Generate a Van der Monde matrix. |

For examples of the use of these functions, see their respective docstrings.

### 1.10 Statistics

### 1.10.1 Introduction

SciPy has a tremendous number of basic statistics routines with more easily added by the end user (if you create one please contribute it). All of the statistics functions are located in the sub-package scipy.stats and a fairly complete listing of these functions can be had using info(stats).

## Random Variables

There are two general distribution classes that have been implemented for encapsulating continuous random variables and discrete random variables. Over 80 continuous random variables and 10 discrete random variables have been implemented using these classes. The list of the random variables available is in the docstring for the stats subpackage.

Note: The following is work in progress

### 1.10.2 Distributions

First some imports

```
>>> import numpy as np
>>> from scipy import stats
>>> import warnings
>>> warnings.simplefilter('ignore', DeprecationWarning)
```

We can obtain the list of available distribution through introspection:

```
>>> dist_continu = [d for d in dir(stats) if
... isinstance(getattr(stats,d), stats.rv_continuous)]
>>> dist_discrete = [d for d in dir(stats) if
... isinstance(getattr(stats,d), stats.rv_discrete)]
>>> print 'number of continuous distributions:', len(dist_continu)
```

```
number of continuous distributions: 84
>>> print 'number of discrete distributions: ', len(dist_discrete)
number of discrete distributions: 12
```

Distributions can be used in one of two ways, either by passing all distribution parameters to each method call or by freezing the parameters for the instance of the distribution. As an example, we can get the median of the distribution by using the percent point function, ppf, which is the inverse of the cdf:

```
>>> print stats.nct.ppf(0.5, 10, 2.5)
2.56880722561
>>> my_nct = stats.nct (10, 2.5)
>>> print my_nct.ppf(0.5)
2.56880722561
```

help (stats.nct) prints the complete docstring of the distribution. Instead we can print just some basic information:

```
>>> print stats.nct.extradoc #contains the distribution specific docs
Non-central Student T distribution
 df**(df/2) * gamma(df+1)
nct.pdf(x,df,nc) = ---
 2**df*exp (nc**2/2)*(df+x**2)**(df/2) * gamma(df/2)
for df > 0, nc>0.
>>> print 'number of arguments: %d, shape parameters: %s'% (stats.nct.numargs,
... stats.nct.shapes)
number of arguments: 2, shape parameters: df,nc
>>> print 'bounds of distribution lower: %s, upper: %s' % (stats.nct.a,
... stats.nct.b)
bounds of distribution lower: -1.#INF, upper: 1.#INF
```

We can list all methods and properties of the distribution with dir (stats.nct). Some of the methods are private methods, that are not named as such, i.e. no leading underscore, for example veccdf or xa and xb are for internal calculation. The main methods we can see when we list the methods of the frozen distribution:

```
>>> print dir(my_nct) #reformatted
 ['__class__', '___delattr__', '___dict__', '___doc__',' '__getattribute__',
 '__hash__',' '__init__', '___module__',',__new__',',__reduce__', '___reduce_ex__',
 '__repr__', '__setattr__', '__str__',' '__weakref__', 'args', 'cdf', 'dist',
 'entropy',' 'isf', 'kwds',' 'moment',''pdf', 'pmf','ppf','rvs',' 'sf',' 'stats']
```

The main public methods are:

- rvs: Random Variates
- pdf: Probability Density Function
- cdf: Cumulative Distribution Function
- sf: Survival Function (1-CDF)
- ppf: Percent Point Function (Inverse of CDF)
- isf: Inverse Survival Function (Inverse of SF)
- stats: Return mean, variance, (Fisher's) skew, or (Fisher's) kurtosis
- moment: non-central moments of the distribution

The main additional methods of the not frozen distribution are related to the estimation of distrition parameters:

- fit: maximum likelihood estimation of distribution parameters, including location and scale
- fit_loc_scale: estimation of location and scale when shape parameters are given
- nnlf: negative log likelihood function
- expect: Calculate the expectation of a function against the pdf or pmf

All continuous distributions take loc and scale as keyword parameters to adjust the location and scale of the distribution, e.g. for the standard normal distribution location is the mean and scale is the standard deviation. The standardized distribution for a random variable $x$ is obtained through ( $\mathrm{x}-\mathrm{loc}$ ) / scale.
Discrete distribution have most of the same basic methods, however pdf is replaced the probability mass function $p m f$, no estimation methods, such as fit, are available, and scale is not a valid keyword parameter. The location parameter, keyword loc can be used to shift the distribution.
The basic methods, pdf, cdf, sf, ppf, and isf are vectorized with np. vectorize, and the usual numpy broadcasting is applied. For example, we can calculate the critical values for the upper tail of the $t$ distribution for different probabilites and degrees of freedom.

```
>>> stats.t.isf([0.1, 0.05, 0.01], [[10], [11]])
array([[1.37218364, 1.81246112, 2.76376946],
 [1.36343032, 1.79588482, 2.71807918]])
```

Here, the first row are the critical values for 10 degrees of freedom and the second row is for 11 d.o.f., i.e. this is the same as

```
>> stats.t.isf([0.1, 0.05, 0.01], 10)
array([1.37218364, 1.81246112, 2.76376946])
>>> stats.t.isf([0.1, 0.05, 0.01], 11)
array([1.36343032, 1.79588482, 2.71807918])
```

If both, probabilities and degrees of freedom have the same array shape, then element wise matching is used. As an example, we can obtain the $10 \%$ tail for 10 d.o.f., the $5 \%$ tail for 11 d.o.f. and the $1 \%$ tail for 12 d.o.f. by

```
>> stats.t.isf([0.1, 0.05, 0.01], [10, 11, 12])
array([1.37218364, 1.79588482, 2.68099799])
```


## Performance and Remaining Issues

The performance of the individual methods, in terms of speed, varies widely by distribution and method. The results of a method are obtained in one of two ways, either by explicit calculation or by a generic algorithm that is independent of the specific distribution. Explicit calculation, requires that the method is directly specified for the given distribution, either through analytic formulas or through special functions in scipy.special or numpy.random for rvs. These are usually relatively fast calculations. The generic methods are used if the distribution does not specify any explicit calculation. To define a distribution, only one of pdf or cdf is necessary, all other methods can be derived using numeric integration and root finding. These indirect methods can be very slow. As an example, rgh $=$ stats.gausshyper.rvs $(0.5,2,2,2$, size $=100$ ) creates random variables in a very indirect way and takes about 19 seconds for 100 random variables on my computer, while one million random variables from the standard normal or from the t distribution take just above one second.
The distributions in scipy.stats have recently been corrected and improved and gained a considerable test suite, however a few issues remain:

- skew and kurtosis, 3rd and 4th moments and entropy are not thoroughly tested and some coarse testing indicates that there are still some incorrect results left.
- the distributions have been tested over some range of parameters, however in some corner ranges, a few incorrect results may remain.
- the maximum likelihood estimation in fit does not work with default starting parameters for all distributions and the user needs to supply good starting parameters. Also, for some distribution using a maximum likelihood estimator might inherently not be the best choice.
The next example shows how to build our own discrete distribution, and more examples for the usage of the distributions are shown below together with the statistical tests.


## Example: discrete distribution rv_discrete

In the following we use stats.rv_discrete to generate a discrete distribution that has the probabilites of the truncated normal for the intervalls centered around the integers.

```
>> npoints = 20 # number of integer support points of the distribution minus l
>>> npointsh = npoints / 2
>>> npointsf = float(npoints)
>>> nbound = 4 # bounds for the truncated normal
>> normbound = (1+1/npointsf) * nbound # actual bounds of truncated normal
>>> grid = np.arange(-npointsh, npointsh+2, 1) # integer grid
>> gridlimitsnorm = (grid-0.5) / npointsh * nbound # bin limits for the truncnorm
>>> gridlimits = grid - 0.5
>>> grid = grid[:-1]
>> probs = np.diff(stats.truncnorm.cdf(gridlimitsnorm, -normbound, normbound))
>>> gridint = grid
>>> normdiscrete = stats.rv_discrete(values = (gridint,
... np.round(probs, decimals=7)), name='normdiscrete')
```


## From the docstring of rv_discrete:

"You can construct an aribtrary discrete rv where $\mathrm{P}\{\mathrm{X}=\mathrm{xk}\}=\mathrm{pk}$ by passing to the rv_discrete initialization method (through the values= keyword) a tuple of sequences ( $\mathrm{xk}, \mathrm{pk}$ ) which describes only those values of X (xk) that occur with nonzero probability (pk)."
There are some requirements for this distribution to work. The keyword name is required. The support points of the distribution xk have to be integers. Also, I needed to limit the number of decimals. If the last two requirements are not satisfied an exception may be raised or the resulting numbers may be incorrect.

After defining the distribution, we obtain access to all methods of discrete distributions.

```
>>> print 'mean = %6.4f, variance = %6.4f, skew = %6.4f, kurtosis = % 6.4f'% \
... normdiscrete.stats(moments = 'mvsk')
mean = -0.0000, variance = 6.3302, skew = 0.0000, kurtosis = -0.0076
>>> nd_std = np.sqrt(normdiscrete.stats(moments = 'v'))
```

Generate a random sample and compare observed frequencies with probabilities

```
>>> n_sample = 500
>>> np.random.seed(87655678) # fix the seed for replicability
>>> rvs = normdiscrete.rvs(size=n_sample)
>>> rvsnd = rvs
>>> f, l = np.histogram(rvs, bins=gridlimits)
>>> sfreq = np.vstack([gridint, f, probs*n_sample]).T
>>> print sfreq
[[[-1.00000000e+01 0.00000000e+00 2.95019349e-02]
 [\begin{array}{c}{-9.00000000e+00 0.00000000e+00 1.32294142e-01]}\end{array}]
 [[-8.00000000e+00 0.00000000e+00 5.06497902e-01]
 [\begin{array}{cccc}{-7.00000000e+00 2.00000000e+00 1.65568919e+00]}\end{array}]
 [[\begin{array}{ccc}{-6.00000000e+00 1.00000000e+00 4.62125309e+00]}\end{array}]
 [[-5.00000000e+00 9.00000000e+00 1.10137298e+01]
 [[-4.00000000e+00 2.60000000e+01 2.24137683e+01]
```

```
[\begin{array}{llll}{-3.00000000e+00 3.70000000e+01 3.89503370e+01]}\end{array}]
[-2.00000000e+00 5.10000000e+01 5.78004747e+01]
[-1.00000000e+00 7.10000000e+01 7.32455414e+01]
[0.00000000e+00 7.40000000e+01 7.92618251e+01]
[1.00000000e+00 8.90000000e+01 7.32455414e+01]
[2.00000000e+00 5.50000000e+01 5.78004747e+01]
[3.00000000e+00 5.00000000e+01 3.89503370e+01]
[4.00000000e+00 1.70000000e+01 2.24137683e+01]
[5.00000000e+00 1.10000000e+01 1.10137298e+01]
[6.00000000e+00 4.00000000e+00 4.62125309e+00]
[7.00000000e+00 3.00000000e+00 1.65568919e+00]
[8.00000000e+00 0.00000000e+00 5.06497902e-01]
[9.00000000e+00 0.00000000e+00 1.32294142e-01]
[1.00000000e+01 0.00000000e+00 2.95019349e-02]]
```




Next, we can test, whether our sample was generated by our normdiscrete distribution. This also verifies, whether the random numbers are generated correctly

The chisquare test requires that there are a minimum number of observations in each bin. We combine the tail bins into larger bins so that they contain enough observations.

```
>>> f2 = np.hstack([f[:5].sum(), f[5:-5], f[-5:].sum()])
>> p2 = np.hstack([probs[:5].sum(), probs[5:-5], probs[-5:].sum()])
>>> ch2, pval = stats.chisquare(f2, p2*n_sample)
>>> print 'chisquare for normdiscrete: chi2 = %6.3f pvalue = %6.4f' % (ch2, pval)
chisquare for normdiscrete: chi2 = 12.466 pvalue = 0.4090
```

The pvalue in this case is high, so we can be quite confident that our random sample was actually generated by the distribution.

### 1.10.3 Analysing One Sample

First, we create some random variables. We set a seed so that in each run we get identical results to look at. As an example we take a sample from the Student t distribution:

```
>>> np.random.seed(282629734)
>>> x = stats.t.rvs(10, size=1000)
```

Here, we set the required shape parameter of the $t$ distribution, which in statistics corresponds to the degrees of freedom, to 10. Using size $=100$ means that our sample consists of 1000 independently drawn (pseudo) random numbers. Since we did not specify the keyword arguments loc and scale, those are set to their default values zero and one.

## Descriptive Statistics

$x$ is a numpy array, and we have direct access to all array methods, e.g.

```
>>> print x.max(), x.min() # equivalent to np.max(x), np.min(x)
5.26327732981 -3.78975572422
>>> print x.mean(), x.var() # equivalent to np.mean(x), np.var(x)
0.01406106639851.28899386208
```

How do the some sample properties compare to their theoretical counterparts?

```
>>>m, v, s, k = stats.t.stats(10, moments='mvsk')
>>> n, (smin, smax), sm, sv, ss, sk = stats.describe(x)
>>> print 'distribution:',
distribution:
>> sstr = 'mean = %6.4f, variance = %6.4f, skew = %6.4f, kurtosis = % 6.4f'
>>> print sstr %(m, v, s ,k)
mean = 0.0000, variance = 1.2500, skew = 0.0000, kurtosis = 1.0000
>>> print 'sample: ',
sample:
>>> print sstr %(sm, sv, ss, sk)
mean = 0.0141, variance = 1.2903, skew = 0.2165, kurtosis = 1.0556
```

Note: stats.describe uses the unbiased estimator for the variance, while np.var is the biased estimator.
For our sample the sample statistics differ a by a small amount from their theoretical counterparts.

## T-test and KS-test

We can use the $t$-test to test whether the mean of our sample differs in a statistcally significant way from the theoretical expectation.

```
>>> print 't-statistic = %6.3f pvalue = %6.4f' % stats.ttest_1samp(x, m)
t-statistic = 0.391 pvalue = 0.6955
```

The pvalue is 0.7 , this means that with an alpha error of, for example, $10 \%$, we cannot reject the hypothesis that the sample mean is equal to zero, the expectation of the standard $t$-distribution.
As an exercise, we can calculate our ttest also directly without using the provided function, which should give us the same answer, and so it does:

```
>>> tt = (sm-m)/np.sqrt(sv/float(n)) # t-statistic for mean
>>> pval = stats.t.sf(np.abs(tt), n-1)*2 # two-sided pvalue = Prob(abs(t)>tt)
>>> print 't-statistic = %6.3f pvalue = %6.4f' % (tt, pval)
t-statistic = 0.391 pvalue = 0.6955
```

The Kolmogorov-Smirnov test can be used to test the hypothesis that the sample comes from the standard t-distribution

```
>>> print 'KS-statistic D = %6.3f pvalue = %6.4f' % stats.kstest(x, 't', (10,))
KS-statistic D = 0.016 pvalue = 0.9606
```

Again the p-value is high enough that we cannot reject the hypothesis that the random sample really is distributed according to the t-distribution. In real applications, we don't know what the underlying distribution is. If we perform the Kolmogorov-Smirnov test of our sample against the standard normal distribution, then we also cannot reject the hypothesis that our sample was generated by the normal distribution given that in this example the p-value is almost $40 \%$.

```
>>> print 'KS-statistic D = %6.3f pvalue = %6.4f' % stats.kstest(x,'norm')
KS-statistic D = 0.028 pvalue = 0.3949
```

However, the standard normal distribution has a variance of 1 , while our sample has a variance of 1.29 . If we standardize our sample and test it against the normal distribution, then the p-value is again large enough that we cannot reject the hypothesis that the sample came form the normal distribution.

```
>>> d, pval = stats.kstest((x-x.mean())/x.std(), 'norm')
>>> print 'KS-statistic D = %6.3f pvalue = %6.4f' % (d, pval)
KS-statistic D = 0.032 pvalue = 0.2402
```

Note: The Kolmogorov-Smirnov test assumes that we test against a distribution with given parameters, since in the last case we estimated mean and variance, this assumption is violated, and the distribution of the test statistic on which the p -value is based, is not correct.

## Tails of the distribution

Finally, we can check the upper tail of the distribution. We can use the percent point function ppf, which is the inverse of the cdf function, to obtain the critical values, or, more directly, we can use the inverse of the survival function

```
>>> crit01, crit05, crit10 = stats.t.ppf([1-0.01, 1-0.05, 1-0.10], 10)
>>> print 'critical values from ppf at 1%%, 5%% and 10%% %8.4f %8.4f %8.4f'% (crit01, crit05, crit10
critical values from ppf at 1%, 5% and 10% 2.7638 1.8125 1.3722
>>> print 'critical values from isf at 1%%, 5%% and 10%%%%8.4f %8.4f %8.4f'% tuple(stats.t.isf([0.01
critical values from isf at 1%, 5% and 10% 2.7638 1.8125 1.3722
>>> freq01 = np.sum(x>crit01) / float(n) * 100
>>> freq05 = np.sum(x>crit05) / float(n) * 100
>>> freq10 = np.sum(x>crit10) / float(n) * 100
>>> print 'sample %%-frequency at 1%%, 5%% and 10%% tail % . 4f %8.4f %8.4f'% (freq01, freq05, freq10
sample %-frequency at 1%, 5% and 10% tail 1.4000 5.8000 10.5000
```

In all three cases, our sample has more weight in the top tail than the underlying distribution. We can briefly check a larger sample to see if we get a closer match. In this case the empirical frequency is quite close to the theoretical probability, but if we repeat this several times the fluctuations are still pretty large.

```
>>> freq05l = np.sum(stats.t.rvs(10, size=10000) > crit05) / 10000.0 * 100
>>> print 'larger sample %%-frequency at 5%% tail %8.4f'% freq05l
larger sample %-frequency at 5% tail 4.8000
```

We can also compare it with the tail of the normal distribution, which has less weight in the tails:

```
>>> print 'tail prob. of normal at 1%%, 5%% and 10%%%%.4f %8.4f %8.4f'% \
... tuple(stats.norm.sf([crit01, crit05, crit10])*100)
tail prob. of normal at 1%, 5% and 10% 0.2857 3.4957 8.5003
```

The chisquare test can be used to test, whether for a finite number of bins, the observed frequencies differ significantly from the probabilites of the hypothesized distribution.

```
>>> quantiles = [0.0, 0.01, 0.05, 0.1, 1-0.10, 1-0.05, 1-0.01, 1.0]
>>> crit = stats.t.ppf(quantiles, 10)
>>> print crit
[-Inf -2.76376946 -1.81246112 -1.37218364 1.37218364 1.81246112
 2.76376946 Inf]
>>> n_sample = x.size
>>> freqcount = np.histogram(x, bins=crit)[0]
>>> tprob = np.diff(quantiles)
>>> nprob = np.diff(stats.norm.cdf(crit))
>>> tch, tpval = stats.chisquare(freqcount, tprob*n_sample)
>>> nch, npval = stats.chisquare(freqcount, nprob*n_sample)
>>> print 'chisquare for t: chi2 = %6.3f pvalue = %6.4f' % (tch, tpval)
chisquare for t: chi2 = 2.300 pvalue = 0.8901
>>> print 'chisquare for normal: chi2 = %6.3f pvalue = %6.4f' % (nch, npval)
chisquare for normal: chi2 = 64.605 pvalue = 0.0000
```

We see that the standard normal distribution is clearly rejected while the standard t-distribution cannot be rejected. Since the variance of our sample differs from both standard distribution, we can again redo the test taking the estimate for scale and location into account.

The fit method of the distributions can be used to estimate the parameters of the distribution, and the test is repeated using probabilites of the estimated distribution.

```
>>> tdof, tloc, tscale = stats.t.fit(x)
>>> nloc, nscale = stats.norm.fit(x)
>>> tprob = np.diff(stats.t.cdf(crit, tdof, loc=tloc, scale=tscale))
>>> nprob = np.diff(stats.norm.cdf(crit, loc=nloc, scale=nscale))
>>> tch, tpval = stats.chisquare(freqcount, tprob*n_sample)
>>> nch, npval = stats.chisquare(freqcount, nprob*n_sample)
>>> print 'chisquare for t: chi2 = %6.3f pvalue = %6.4f' % (tch, tpval)
chisquare for t: chi2 = 1.577 pvalue = 0.9542
>>> print 'chisquare for normal: chi2 = %6.3f pvalue = %6.4f' % (nch, npval)
chisquare for normal: chi2 = 11.084 pvalue = 0.0858
```

Taking account of the estimated parameters, we can still reject the hypothesis that our sample came from a normal distribution (at the $5 \%$ level), but again, with a p-value of 0.95 , we cannot reject the $t$ distribution.

## Special tests for normal distributions

Since the normal distribution is the most common distribution in statistics, there are several additional functions available to test whether a sample could have been drawn from a normal distribution

First we can test if skew and kurtosis of our sample differ significantly from those of a normal distribution:

```
>>> print 'normal skewtest teststat = % 6.3f pvalue = % 6.4f' % stats.skewtest(x)
normal skewtest teststat = 2.785 pvalue = 0.0054
>>> print 'normal kurtosistest teststat = %6.3f pvalue = %6.4f' % stats.kurtosistest(x)
normal kurtosistest teststat = 4.757 pvalue = 0.0000
```

These two tests are combined in the normality test

```
>>> print 'normaltest teststat = %6.3f pvalue = %6.4f' % stats.normaltest(x)
normaltest teststat = 30.379 pvalue = 0.0000
```

In all three tests the p-values are very low and we can reject the hypothesis that the our sample has skew and kurtosis of the normal distribution.

Since skew and kurtosis of our sample are based on central moments, we get exactly the same results if we test the standardized sample:

```
>>> print 'normaltest teststat = %6.3f pvalue = %6.4f' % \
... stats.normaltest((x-x.mean())/x.std())
normaltest teststat = 30.379 pvalue = 0.0000
```

Because normality is rejected so strongly, we can check whether the normaltest gives reasonable results for other cases:

```
>>> print 'normaltest teststat = %6.3f pvalue = %6.4f' % stats.normaltest(stats.t.rvs(10, size=100))
normaltest teststat = 4.698 pvalue = 0.0955
>>> print 'normaltest teststat = %6.3f pvalue = %6.4f' % stats.normaltest(stats.norm.rvs(size=1000))
normaltest teststat = 0.613 pvalue = 0.7361
```

When testing for normality of a small sample of $t$-distributed observations and a large sample of normal distributed observation, then in neither case can we reject the null hypothesis that the sample comes from a normal distribution. In the first case this is because the test is not powerful enough to distinguish a $t$ and a normally distributed random variable in a small sample.

### 1.10.4 Comparing two samples

In the following, we are given two samples, which can come either from the same or from different distribution, and we want to test whether these samples have the same statistical properties.

## Comparing means

Test with sample with identical means:

```
>>> rvs1 = stats.norm.rvs(loc=5, scale=10, size=500)
>>> rvs2 = stats.norm.rvs(loc=5, scale=10, size=500)
>>> stats.ttest_ind(rvs1, rvs2)
(-0.54890361750888583, 0.5831943748663857)
```

Test with sample with different means:

```
>>> rvs3 = stats.norm.rvs(loc=8, scale=10, size=500)
>>> stats.ttest_ind(rvs1, rvs3)
(-4.5334142901750321, 6.507128186505895e-006)
```


## Kolmogorov-Smirnov test for two samples ks_2samp

For the example where both samples are drawn from the same distribution, we cannot reject the null hypothesis since the pvalue is high

```
>>> stats.ks_2samp(rvs1, rvs2)
(0.025999999999999995,0.99541195173064878)
```

In the second example, with different location, i.e. means, we can reject the null hypothesis since the pvalue is below $1 \%$
>>> stats.ks_2samp(rvs1, rvs3)
(0.11399999999999999, 0.0027132103661283141)

### 1.11 Multi-dimensional image processing (ndimage)

### 1.11.1 Introduction

Image processing and analysis are generally seen as operations on two-dimensional arrays of values. There are however a number of fields where images of higher dimensionality must be analyzed. Good examples of these are medical imaging and biological imaging. numpy is suited very well for this type of applications due its inherent multidimensional nature. The scipy.ndimage packages provides a number of general image processing and analysis functions that are designed to operate with arrays of arbitrary dimensionality. The packages currently includes functions for linear and non-linear filtering, binary morphology, B-spline interpolation, and object measurements.

### 1.11.2 Properties shared by all functions

All functions share some common properties. Notably, all functions allow the specification of an output array with the output argument. With this argument you can specify an array that will be changed in-place with the result with the operation. In this case the result is not returned. Usually, using the output argument is more efficient, since an existing array is used to store the result.

The type of arrays returned is dependent on the type of operation, but it is in most cases equal to the type of the input. If, however, the output argument is used, the type of the result is equal to the type of the specified output argument. If no output argument is given, it is still possible to specify what the result of the output should be. This is done by simply assigning the desired numpy type object to the output argument. For example:

```
>>> correlate(np.arange(10), [1, 2.5])
array([0, 2, 6, 9, 13, 16, 20, 23, 27, 30])
>>> correlate(np.arange(10), [1, 2.5], output=np.float64)
array([0., 2.5, 6., 9.5, 13., 16.5, 20., 23.5, 27., 30.5])
```


### 1.11.3 Filter functions

The functions described in this section all perform some type of spatial filtering of the the input array: the elements in the output are some function of the values in the neighborhood of the corresponding input element. We refer to this neighborhood of elements as the filter kernel, which is often rectangular in shape but may also have an arbitrary footprint. Many of the functions described below allow you to define the footprint of the kernel, by passing a mask through the footprint parameter. For example a cross shaped kernel can be defined as follows:

```
>>> footprint = array([[0,1,0],[1,1,1],[0,1,0]])
>>> footprint
array([[0, 1, 0],
 [1, 1, 1],
 [0, 1, 0]])
```

Usually the origin of the kernel is at the center calculated by dividing the dimensions of the kernel shape by two. For instance, the origin of a one-dimensional kernel of length three is at the second element. Take for example the correlation of a one-dimensional array with a filter of length 3 consisting of ones:

```
>>> a = [0, 0, 0, 1, 0, 0, 0]
>>> correlate1d(a, [1, 1, 1])
array([0, 0, 1, 1, 1, 0, 0])
```

Sometimes it is convenient to choose a different origin for the kernel. For this reason most functions support the origin parameter which gives the origin of the filter relative to its center. For example:

```
>>> a = [0, 0, 0, 1, 0, 0, 0]
>>> correlate1d(a, [1, 1, 1], origin = -1)
array([0 1 1 1 0 0 0])
```

The effect is a shift of the result towards the left. This feature will not be needed very often, but it may be useful especially for filters that have an even size. A good example is the calculation of backward and forward differences:

```
>>> a = [0, 0, 1, 1, 1, 0, 0]
>>> correlateld(a, [-1, 1]) # backward difference
array([[\begin{array}{llllllll}{0}&{0}&{1}&{0}&{0}&{-1}&{0}\end{array}])
>>> correlateld(a, [-1, 1], origin = -1) # forward difference
array([[\begin{array}{llllllll}{0}&{1}&{0}&{0}&{-1}&{0}&{0}\end{array}])
```

We could also have calculated the forward difference as follows:

```
>>> correlateld(a, [0, -1, 1])
array([[\begin{array}{llllllll}{0}&{1}&{0}&{0}&{-1}&{0}&{0}\end{array}])
```

However, using the origin parameter instead of a larger kernel is more efficient. For multi-dimensional kernels origin can be a number, in which case the origin is assumed to be equal along all axes, or a sequence giving the origin along each axis.

Since the output elements are a function of elements in the neighborhood of the input elements, the borders of the array need to be dealt with appropriately by providing the values outside the borders. This is done by assuming that the arrays are extended beyond their boundaries according certain boundary conditions. In the functions described below, the boundary conditions can be selected using the mode parameter which must be a string with the name of the boundary condition. Following boundary conditions are currently supported:

| "nearest" | Use the value at the boundary | $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]->\left[\begin{array}{lllll}1 & 1 & 2 & 3 & 3\end{array}\right]$ |
| :--- | :--- | :--- |
| "wrap" | Periodically replicate the array | $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]->\left[\begin{array}{llll}3 & 1 & 2 & 3\end{array}\right]$ |
| "reflect" | Reflect the array at the boundary | $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]->\left[\begin{array}{llll}1 & 1 & 3 & 3\end{array}\right]$ |
| "constant" | Use a constant value, default is 0.0 | $\left[\begin{array}{llll}1 & 2 & 3\end{array}\right]->\left[\begin{array}{lllll}0 & 1 & 2 & 3 & 0\end{array}\right]$ |

The "constant" mode is special since it needs an additional parameter to specify the constant value that should be used.
Note: The easiest way to implement such boundary conditions would be to copy the data to a larger array and extend the data at the borders according to the boundary conditions. For large arrays and large filter kernels, this would be very memory consuming, and the functions described below therefore use a different approach that does not require allocating large temporary buffers.

## Correlation and convolution

The correlate1d function calculates a one-dimensional correlation along the given axis. The lines of the array along the given axis are correlated with the given weights. The weights parameter must be a one-dimensional sequences of numbers.
The function correlate implements multi-dimensional correlation of the input array with a given kernel.

The convolve1d function calculates a one-dimensional convolution along the given axis. The lines of the array along the given axis are convoluted with the given weights. The weights parameter must be a one-dimensional sequences of numbers.

Note: A convolution is essentially a correlation after mirroring the kernel. As a result, the origin parameter behaves differently than in the case of a correlation: the result is shifted in the opposite directions.

The function convolve implements multi-dimensional convolution of the input array with a given kernel.

Note: A convolution is essentially a correlation after mirroring the kernel. As a result, the origin parameter behaves differently than in the case of a correlation: the results is shifted in the opposite direction.

## Smoothing filters

The gaussian_filterld function implements a one-dimensional Gaussian filter. The standarddeviation of the Gaussian filter is passed through the parameter sigma. Setting order $=0$ corresponds to convolution with a Gaussian kernel. An order of 1,2 , or 3 corresponds to convolution with the first, second or third derivatives of a Gaussian. Higher order derivatives are not implemented.

The gaussian_filter function implements a multi-dimensional Gaussian filter. The standarddeviations of the Gaussian filter along each axis are passed through the parameter sigma as a sequence or numbers. If sigma is not a sequence but a single number, the standard deviation of the filter is equal along all directions. The order of the filter can be specified separately for each axis. An order of 0 corresponds to convolution with a Gaussian kernel. An order of 1,2 , or 3 corresponds to convolution with the first, second or third derivatives of a Gaussian. Higher order derivatives are not implemented. The order parameter must be a number, to specify the same order for all axes, or a sequence of numbers to specify a different order for each axis.

Note: The multi-dimensional filter is implemented as a sequence of one-dimensional Gaussian filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a lower precision, the results may be imprecise because intermediate results may be stored with insufficient precision. This can be prevented by specifying a more precise output type.

The uniform_filterld function calculates a one-dimensional uniform filter of the given size along the given axis.

The uniform_filter implements a multi-dimensional uniform filter. The sizes of the uniform filter are given for each axis as a sequence of integers by the size parameter. If size is not a sequence, but a single number, the sizes along all axis are assumed to be equal.
Note: The multi-dimensional filter is implemented as a sequence of one-dimensional uniform filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a lower precision, the results may be imprecise because intermediate results may be stored with insufficient precision. This can be prevented by specifying a more precise output type.

## Filters based on order statistics

The minimum_filter 1 d function calculates a one-dimensional minimum filter of given size along the given axis.

The maximum_filterld function calculates a one-dimensional maximum filter of given size along the given axis.

The minimum_filter function calculates a multi-dimensional minimum filter. Either the sizes of a rectangular kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint, if provided, must be an array that defines the shape of the kernel by its non-zero elements.

The maximum_filter function calculates a multi-dimensional maximum filter. Either the sizes of a rectangular kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint, if provided, must be an array that defines the shape of the kernel by its non-zero elements.

The rank_filter function calculates a multi-dimensional rank filter. The rank may be less then zero, i.e., rank $=-1$ indicates the largest element. Either the sizes of a rectangular kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint, if provided, must be an array that defines the shape of the kernel by its non-zero elements.

The percentile_filter function calculates a multi-dimensional percentile filter. The percentile may be less then zero, i.e., percentile $=-20$ equals percentile $=80$. Either the sizes of a rectangular kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint, if provided, must be an array that defines the shape of the kernel by its non-zero elements.
The median_filter function calculates a multi-dimensional median filter. Either the sizes of a rectangular kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint if provided, must be an array that defines the shape of the kernel by its non-zero elements.

## Derivatives

Derivative filters can be constructed in several ways. The function gaussian_filter1d described in Smoothing filters can be used to calculate derivatives along a given axis using the order parameter. Other derivative filters are the Prewitt and Sobel filters:

The prewitt function calculates a derivative along the given axis.
The sobel function calculates a derivative along the given axis.
The Laplace filter is calculated by the sum of the second derivatives along all axes. Thus, different Laplace filters can be constructed using different second derivative functions. Therefore we provide a general function that takes a function argument to calculate the second derivative along a given direction and to construct the Laplace filter:

The function generic_laplace calculates a laplace filter using the function passed through derivative2 to calculate second derivatives. The function derivative2 should have the following signature:

[^2]It should calculate the second derivative along the dimension axis. If output is not None it should use that for the output and return None, otherwise it should return the result. mode, cval have the usual meaning.
The extra_arguments and extra_keywords arguments can be used to pass a tuple of extra arguments and a dictionary of named arguments that are passed to derivative2 at each call.

For example:

```
>>> def d2(input, axis, output, mode, cval):
... return correlateld(input, [1, -2, 1], axis, output, mode, cval, 0)
...
>>> a = zeros((5, 5))
>>> a[2, 2] = 1
>>> generic_laplace(a, d2)
array([[[0., 0., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 1., -4., 1., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 0., 0.]])
```

To demonstrate the use of the extra_arguments argument we could do:

```
>>> def d2(input, axis, output, mode, cval, weights):
... return correlateld(input, weights, axis, output, mode, cval, 0,)
..
>>> a = zeros((5, 5))
>>> a[2, 2] = 1
>>> generic_laplace(a, d2, extra_arguments = ([1, -2, 1],))
array([[0., 0., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 1., -4., 1., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 0., 0.]])
```

or:

```
>>> generic_laplace(a, d2, extra_keywords = {'weights': [1, -2, 1]})
array([[0., 0., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 1., -4., 1., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 0., 0.]])
```

The following two functions are implemented using generic_laplace by providing appropriate functions for the second derivative function:

The function laplace calculates the Laplace using discrete differentiation for the second derivative (i.e. convolution with [1, -2, 1]).

The function gaussian_laplace calculates the Laplace using gaussian_filter to calculate the second derivatives. The standard-deviations of the Gaussian filter along each axis are passed through the parameter sigma as a sequence or numbers. If sigma is not a sequence but a single number, the standard deviation of the filter is equal along all directions.

The gradient magnitude is defined as the square root of the sum of the squares of the gradients in all directions. Similar to the generic Laplace function there is a generic_gradient_magnitude function that calculated the gradient magnitude of an array:

The function generic_gradient_magnitude calculates a gradient magnitude using the function passed through derivative to calculate first derivatives. The function derivative should have the following signature:

```
derivative(input, axis, output, mode, cval, *extra_arguments, **extra_keywords)
```

It should calculate the derivative along the dimension axis. If output is not None it should use that for the output and return None, otherwise it should return the result. mode, cval have the usual meaning.

The extra_arguments and extra_keywords arguments can be used to pass a tuple of extra arguments and a dictionary of named arguments that are passed to derivative at each call.

For example, the sobel function fits the required signature:

```
>>> a = zeros((5, 5))
>>> a[2, 2] = 1
>>> generic_gradient_magnitude(a, sobel)
array([[0. , 0. , 0. , 0. 0. 0. %,
 [0. , 1.41421356, 2. , 1.41421356, 0.],
 [0. , 2. , 0. , 2. 0. 0. %,
 [0. , 1.41421356, 2. , 1.41421356, 0.],
 [0. , 0. , 0. , 0. , 0.]])
```

See the documentation of generic_laplace for examples of using the extra_arguments and extra_keywords arguments.

The sobel and prewitt functions fit the required signature and can therefore directly be used with generic_gradient_magnitude. The following function implements the gradient magnitude using Gaussian derivatives:

The function gaussian_gradient_magnitude calculates the gradient magnitude using gaussian_filter to calculate the first derivatives. The standard-deviations of the Gaussian filter along each axis are passed through the parameter sigma as a sequence or numbers. If sigma is not a sequence but a single number, the standard deviation of the filter is equal along all directions.

## Generic filter functions

To implement filter functions, generic functions can be used that accept a callable object that implements the filtering operation. The iteration over the input and output arrays is handled by these generic functions, along with such details as the implementation of the boundary conditions. Only a callable object implementing a callback function that does the actual filtering work must be provided. The callback function can also be written in C and passed using a PyCObject (see Extending ndimage in $C$ for more information).

The generic_filterld function implements a generic one-dimensional filter function, where the actual filtering operation must be supplied as a python function (or other callable object). The generic_filterld function iterates over the lines of an array and calls function at each line. The arguments that are passed to function are one-dimensional arrays of the tFloat 64 type. The first contains the values of the current line. It is extended at the beginning end the end, according to the filter_size and origin arguments. The second array should be modified in-place to provide the output values of the line. For example consider a correlation along one dimension:

```
>>> a = arange(12).reshape (3,4)
>>> correlate1d(a, [1, 2, 3])
array([[3, 8, 14, 17],
 [27, 32, 38, 41],
 [51, 56, 62, 65]])
```

The same operation can be implemented using generic_filterld as follows:

```
>>> def fnc(iline, oline):
... Oline[...] = iline[:-2] + 2 * iline[1:-1] + 3 * iline[2:]
...
```

```
>>> generic_filterld(a, fnc, 3)
array([[3, 8, 14, 17],
 [27, 32, 38, 41],
 [51, 56, 62, 65]])
```

Here the origin of the kernel was (by default) assumed to be in the middle of the filter of length 3 . Therefore, each input line was extended by one value at the beginning and at the end, before the function was called.
Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and extra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments that are passed to derivative at each call. For example, we can pass the parameters of our filter as an argument:

```
>>> def fnc(iline, oline, a, b):
... Oline[...] = iline[:-2] + a * iline[1:-1] + b * iline[2:]
...
>>> generic_filterld(a, fnc, 3, extra_arguments = (2, 3))
array([[3, 8, 14, 17],
 [27, 32, 38, 41],
 [51, 56, 62, 65]])
```

or:

```
>>> generic_filterld(a, fnc, 3, extra_keywords = {'a':2, 'b':3})
array([[3, 8, 14, 17],
 [27, 32, 38, 41],
 [51, 56, 62, 65]])
```

The generic_filter function implements a generic filter function, where the actual filtering operation must be supplied as a python function (or other callable object). The generic_filter function iterates over the array and calls function at each element. The argument of function is a onedimensional array of the tFloat 64 type, that contains the values around the current element that are within the footprint of the filter. The function should return a single value that can be converted to a double precision number. For example consider a correlation:

```
>>> a = arange(12).reshape (3,4)
>>> correlate(a, [[1, 0], [0, 3]])
array([[0, 3, 7, 11],
 [12, 15, 19, 23],
 [28, 31, 35, 39]])
```

The same operation can be implemented using generic_filter as follows:

```
>>> def fnc(buffer):
... return (buffer * array([1, 3])).sum()
>>> generic_filter(a, fnc, footprint = [[1, 0], [0, 1]])
array([[[0 3 7 11],
 [12 15 15 19 23],
 [28 31 35 39]])
```

Here a kernel footprint was specified that contains only two elements. Therefore the filter function receives a buffer of length equal to two, which was multiplied with the proper weights and the result summed.
When calling generic_filter, either the sizes of a rectangular kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint, if provided, must be an array that defines the shape of the kernel by its non-zero elements.

Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and extra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments that are passed to derivative at each call. For example, we can pass the parameters of our filter as an argument:

```
>>> def fnc(buffer, weights):
... weights = asarray(weights)
... return (buffer * weights).sum()
...
>>> generic_filter(a, fnc, footprint = [[1, 0], [0, 1]], extra_arguments = ([1, 3],))
array([[0, 3, 7, 11],
 [12, 15, 19, 23],
 [28, 31, 35, 39]])
```

or:

```
>>> generic_filter(a, fnc, footprint = [[1, 0], [0, 1]], extra_keywords= {'weights': [1, 3]
array([[0, 3, 7, 11],
 [12, 15, 19, 23],
 [28, 31, 35, 39]])
```

These functions iterate over the lines or elements starting at the last axis, i.e. the last index changes the fastest. This order of iteration is guaranteed for the case that it is important to adapt the filter depending on spatial location. Here is an example of using a class that implements the filter and keeps track of the current coordinates while iterating. It performs the same filter operation as described above for generic_filter, but additionally prints the current coordinates:

```
>>> a = arange(12).reshape (3,4)
>>>
>>> class fnc_class:
... def __init__(self, shape):
... # store the shape:
... self.shape = shape
... # initialize the coordinates:
... self.coordinates = [0] * len(shape)
...
... def filter(self, buffer):
... result = (buffer * array([1, 3])).sum()
... print self.coordinates
... # calculate the next coordinates:
... axes = range(len(self.shape))
... axes.reverse()
... for jj in axes:
... if self.coordinates[jj] < self.shape[jj] - 1:
... self.coordinates[jj] += 1
... break
... else:
... self.coordinates[jj] = 0
... return result
>>> fnc = fnc_class(shape = (3,4))
>>> generic_filter(a, fnc.filter, footprint = [[1, 0], [0, 1]])
[0, 0]
[0, 1]
[0, 2]
[0, 3]
[1, 0]
[1, 1]
[1, 2]
```

```
[1, 3]
[2, 0]
[2, 1]
[2, 2]
[2, 3]
array([[0, 3, 7, 11],
 [12, 15, 19, 23],
 [28, 31, 35, 39]])
```

For the generic_filterld function the same approach works, except that this function does not iterate over the axis that is being filtered. The example for generic_filterld then becomes this:

```
>>> a = arange(12).reshape(3,4)
>>>
>>> class fnc1d_class:
... def __init__(self, shape, axis = -1):
... # store the filter axis:
... self.axis = axis
... # store the shape:
... self.shape = shape
... # initialize the coordinates:
... self.coordinates = [0] * len(shape)
...
... def filter(self, iline, oline):
... Oline[...] = iline[:-2] + 2 * iline[1:-1] + 3 * iline[2:]
... print self.coordinates
... # calculate the next coordinates:
... axes = range(len(self.shape))
... # skip the filter axis:
... del axes[self.axis]
... axes.reverse()
... for jj in axes:
... if self.coordinates[jj] < self.shape[jj] - 1:
... self.coordinates[jj] += 1
... break
... else:
.. self.coordinates[jj] = 0
...
>>> fnc = fncld_class(shape = (3,4))
>>> generic_filterld(a, fnc.filter, 3)
[0, 0]
[1, 0]
[2, 0]
array([[3, 8, 14, 17],
 [27, 32, 38, 41],
 [51, 56, 62, 65]])
```


## Fourier domain filters

The functions described in this section perform filtering operations in the Fourier domain. Thus, the input array of such a function should be compatible with an inverse Fourier transform function, such as the functions from the numpy. fft module. We therefore have to deal with arrays that may be the result of a real or a complex Fourier transform. In the case of a real Fourier transform only half of the of the symmetric complex transform is stored. Additionally, it needs to be known what the length of the axis was that was transformed by the real fft. The functions described here provide a parameter $n$ that in the case of a real transform must be equal to the length of the real transform axis before transformation. If this parameter is less than zero, it is assumed that the input array was the
result of a complex Fourier transform. The parameter axis can be used to indicate along which axis the real transform was executed.

The fourier_shift function multiplies the input array with the multi-dimensional Fourier transform of a shift operation for the given shift. The shift parameter is a sequences of shifts for each dimension, or a single value for all dimensions.

The fourier_gaussian function multiplies the input array with the multi-dimensional Fourier transform of a Gaussian filter with given standard-deviations sigma. The sigma parameter is a sequences of values for each dimension, or a single value for all dimensions.

The fourier_uniform function multiplies the input array with the multi-dimensional Fourier transform of a uniform filter with given sizes size. The size parameter is a sequences of values for each dimension, or a single value for all dimensions.
The fourier_ellipsoid function multiplies the input array with the multi-dimensional Fourier transform of a elliptically shaped filter with given sizes size. The size parameter is a sequences of values for each dimension, or a single value for all dimensions. This function is only implemented for dimensions 1,2 , and 3 .

### 1.11.4 Interpolation functions

This section describes various interpolation functions that are based on B-spline theory. A good introduction to Bsplines can be found in: M. Unser, "Splines: A Perfect Fit for Signal and Image Processing," IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, November 1999.

## Spline pre-filters

Interpolation using splines of an order larger than 1 requires a pre- filtering step. The interpolation functions described in section Interpolation functions apply pre-filtering by calling spline_filter, but they can be instructed not to do this by setting the prefilter keyword equal to False. This is useful if more than one interpolation operation is done on the same array. In this case it is more efficient to do the pre-filtering only once and use a prefiltered array as the input of the interpolation functions. The following two functions implement the pre-filtering:

The spline_filterld function calculates a one-dimensional spline filter along the given axis. An output array can optionally be provided. The order of the spline must be larger then 1 and less than 6 .

The spline_filter function calculates a multi-dimensional spline filter.
Note: The multi-dimensional filter is implemented as a sequence of one-dimensional spline filters. The intermediate arrays are stored in the same data type as the output. Therefore, if an output with a limited precision is requested, the results may be imprecise because intermediate results may be stored with insufficient precision. This can be prevented by specifying a output type of high precision.

## Interpolation functions

Following functions all employ spline interpolation to effect some type of geometric transformation of the input array. This requires a mapping of the output coordinates to the input coordinates, and therefore the possibility arises that input values outside the boundaries are needed. This problem is solved in the same way as described in Filter functions for the multi-dimensional filter functions. Therefore these functions all support a mode parameter that determines how the boundaries are handled, and a cval parameter that gives a constant value in case that the 'constant' mode is used.

The geometric_transform function applies an arbitrary geometric transform to the input. The given mapping function is called at each point in the output to find the corresponding coordinates in the input. mapping must be a callable object that accepts a tuple of length equal to the output array rank and returns
the corresponding input coordinates as a tuple of length equal to the input array rank. The output shape and output type can optionally be provided. If not given they are equal to the input shape and type.
For example:

```
>>> a = arange(12).reshape(4,3).astype(np.float64)
>>> def shift_func(output_coordinates):
... return (output_coordinates[0] - 0.5, output_coordinates[1] - 0.5)
...
>>> geometric_transform(a, shift_func)
array([[0. , 0. , 0.],
 [0. , 1.3625, 2.7375],
 [0. , 4.8125, 6.1875],
 [0. , 8.2625, 9.6375]])
```

Optionally extra arguments can be defined and passed to the filter function. The extra_arguments and extra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments that are passed to derivative at each call. For example, we can pass the shifts in our example as arguments:

```
>>> def shift_func(output_coordinates, s0, s1):
... return (output_coordinates[0] - s0, output_coordinates[1] - s1)
>>> geometric_transform(a, shift_func, extra_arguments = (0.5, 0.5))
array([[0. , 0. , 0.],
 [0. , 1.3625, 2.7375],
 [0. , 4.8125, 6.1875],
 [0. , 8.2625, 9.6375]])
```

or:

```
>>> geometric_transform(a, shift_func, extra_keywords = {'s0': 0.5, 's1': 0.5})
array([[0. , 0. , 0.],
 [0. , 1.3625, 2.7375],
 [0. , 4.8125, 6.1875],
 [0. , 8.2625, 9.6375]])
```

Note: The mapping function can also be written in C and passed using a PyCObject. See Extending ndimage in $C$ for more information.

The function map_coordinates applies an arbitrary coordinate transformation using the given array of coordinates. The shape of the output is derived from that of the coordinate array by dropping the first axis. The parameter coordinates is used to find for each point in the output the corresponding coordinates in the input. The values of coordinates along the first axis are the coordinates in the input array at which the output value is found. (See also the numarray coordinates function.) Since the coordinates may be non- integer coordinates, the value of the input at these coordinates is determined by spline interpolation of the requested order. Here is an example that interpolates a 2 D array at $(0.5,0.5)$ and $(1,2)$ :

```
>>> a = arange(12).reshape(4,3).astype(np.float64)
>>> a
array([[0., 1., 2.],
 [3., 4., 5.],
 [6., 7., 8.],
 [9., 10., 11.]])
>>> map_coordinates(a, [[0.5, 2], [0.5, 1]])
array([1.3625 7.])
```

The affine_transform function applies an affine transformation to the input array. The given transformation matrix and offset are used to find for each point in the output the corresponding coordinates in the input. The value of the input at the calculated coordinates is determined by spline interpolation
of the requested order. The transformation matrix must be two-dimensional or can also be given as a one-dimensional sequence or array. In the latter case, it is assumed that the matrix is diagonal. A more efficient interpolation algorithm is then applied that exploits the separability of the problem. The output shape and output type can optionally be provided. If not given they are equal to the input shape and type.

The shift function returns a shifted version of the input, using spline interpolation of the requested order.

The zoom function returns a rescaled version of the input, using spline interpolation of the requested order.

The rotate function returns the input array rotated in the plane defined by the two axes given by the parameter axes, using spline interpolation of the requested order. The angle must be given in degrees. If reshape is true, then the size of the output array is adapted to contain the rotated input.

### 1.11.5 Morphology

## Binary morphology

Binary morphology (need something to put here).
The generate_binary_structure functions generates a binary structuring element for use in binary morphology operations. The rank of the structure must be provided. The size of the structure that is returned is equal to three in each direction. The value of each element is equal to one if the square of the Euclidean distance from the element to the center is less or equal to connectivity. For instance, two dimensional 4-connected and 8-connected structures are generated as follows:

```
>>> generate_binary_structure(2, 1)
array([[False, True, False],
 [True, True, True],
 [False, True, False]], dtype=bool)
>>> generate_binary_structure(2, 2)
array([[True, True, True],
 [True, True, True],
 [True, True, True]], dtype=bool)
```

Most binary morphology functions can be expressed in terms of the basic operations erosion and dilation:
The binary_erosion function implements binary erosion of arrays of arbitrary rank with the given structuring element. The origin parameter controls the placement of the structuring element as described in Filter functions. If no structuring element is provided, an element with connectivity equal to one is generated using generate_binary_structure. The border_value parameter gives the value of the array outside boundaries. The erosion is repeated iterations times. If iterations is less than one, the erosion is repeated until the result does not change anymore. If a mask array is given, only those elements with a true value at the corresponding mask element are modified at each iteration.

The binary_dilation function implements binary dilation of arrays of arbitrary rank with the given structuring element. The origin parameter controls the placement of the structuring element as described in Filter functions. If no structuring element is provided, an element with connectivity equal to one is generated using generate_binary_structure. The border_value parameter gives the value of the array outside boundaries. The dilation is repeated iterations times. If iterations is less than one, the dilation is repeated until the result does not change anymore. If a mask array is given, only those elements with a true value at the corresponding mask element are modified at each iteration.

Here is an example of using binary_dilation to find all elements that touch the border, by repeatedly dilating an empty array from the border using the data array as the mask:

```
>>> struct = array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
>>> a = array([[1,0,0,0,0], [1,1,0,1,0], [0,0,1,1,0], [0,0,0,0,0]])
>>> a
array([[1, 0, 0, 0, 0],
 [1, 1, 0, 1, 0],
 [0, 0, 1, 1, 0],
 [0, 0, 0, 0, 0]])
>>> binary_dilation(zeros(a.shape), struct, -1, a, border_value=1)
array([[True, False, False, False, False],
 [True, True, False, False, False],
 [False, False, False, False, False],
 [False, False, False, False, False]], dtype=bool)
```

The binary_erosion and binary_dilation functions both have an iterations parameter which allows the erosion or dilation to be repeated a number of times. Repeating an erosion or a dilation with a given structure $n$ times is equivalent to an erosion or a dilation with a structure that is $n-1$ times dilated with itself. A function is provided that allows the calculation of a structure that is dilated a number of times with itself:

The iterate_structure function returns a structure by dilation of the input structure iteration - 1 times with itself. For instance:

```
>>> struct = generate_binary_structure(2, 1)
>>> struct
array([[False, True, False],
 [True, True, True],
 [False, True, False]], dtype=bool)
>>> iterate_structure(struct, 2)
array([[False, False, True, False, False],
 [False, True, True, True, False],
 [True, True, True, True, True],
 [False, True, True, True, False],
 [False, False, True, False, False]], dtype=bool)
```

If the origin of the original structure is equal to 0 , then it is also equal to 0 for the iterated structure. If not, the origin must also be adapted if the equivalent of the iterations erosions or dilations must be achieved with the iterated structure. The adapted origin is simply obtained by multiplying with the number of iterations. For convenience the iterate_structure also returns the adapted origin if the origin parameter is not None:

```
>>> iterate_structure(struct, 2, -1)
(array([[False, False, True, False, False],
 [False, True, True, True, False],
 [True, True, True, True, True],
 [False, True, True, True, False],
 [False, False, True, False, False]], dtype=bool), [-2, -2])
```

Other morphology operations can be defined in terms of erosion and dilation. Following functions provide a few of these operations for convenience:

The binary_opening function implements binary opening of arrays of arbitrary rank with the given structuring element. Binary opening is equivalent to a binary erosion followed by a binary dilation with the same structuring element. The origin parameter controls the placement of the structuring element as described in Filter functions. If no structuring element is provided, an element with connectivity equal to one is generated using generate_binary_structure. The iterations parameter gives the number of erosions that is performed followed by the same number of dilations.

The binary_closing function implements binary closing of arrays of arbitrary rank with the given structuring element. Binary closing is equivalent to a binary dilation followed by a binary erosion with the same structuring element. The origin parameter controls the placement of the structuring element as
described in Filter functions. If no structuring element is provided, an element with connectivity equal to one is generated using generate_binary_structure. The iterations parameter gives the number of dilations that is performed followed by the same number of erosions.

The binary_fill_holes function is used to close holes in objects in a binary image, where the structure defines the connectivity of the holes. The origin parameter controls the placement of the structuring element as described in Filter functions. If no structuring element is provided, an element with connectivity equal to one is generated using generate_binary_structure.

The binary_hit_or_miss function implements a binary hit-or-miss transform of arrays of arbitrary rank with the given structuring elements. The hit-or-miss transform is calculated by erosion of the input with the first structure, erosion of the logical not of the input with the second structure, followed by the logical and of these two erosions. The origin parameters control the placement of the structuring elements as described in Filter functions. If origin2 equals None it is set equal to the originl parameter. If the first structuring element is not provided, a structuring element with connectivity equal to one is generated using generate_binary_structure, if structure 2 is not provided, it is set equal to the logical not of structure 1 .

## Grey-scale morphology

Grey-scale morphology operations are the equivalents of binary morphology operations that operate on arrays with arbitrary values. Below we describe the grey-scale equivalents of erosion, dilation, opening and closing. These operations are implemented in a similar fashion as the filters described in Filter functions, and we refer to this section for the description of filter kernels and footprints, and the handling of array borders. The grey-scale morphology operations optionally take a structure parameter that gives the values of the structuring element. If this parameter is not given the structuring element is assumed to be flat with a value equal to zero. The shape of the structure can optionally be defined by the footprint parameter. If this parameter is not given, the structure is assumed to be rectangular, with sizes equal to the dimensions of the structure array, or by the size parameter if structure is not given. The size parameter is only used if both structure and footprint are not given, in which case the structuring element is assumed to be rectangular and flat with the dimensions given by size. The size parameter, if provided, must be a sequence of sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The footprint parameter, if provided, must be an array that defines the shape of the kernel by its non-zero elements.
Similar to binary erosion and dilation there are operations for grey-scale erosion and dilation:
The grey_erosion function calculates a multi-dimensional grey- scale erosion.
The grey_dilation function calculates a multi-dimensional grey- scale dilation.
Grey-scale opening and closing operations can be defined similar to their binary counterparts:
The grey_opening function implements grey-scale opening of arrays of arbitrary rank. Grey-scale opening is equivalent to a grey-scale erosion followed by a grey-scale dilation.

The grey_closing function implements grey-scale closing of arrays of arbitrary rank. Grey-scale opening is equivalent to a grey-scale dilation followed by a grey-scale erosion.

The morphological_gradient function implements a grey-scale morphological gradient of arrays of arbitrary rank. The grey-scale morphological gradient is equal to the difference of a grey-scale dilation and a grey-scale erosion.

The morphological_laplace function implements a grey-scale morphological laplace of arrays of arbitrary rank. The grey-scale morphological laplace is equal to the sum of a grey-scale dilation and a grey-scale erosion minus twice the input.

The white_tophat function implements a white top-hat filter of arrays of arbitrary rank. The white top-hat is equal to the difference of the input and a grey-scale opening.

The black_tophat function implements a black top-hat filter of arrays of arbitrary rank. The black top-hat is equal to the difference of the a grey-scale closing and the input.

### 1.11.6 Distance transforms

Distance transforms are used to calculate the minimum distance from each element of an object to the background. The following functions implement distance transforms for three different distance metrics: Euclidean, City Block, and Chessboard distances.

The function distance_transform_cdt uses a chamfer type algorithm to calculate the distance transform of the input, by replacing each object element (defined by values larger than zero) with the shortest distance to the background (all non-object elements). The structure determines the type of chamfering that is done. If the structure is equal to 'cityblock' a structure is generated using generate_binary_structure with a squared distance equal to 1 . If the structure is equal to 'chessboard', a structure is generated using generate_binary_structure with a squared distance equal to the rank of the array. These choices correspond to the common interpretations of the cityblock and the chessboard distancemetrics in two dimensions.

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest background element is returned along the first axis of the result. The return_distances, and return_indices flags can be used to indicate if the distance transform, the feature transform, or both must be returned.

The distances and indices arguments can be used to give optional output arrays that must be of the correct size and type (both Int 32).
The basics of the algorithm used to implement this function is described in: G. Borgefors, "Distance transformations in arbitrary dimensions.", Computer Vision, Graphics, and Image Processing, 27:321345, 1984.

The function distance_transform_edt calculates the exact euclidean distance transform of the input, by replacing each object element (defined by values larger than zero) with the shortest euclidean distance to the background (all non-object elements).

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest background element is returned along the first axis of the result. The return_distances, and return_indices flags can be used to indicate if the distance transform, the feature transform, or both must be returned.

Optionally the sampling along each axis can be given by the sampling parameter which should be a sequence of length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes.

The distances and indices arguments can be used to give optional output arrays that must be of the correct size and type (Float 64 and Int 32).

The algorithm used to implement this function is described in: C. R. Maurer, Jr., R. Qi, and V. Raghavan, "A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. PAMI 25, 265-270, 2003.

The function distance_transform_bf uses a brute-force algorithm to calculate the distance transform of the input, by replacing each object element (defined by values larger than zero) with the shortest distance to the background (all non-object elements). The metric must be one of "euclidean", "cityblock", or "chessboard".
In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest background element is returned along the first axis of the result. The return_distances, and return_indices flags can be used to indicate if the distance transform, the feature transform, or both must be returned.

Optionally the sampling along each axis can be given by the sampling parameter which should be a sequence of length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes. This parameter is only used in the case of the euclidean distance transform.
The distances and indices arguments can be used to give optional output arrays that must be of the correct size and type (Float 64 and Int 32).
Note: This function uses a slow brute-force algorithm, the function distance_transform_cdt can be used to more efficiently calculate cityblock and chessboard distance transforms. The function distance_transform_edt can be used to more efficiently calculate the exact euclidean distance transform.

### 1.11.7 Segmentation and labeling

Segmentation is the process of separating objects of interest from the background. The most simple approach is probably intensity thresholding, which is easily done with numpy functions:

```
>>> a = array([[1,2,2,1,1,0],
... [0,2,3,1,2,0],
... [1,1,1,3,3,2],
... [1,1,1,1,2,1]])
>>> where(a > 1, 1, 0)
array([[0, 1, 1, 0, 0, 0],
 [0, 1, 1, 0, 1, 0],
 [0, 0, 0, 1, 1, 1],
 [0, 0, 0, 0, 1, 0]])
```

The result is a binary image, in which the individual objects still need to be identified and labeled. The function label generates an array where each object is assigned a unique number:

The label function generates an array where the objects in the input are labeled with an integer index. It returns a tuple consisting of the array of object labels and the number of objects found, unless the output parameter is given, in which case only the number of objects is returned. The connectivity of the objects is defined by a structuring element. For instance, in two dimensions using a four-connected structuring element gives:

```
>>> a = array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,0]])
>>> s = [[0, 1, 0], [1,1,1], [0,1,0]]
>>> label(a, s)
(array([[0, 1, 1, 0, 0, 0],
 [0, 1, 1, 0, 2, 0],
 [0, 0, 0, 2, 2, 2],
 [0, 0, 0, 0, 2, 0]]), 2)
```

These two objects are not connected because there is no way in which we can place the structuring element such that it overlaps with both objects. However, an 8-connected structuring element results in only a single object:

```
>>> a = array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,0]])
>>> s = [[1,1,1], [1,1,1], [1,1,1]]
>>> label(a, s) [0]
array([[0, 1, 1, 0, 0, 0],
 [0, 1, 1, 0, 1, 0],
 [0, 0, 0, 1, 1, 1],
 [0, 0, 0, 0, 1, 0]])
```

If no structuring element is provided, one is generated by calling generate_binary_structure (see Binary morphology) using a connectivity of one (which in 2D is the 4-connected structure of the first
example). The input can be of any type, any value not equal to zero is taken to be part of an object. This is useful if you need to 're-label' an array of object indices, for instance after removing unwanted objects. Just apply the label function again to the index array. For instance:

```
>>> l, n = label([1, 0, 1, 0, 1])
>>> l
array([1 0 2 0 3])
>>> l = where(l != 2, l, 0)
>>> l
array([1 0 0 0 3])
>>> label(l)[0]
array([1 0 0 0 2])
```

Note: The structuring element used by label is assumed to be symmetric.
There is a large number of other approaches for segmentation, for instance from an estimation of the borders of the objects that can be obtained for instance by derivative filters. One such an approach is watershed segmentation. The function watershed_ift generates an array where each object is assigned a unique label, from an array that localizes the object borders, generated for instance by a gradient magnitude filter. It uses an array containing initial markers for the objects:

The watershed_ift function applies a watershed from markers algorithm, using an Iterative Forest Transform, as described in: P. Felkel, R. Wegenkittl, and M. Bruckschwaiger, "Implementation and Complexity of the Watershed-from-Markers Algorithm Computed as a Minimal Cost Forest.", Eurographics 2001, pp. C:26-35.
The inputs of this function are the array to which the transform is applied, and an array of markers that designate the objects by a unique label, where any non-zero value is a marker. For instance:

```
>>> input = array([[0, 0, 0, 0, 0, 0, 0],
... [0, 1, 1, 1, 1, 1, 0],
... [0, 1, 0, 0, 0, 1, 0],
... [0, 1, 0, 0, 0, 1, 0],
... [0, 1, 0, 0, 0, 1, 0],
... [0, 1, 1, 1, 1, 1, 0],
\cdots. [0, 0, 0, 0, 0, 0, 0]], np.uint8)
>>> markers = array([[1, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
\ldots. [0, 0, 0, 0, 0, 0, 0],
\cdots [0, 0, 0, 2, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
\cdots [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0]], np.int8)
>>> watershed_ift(input, markers)
array([[1, 1, 1, 1, 1, 1, 1],
 [1, 1, 2, 2, 2, 1, 1],
 [1, 2, 2, 2, 2, 2, 1],
 [1, 2, 2, 2, 2, 2, 1],
 [1, 2, 2, 2, 2, 2, 1],
 [1, 1, 2, 2, 2, 1, 1],
 [1, 1, 1, 1, 1, 1, 1]], dtype=int8)
```

Here two markers were used to designate an object ( marker $=2$ ) and the background ( marker $=1$ ). The order in which these are processed is arbitrary: moving the marker for the background to the lower right corner of the array yields a different result:

```
>>> markers = array([[0, 0, 0, 0, 0, 0, 0],
\ldots. [0, 0, 0, 0, 0, 0, 0],
\ldots [0, 0, 0, 0, 0, 0, 0],
```

```
\ldots. [0, 0, 0, 2, 0, 0, 0],
\ldots.. [0, 0, 0, 0, 0, 0, 0],
\cdots [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 1]], np.int8)
>>> watershed_ift(input, markers)
array([[1, 1, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1, 1, 1],
 [1, 1, 2, 2, 2, 1, 1],
 [1, 1, 2, 2, 2, 1, 1],
 [1, 1, 2, 2, 2, 1, 1],
 [1, 1, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1, 1, 1]], dtype=int8)
```

The result is that the object (marker $=2$ ) is smaller because the second marker was processed earlier. This may not be the desired effect if the first marker was supposed to designate a background object. Therefore watershed_ift treats markers with a negative value explicitly as background markers and processes them after the normal markers. For instance, replacing the first marker by a negative marker gives a result similar to the first example:

```
>>> markers = array([[0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0],
\ldots [0, 0, 0, 0, 0, 0, 0],
\ldots [0, 0, 0, 2, 0, 0, 0],
\cdots [0, 0, 0, 0, 0, 0, 0],
\ldots [0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, -1]], np.int8)
>>> watershed_ift(input, markers)
array([[-1, -1, -1, -1, -1, -1, -1],
 [-1, -1, 2, 2, 2, -1, -1],
 [-1, 2, 2, 2, 2, 2, -1],
 [-1, 2, 2, 2, 2, 2, -1],
 [-1, 2, 2, 2, 2, 2, -1],
 [-1, -1, 2, 2, 2, -1, -1],
 [-1, -1, -1, -1, -1, -1, -1]], dtype=int8)
```

The connectivity of the objects is defined by a structuring element. If no structuring element is provided, one is generated by calling generate_binary_structure (see Binary morphology) using a connectivity of one (which in 2D is a 4-connected structure.) For example, using an 8 -connected structure with the last example yields a different object:

```
>>> watershed_ift(input, markers,
... structure = [[1,1,1], [1,1,1], [1,1,1]])
array([[-1, -1, -1, -1, -1, -1, -1],
 [-1, 2, 2, 2, 2, 2, -1],
 [-1, 2, 2, 2, 2, 2, -1],
 [-1, 2, 2, 2, 2, 2, -1],
 [-1, 2, 2, 2, 2, 2, -1],
 [-1, 2, 2, 2, 2, 2, -1],
 [-1, -1, -1, -1, -1, -1, -1]], dtype=int8)
```

Note: The implementation of watershed_ift limits the data types of the input to UInt 8 and UInt16.

### 1.11.8 Object measurements

Given an array of labeled objects, the properties of the individual objects can be measured. The find_objects function can be used to generate a list of slices that for each object, give the smallest sub-array that fully contains the
object:
The find_objects function finds all objects in a labeled array and returns a list of slices that correspond to the smallest regions in the array that contains the object. For instance:

```
>>> a = array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,0]])
>>> l, n = label(a)
>>> f = find_objects(l)
>>> a[f[0]]
array([[1 1],
 [1 1]])
>>> a[f[1]]
array([[0, 1, 0],
 [1, 1, 1],
 [0, 1, 0]])
```

find_objects returns slices for all objects, unless the max_label parameter is larger then zero, in which case only the first max_label objects are returned. If an index is missing in the label array, None is return instead of a slice. For example:

```
>>> find_objects([1, 0, 3, 4], max_label = 3)
[(slice(0, 1, None),), None, (slice(2, 3, None),)]
```

The list of slices generated by find_objects is useful to find the position and dimensions of the objects in the array, but can also be used to perform measurements on the individual objects. Say we want to find the sum of the intensities of an object in image:

```
>>> image = arange(4 * 6).reshape(4, 6)
>>> mask = array([[0,1,1,0,0,0],[0,1,1,0,1,0],[0,0,0,1,1,1],[0,0,0,0,1,0]])
>>> labels = label(mask)[0]
>>> slices = find_objects(labels)
```

Then we can calculate the sum of the elements in the second object:

```
>>> where(labels[slices[1]] == 2, image[slices[1]], 0).sum()
80
```

That is however not particularly efficient, and may also be more complicated for other types of measurements. Therefore a few measurements functions are defined that accept the array of object labels and the index of the object to be measured. For instance calculating the sum of the intensities can be done by:

```
>>> sum(image, labels, 2)
80
```

For large arrays and small objects it is more efficient to call the measurement functions after slicing the array:

```
>>> sum(image[slices[1]], labels[slices[1]], 2)
80
```

Alternatively, we can do the measurements for a number of labels with a single function call, returning a list of results. For instance, to measure the sum of the values of the background and the second object in our example we give a list of labels:

```
>>> sum(image, labels, [0, 2])
array([178.0, 80.0])
```

The measurement functions described below all support the index parameter to indicate which object(s) should be measured. The default value of index is None. This indicates that all elements where the label is larger than zero should be treated as a single object and measured. Thus, in this case the labels array is treated as a mask defined by the elements that are larger than zero. If index is a number or a sequence of numbers it gives the labels of the objects
that are measured. If index is a sequence, a list of the results is returned. Functions that return more than one result, return their result as a tuple if index is a single number, or as a tuple of lists, if index is a sequence.

The sum function calculates the sum of the elements of the object with label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object. If label is None, all elements of input are used in the calculation.
The mean function calculates the mean of the elements of the object with label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object. If label is None, all elements of input are used in the calculation.

The variance function calculates the variance of the elements of the object with label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object. If label is None, all elements of input are used in the calculation.

The standard_deviation function calculates the standard deviation of the elements of the object with label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object. If label is None, all elements of input are used in the calculation.

The min imum function calculates the minimum of the elements of the object with label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object. If label is None, all elements of input are used in the calculation.

The maximum function calculates the maximum of the elements of the object with label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object. If label is None, all elements of input are used in the calculation.

The minimum_position function calculates the position of the minimum of the elements of the object with label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object. If label is None, all elements of input are used in the calculation.

The maximum_position function calculates the position of the maximum of the elements of the object with label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object. If label is None, all elements of input are used in the calculation.

The extrema function calculates the minimum, the maximum, and their positions, of the elements of the object with label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object. If label is None, all elements of input are used in the calculation. The result is a tuple giving the minimum, the maximum, the position of the minimum and the postition of the maximum. The result is the same as a tuple formed by the results of the functions minimum, maximum, minimum_position, and maximum_position that are described above.

The center_of_mass function calculates the center of mass of the of the object with label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object. If label is None, all elements of input are used in the calculation.
The histogram function calculates a histogram of the of the object with label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object. If label is None, all elements of input are used in the calculation. Histograms are defined by their minimum (min), maximum (max) and the number of bins (bins). They are returned as one-dimensional arrays of type Int 32 .

### 1.11.9 Extending ndimage in C

A few functions in the scipy. ndimage take a call-back argument. This can be a python function, but also a PyCObject containing a pointer to a C function. To use this feature, you must write your own C extension that
defines the function, and define a Python function that returns a PyCOb ject containing a pointer to this function.
An example of a function that supports this is geometric_trans form (see Interpolation functions). You can pass it a python callable object that defines a mapping from all output coordinates to corresponding coordinates in the input array. This mapping function can also be a C function, which generally will be much more efficient, since the overhead of calling a python function at each element is avoided.

For example to implement a simple shift function we define the following function:

```
static int
_shift_function(int *output_coordinates, double* input_coordinates,
 int output_rank, int input_rank, void *callback_data)
{
 int ii;
 /* get the shift from the callback data pointer: */
 double shift = *(double*)callback_data;
 /* calculate the coordinates: */
 for(ii = 0; ii < irank; ii++)
 icoor[ii] = ocoor[ii] - shift;
 /* return OK status: */
 return 1;
}
```

This function is called at every element of the output array, passing the current coordinates in the output_coordinates array. On return, the input_coordinates array must contain the coordinates at which the input is interpolated. The ranks of the input and output array are passed through output_rank and input_rank. The value of the shift is passed through the callback_data argument, which is a pointer to void. The function returns an error status, in this case always 1, since no error can occur.
A pointer to this function and a pointer to the shift value must be passed to geometric_transform. Both are passed by a single PyCOb ject which is created by the following python extension function:

```
static PyObject *
py_shift_function(PyObject *obj, PyObject *args)
{
 double shift = 0.0;
 if (!PyArg_ParseTuple(args, "d", &shift)) {
 PyErr_SetString(PyExc_RuntimeError, "invalid parameters");
 return NULL;
 } else {
 /* assign the shift to a dynamically allocated location: */
 double *cdata = (double*)malloc(sizeof(double));
 *cdata = shift;
 /* wrap function and callback_data in a cobject: */
 return PyCObject_FromVoidPtrAndDesc(_shift_function, cdata,
 _destructor);
 }
}
```

The value of the shift is obtained and then assigned to a dynamically allocated memory location. Both this data pointer and the function pointer are then wrapped in a PyCObject, which is returned. Additionally, a pointer to a destructor function is given, that will free the memory we allocated for the shift value when the PyCObject is destroyed. This destructor is very simple:

```
static void
_destructor(void* cobject, void *cdata)
{
 if (cdata)
 free(cdata);
}
```

To use these functions, an extension module is built:

```
static PyMethodDef methods[] = {
 {"shift_function", (PyCFunction)py_shift_function, METH_VARARGS, ""},
 {NULL, NULL, 0, NULL}
};
void
initexample(void)
{
 Py_InitModule("example", methods);
}
```

This extension can then be used in Python, for example:

```
>>> import example
>>> array = arange(12).reshape=(4, 3).astype(np.float64)
>>> fnc = example.shift_function(0.5)
>>> geometric_transform(array, fnc)
array([[0. 0. 0.],
 [0. 1.3625 2.7375],
 [0. 4.8125 6.1875],
 [0. 8.2625 9.6375]])
```

C callback functions for use with ndimage functions must all be written according to this scheme. The next section lists the ndimage functions that acccept a C callback function and gives the prototype of the callback function.

### 1.11.10 Functions that support $C$ callback functions

The ndimage functions that support C callback functions are described here. Obviously, the prototype of the function that is provided to these functions must match exactly that what they expect. Therefore we give here the prototypes of the callback functions. All these callback functions accept a void callback_data pointer that must be wrapped in a Pycobject using the Python PyCObject_FromVoidPtrAndDesc function, which can also accept a pointer to a destructor function to free any memory allocated for callback_data. If callback_data is not needed, PyCObject_FromVoidPtr may be used instead. The callback functions must return an integer error status that is equal to zero if something went wrong, or 1 otherwise. If an error occurs, you should normally set the python error status with an informative message before returning, otherwise, a default error message is set by the calling function.
The function generic_filter (see Generic filter functions) accepts a callback function with the following prototype:

The calling function iterates over the elements of the input and output arrays, calling the callback function at each element. The elements within the footprint of the filter at the current element are passed through the buffer parameter, and the number of elements within the footprint through filter_size. The calculated valued should be returned in the return_value argument.
The function generic_filter1d (see Generic filter functions) accepts a callback function with the following prototype:

The calling function iterates over the lines of the input and output arrays, calling the callback function at each line. The current line is extended according to the border conditions set by the calling function, and the result is copied into the array that is passed through the input_line array. The length of the input line (after extension) is passed through input_length. The callback function should apply the 1D filter and store the result in the array passed through output_line. The length of the output line is passed through output_length.
The function geometric_transform (see Interpolation functions) expects a function with the following prototype:

The calling function iterates over the elements of the output array, calling the callback function at each element. The coordinates of the current output element are passed through output_coordinates. The callback function must return the coordinates at which the input must be interpolated in input_coordinates. The rank of the input and output arrays are given by input_rank and output_rank respectively.

### 1.12 File IO (scipy.io)

## See Also:

numpy-reference.routines.io (in numpy)

### 1.12.1 MATLAB files

| loadmat(file_name, **kwargs[, mdict, <br> appendmat] $)$ <br> savemat(file_name, mdict[, appendmat, ...]) | Load MATLAB file |
| :--- | :--- |
|  | Save a dictionary of names and arrays into a MATLAB-style <br> mat file. |

Getting started:

```
>>> import scipy.io as sio
```

If you are using IPython, try tab completing on sio. You'll find:

```
sio.loadmat
sio.savemat
```

These are the high-level functions you will most likely use. You'll also find:

```
sio.matlab
```

This is the package from which loadmat and savemat are imported. Within sio.matlab, you will find the mio module - containing the machinery that loadmat and savemat use. From time to time you may find yourself re-using this machinery.

## How do I start?

You may have a . mat file that you want to read into Scipy. Or, you want to pass some variables from Scipy / Numpy into MATLAB.

To save us using a MATLAB license, let's start in Octave. Octave has MATLAB-compatible save / load functions. Start Octave (octave at the command line for me):

```
octave:1> a = 1:12
a =
 1
octave:2> a = reshape(a, [ll 3 4])
a =
ans(:,:,1) =
 1 2
```

```
ans(:,:,2) =
 4 6
ans(:,:,3) =
 7 8
ans(:,:,4) =
 10 11 12
```

```
octave:3> save -6 octave_a.mat a % MATLAB 6 compatible
```

octave:3> save -6 octave_a.mat a % MATLAB 6 compatible
octave:4> ls octave_a.mat
octave:4> ls octave_a.mat
octave_a.mat

```
octave_a.mat
```

Now, to Python:

```
>>> mat_contents = sio.loadmat('octave_a.mat')
>>> print mat_contents
{'a': array([[[1., 4., 7., 10.],
 [2., 5., 8., 11.],
 [3., 6., 9., 12.]]]),
 '___version__' : '1.0',
 '___header__'': 'MATLAB 5.0 MAT-file, written by
 Octave 3.2.3, 2010-05-30 02:13:40 UTC',
 '__globals__'': []}
>>> oct_a = mat_contents['a']
>>> print oct_a
[[[[1. 1. 4. 7. 10.]
 [2. 5. 8. 11.]
 [3. 6. 9. 12.]]]
>>> print oct_a.shape
(1, 3, 4)
```

Now let's try the other way round:

```
>>> import numpy as np
>>> vect = np.arange(10)
>>> print vect.shape
(10,)
>>> sio.savemat('np_vector.mat', {'vect':vect})
/Users/mb312/usr/local/lib/python2.6/site-packages/scipy/io/matlab/mio.py:196: FutureWarnin
```

oned_as=oned_as)
Then back to Octave:

```
octave:5> load np_vector.mat
octave:6> vect
vect =
 0
1
2
3
4
5
```

```
6
7
8
9
octave:7> size(vect)
ans =
 10 1
```

Note the deprecation warning. The oned_as keyword determines the way in which one-dimensional vectors are stored. In the future, this will default to row instead of column:

```
>>> sio.savemat('np_vector.mat', {'vect':vect}, oned_as='row')
```

We can load this in Octave or MATLAB:

```
octave:8> load np_vector.mat
octave:9> vect
vect =
 0
octave:10> size(vect)
ans =
 10
```


## MATLAB structs

MATLAB structs are a little bit like Python dicts, except the field names must be strings. Any MATLAB object can be a value of a field. As for all objects in MATLAB, structs are in fact arrays of structs, where a single struct is an array of shape $(1,1)$.

```
octave:11> my_struct = struct('field1', 1, 'field2', 2)
my_struct =
{
 field1 = 1
 field2 = 2
}
octave:12> save -6 octave_struct.mat my_struct
```

We can load this in Python:

```
>>> mat_contents = sio.loadmat('octave_struct.mat')
>>> print mat_contents
{'my_struct': array([[([[1.0]], [[2.0]])]],
 dtype=[('field\mp@subsup{'}{}{\prime},'|O\mp@subsup{'}{}{\prime}), ('field2',' 'OO')]), '__version__': '1.0', '___header__': 'MATLAB 5.0
>>> oct_struct = mat_contents['my_struct']
>>> print oct_struct.shape
(1, 1)
>>> val = oct_struct[0,0]
>>> print val
([[1.0]], [[2.0]])
>>> print val['field1']
[[[1.]]
>>> print val['field2']
```

```
[[2.]]
>>> print val.dtype
[('field1', '|O8'), ('field2', '|O8')]
```

In this version of Scipy (0.8.0), MATLAB structs come back as numpy structured arrays, with fields named for the struct fields. You can see the field names in the dtype output above. Note also:

```
>>> val = oct_struct [0,0]
```

and:

```
octave:13> size(my_struct)
ans =
 1 1
```

So, in MATLAB, the struct array must be at least 2D, and we replicate that when we read into Scipy. If you want all length 1 dimensions squeezed out, try this:

```
>>> mat_contents = sio.loadmat('octave_struct.mat', squeeze_me=True)
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct.shape
()
```

Sometimes, it's more convenient to load the MATLAB structs as python objects rather than numpy structured arrarys - it can make the access syntax in python a bit more similar to that in MATLAB. In order to do this, use the struct_as_record=False parameter to loadmat.
>>> mat_contents = sio.loadmat('octave_struct.mat', struct_as_record=False)
$\ggg$ oct_struct $=$ mat_contents['my_struct']
$\ggg$ oct_struct $[0,0]$.field1
array ([[ 1.] ])
struct_as_record=False works nicely with squeeze_me:
$\ggg$ mat_contents $=$ sio.loadmat ('octave_struct.mat', struct_as_record=False, squeeze_me= l 'rue)
$\ggg$ oct_struct = mat_contents['my_struct']
>>> oct_struct.shape \# but no - it's a scalar
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'mat_struct' object has no attribute 'shape'
>>> print type(oct_struct)
<class 'scipy.io.matlab.mio5_params.mat_struct'>
>>> print oct_struct.field1
1.0

Saving struct arrays can be done in various ways. One simple method is to use dicts:

```
>>> a_dict = {'field1': 0.5, 'field2': 'a string'}
>>> sio.savemat('saved_struct.mat', {'a_dict': a_dict})
```


## loaded as:

```
octave:21> load saved_struct
octave:22> a_dict
a_dict =
{
 field2 = a string
 field1 = 0.50000
}
```

You can also save structs back again to MATLAB (or Octave in our case) like this:

```
>>> dt = [('f1', 'f8'), ('f2', 'S10')]
>>> arr = np.zeros((2,), dtype=dt)
>>> print arr
[(0.0, ''') (0.0, '')]
>>> arr[0]['f1'] = 0.5
>>> arr[0]['f2'] = 'python'
>>> arr[1]['f1'] = 99
>>> arr[1]['f2'] = 'not perl'
>>> sio.savemat('np_struct_arr.mat', {'arr': arr})
```


## MATLAB cell arrays

Cell arrays in MATLAB are rather like python lists, in the sense that the elements in the arrays can contain any type of MATLAB object. In fact they are most similar to numpy object arrays, and that is how we load them into numpy.

```
octave:14> my_cells = {1, [2, 3]}
my_cells =
{
 [1,1]=1
 [1,2]=
 2 3
}
octave:15> save -6 octave_cells.mat my_cells
```


## Back to Python:

```
>>> mat_contents = sio.loadmat('octave_cells.mat')
>>> oct_cells = mat_contents['my_cells']
>>> print oct_cells.dtype
object
>>> val = oct_cells[0,0]
>>> print val
[[1.]]
>>> print val.dtype
float64
```

Saving to a MATLAB cell array just involves making a numpy object array:

```
>>> obj_arr = np.zeros((2,), dtype=np.object)
>>> obj_arr[0] = 1
>>> obj_arr[1] = 'a string'
>>> print obj_arr
[1 a string]
>>> sio.savemat('np_cells.mat', {'obj_arr':obj_arr})
octave:16> load np_cells.mat
octave:17> obj__arr
obj_arr =
{
 [1,1] = 1
```

```
 [2,1] = a string
}
```


### 1.12.2 Matrix Market files

| mminfo(source) | Queries the contents of the Matrix Market file 'filename' to |
| :--- | :--- |
| mmread(source) | Reads the contents of a Matrix Market file 'filename' into a |
|  | matrix. |
| mmwite(target, a[, comment, field, <br> precision]) | Writes the sparse or dense matrix A to a Matrix Market formatted |

### 1.12.3 Other

save_as_module([file_name, data]) Save the dictionary "data" into a module and shelf named save.

### 1.12.4 Wav sound files (scipy.io.wavfile)

| read(file) | Return the sample rate (in samples/sec) and data from a WAV file |
| :--- | :--- |
| write(filename, rate, data) | Write a numpy array as a WAV file |

### 1.12.5 Arff files (scipy.io.arff)

Module to read ARFF files, which are the standard data format for WEKA.
ARFF is a text file format which support numerical, string and data values. The format can also represent missing data and sparse data.

See the WEKA website for more details about arff format and available datasets.

## Examples

```
>>> from scipy.io import arff
>>> content = """
... @relation foo
... @attribute width numeric
... @attribute height numeric
... @attribute color {red,green,blue,yellow,black}
... @data
... 5.0,3.25,blue
... 4.5,3.75,green
... 3.0,4.00,red
... """
>>> f = open('testdata.arff', 'W')
>>> f.write(content)
>>> f.close()
>>> data, meta = arff.loadarff('testdata.arff')
>>> data
array([(5.0, 3.25, 'blue'), (4.5, 3.75, 'green'), (3.0, 4.0, 'red')],
 dtype=[('width', '<f8'), ('height', '<f8'), ('color', '|S6')])
>>> meta
Dataset: foo
```

```
width's type is numeric
height's type is numeric
color's type is nominal, range is ('red', 'green', 'blue', 'yellow', 'black')
```

loadarff(filename) Read an arff file.
1.12.6 Netcdf (scipy.io.netcdf)
netcdf_file(filename[, mode, mmap, version]) A file object for NetCDF data.
Allows reading of NetCDF files (version of pupynere package)

### 1.13 Weave

### 1.13.1 Outline

## Contents

- Weave
- Outline
- Introduction
- Requirements
- Installation
- Testing
* Testing Notes:
- Benchmarks
- Inline
* More with printf
* More examples
- Binary search
- Dictionary Sort
- NumPy - cast/copy/transpose
- wxPython
* Keyword Option
* Inline Arguments
* Distutils keywords
- Keyword Option Examples
- Returning Values
- The issue with locals ()
- A quick look at the code
* Technical Details
* Passing Variables in/out of the C/C++ code
* Type Conversions
- NumPy Argument Conversion
- String, List, Tuple, and Dictionary Conversion
- File Conversion
- Callable, Instance, and Module Conversion
- Customizing Conversions
* The Catalog
- Function Storage
- Catalog search paths and the PYTHONCOMPILED variable
- Blitz
* Requirements
* Limitations
* NumPy efficiency issues: What compilation buys you
* The Tools
- Parser
- Blitz and NumPy
* Type definitions and coersion
* Cataloging Compiled Functions
* Checking Array Sizes
* Creating the Extension Module
- Extension Modules
* A Simple Example
* Fibonacci Example
- Customizing Type Conversions - Type Factories
- Things I wish weave did


### 1.13.2 Introduction

The scipy. weave (below just weave) package provides tools for including $\mathrm{C} / \mathrm{C}++$ code within in Python code. This offers both another level of optimization to those who need it, and an easy way to modify and extend any supported extension libraries such as wxPython and hopefully VTK soon. Inlining C/C++ code within Python generally results in speed ups of 1.5 x to 30 x speed-up over algorithms written in pure Python (However, it is also possible to slow things down...). Generally algorithms that require a large number of calls to the Python API don't benefit as much from the conversion to $\mathrm{C} / \mathrm{C}++$ as algorithms that have inner loops completely convertable to C .

There are three basic ways to use weave. The weave.inline () function executes Code directly within Python, and weave.blitz () translates Python NumPy expressions to C++ for fast execution. blitz () was the original reason weave was built. For those interested in building extension libraries, the ext_tools module provides classes for building extension modules within Python.

Most of weave's functionality should work on Windows and Unix, although some of its functionality requires gcc or a similarly modern $\mathrm{C}++$ compiler that handles templates well. Up to now, most testing has been done on Windows 2000 with Microsoft's C++ compiler (MSVC) and with gcc (mingw32 2.95 .2 and 2.95.3-6). All tests also pass on Linux (RH 7.1 with gcc 2.96), and I've had reports that it works on Debian also (thanks Pearu).
The inline and blitz provide new functionality to Python (although I've recently learned about the PyInline project which may offer similar functionality to inline). On the other hand, tools for building Python extension modules already exists (SWIG, SIP, pycpp, CXX, and others). As of yet, I'm not sure where weave fits in this spectrum. It is closest in flavor to CXX in that it makes creating new $\mathrm{C} / \mathrm{C}++$ extension modules pretty easy. However, if you're wrapping a gaggle of legacy functions or classes, SWIG and friends are definitely the better choice. weave is set up so that you can customize how Python types are converted to C types in weave. This is great for inline (), but, for wrapping legacy code, it is more flexible to specify things the other way around - that is how C types map to Python types. This weave does not do. I guess it would be possible to build such a tool on top of weave, but with good tools like SWIG around, I'm not sure the effort produces any new capabilities. Things like function overloading are probably easily implemented in weave and it might be easier to mix Python/C code in function calls, but nothing beyond this comes to mind. So, if you're developing new extension modules or optimizing Python functions in C, weave.ext_tools () might be the tool for you. If you're wrapping legacy code, stick with SWIG.

The next several sections give the basics of how to use weave. We'll discuss what's happening under the covers in more detail later on. Serious users will need to at least look at the type conversion section to understand how Python variables map to $\mathrm{C} / \mathrm{C}++$ types and how to customize this behavior. One other note. If you don't know C or $\mathrm{C}++$ then these docs are probably of very little help to you. Further, it'd be helpful if you know something about writing Python extensions. weave does quite a bit for you, but for anything complex, you'll need to do some conversions, reference counting, etc.

Note: weave is actually part of the SciPy package. However, it also works fine as a standalone package (you can check out the sources using svn co http://svn.scipy.org/svn/scipy/trunk/Lib/weave weave and install as python setup.py install). The examples here are given as if it is used as a stand alone package. If you are using from within scipy, you can use " from scipy import weave" and the examples will work identically.

### 1.13.3 Requirements

- Python

I use 2.1.1. Probably 2.0 or higher should work.

- C++ compiler
weave uses distutils to actually build extension modules, so it uses whatever compiler was originally used to build Python. weave itself requires a C++ compiler. If you used a C++ compiler to build Python, your probably fine.

On Unix gcc is the preferred choice because I've done a little testing with it. All testing has been done with gcc, but I expect the majority of compilers should work for inline and ext_tools. The one issue I'm not sure
about is that I've hard coded things so that compilations are linked with the stdc++ library. Is this standard across Unix compilers, or is this a gcc-ism?

For blitz (), you'll need a reasonably recent version of gcc. 2.95 .2 works on windows and 2.96 looks fine on Linux. Other versions are likely to work. Its likely that KAI's C++ compiler and maybe some others will work, but I haven't tried. My advice is to use gcc for now unless your willing to tinker with the code some.
On Windows, either MSVC or gcc (mingw32) should work. Again, you'll need gcc for blitz () as the MSVC compiler doesn't handle templates well.

I have not tried Cygwin, so please report success if it works for you.

- NumPy

The python NumPy module is required for blitz () to work and for numpy.distutils which is used by weave.

### 1.13.4 Installation

There are currently two ways to get weave. First, weave is part of SciPy and installed automatically (as a subpackage) whenever SciPy is installed. Second, since weave is useful outside of the scientific community, it has been setup so that it can be used as a stand-alone module.

The stand-alone version can be downloaded from here. Instructions for installing should be found there as well. setup.py file to simplify installation.

### 1.13.5 Testing

Once weave is installed, fire up python and run its unit tests.

```
>>> import weave
>>> weave.test()
runs long time... spews tons of output and a few warnings
.
•
.
```




```
Ran 184 tests in 158.418s
OK
>>>
```

This takes a while, usually several minutes. On Unix with remote file systems, I've had it take 15 or so minutes. In the end, it should run about 180 tests and spew some speed results along the way. If you get errors, they'll be reported at the end of the output. Please report errors that you find. Some tests are known to fail at this point.

If you only want to test a single module of the package, you can do this by running test() for that specific module.

```
>>> import weave.scalar_spec
>>> weave.scalar_spec.test()
.......
Ran 7 tests in 23.284s
```


## Testing Notes:

- Windows 1

I've had some test fail on windows machines where I have msvc, gcc-2.95.2 (in c:gcc-2.95.2), and gcc-2.95.3-6 (in $\mathrm{c}: \mathrm{gcc}$ ) all installed. My environment has $\mathrm{c}: \mathrm{gcc}$ in the path and does not have $\mathrm{c}: \mathrm{gcc}-2.95 .2$ in the path. The test process runs very smoothly until the end where several test using gcc fail with cpp0 not found by g++. If I check os.system('gcc -v') before running tests, I get gcc-2.95.3-6. If I check after running tests (and after failure), I get gcc-2.95.2. ??huh??. The os.environ['PATH'] still has c:gcc first in it and is not corrupted (msvc/distutils messes with the environment variables, so we have to undo its work in some places). If anyone else sees this, let me know - - it may just be an quirk on my machine (unlikely). Testing with the gcc- 2.95.2 installation always works.

- Windows 2

If you run the tests from PythonWin or some other GUI tool, you'll get a ton of DOS windows popping up periodically as weave spawns the compiler multiple times. Very annoying. Anyone know how to fix this?

- wxPython
wxPython tests are not enabled by default because importing wxPython on a Unix machine without access to a X-term will cause the program to exit. Anyone know of a safe way to detect whether wxPython can be imported and whether a display exists on a machine?


### 1.13.6 Benchmarks

This section has not been updated from old scipy weave and Numeric....
This section has a few benchmarks - thats all people want to see anyway right? These are mostly taken from running files in the weave /example directory and also from the test scripts. Without more information about what the test actually do, their value is limited. Still, their here for the curious. Look at the example scripts for more specifics about what problem was actually solved by each run. These examples are run under windows 2000 using Microsoft Visual C++ and python2.1 on a 850 MHz PIII laptop with 320 MB of RAM. Speed up is the improvement (degredation) factor of weave compared to conventional Python functions. The blitz() comparisons are shown compared to NumPy.

Table 1.1: inline and ext_tools

| Algorithm | Speed up |
| :--- | :--- |
| binary search | 1.50 |
| fibonacci (recursive) | 82.10 |
| fibonacci (loop) | 9.17 |
| return None | 0.14 |
| map | 1.20 |
| dictionary sort | 2.54 |
| vector quantization | 37.40 |

Table 1.2: blitz - double precision

| Algorithm | Speed up |
| :--- | :---: |
| $\mathrm{a}=\mathrm{b}+\mathrm{c} 512 \times 512$ | 3.05 |
| $\mathrm{a}=\mathrm{b}+\mathrm{c}+\mathrm{d} 512 \times 512$ | 4.59 |
| 5 pt avg. filter, 2D Image 512×512 | 9.01 |
| Electromagnetics (FDTD) $100 \times 100 \times 100$ | 8.61 |

The benchmarks shown blitz in the best possible light. NumPy (at least on my machine) is significantly worse for double precision than it is for single precision calculations. If your interested in single precision results, you can pretty much divide the double precision speed up by 3 and you'll be close.

### 1.13.7 Inline

inline () compiles and executes $\mathrm{C} / \mathrm{C}++$ code on the fly. Variables in the local and global Python scope are also available in the $\mathrm{C} / \mathrm{C}++$ code. Values are passed to the $\mathrm{C} / \mathrm{C}++$ code by assignment much like variables are passed into a standard Python function. Values are returned from the $\mathrm{C} / \mathrm{C}++$ code through a special argument called return_val. Also, the contents of mutable objects can be changed within the $\mathrm{C} / \mathrm{C}++$ code and the changes remain after the C code exits and returns to Python. (more on this later)

Here's a trivial print f example using inline ():

```
>>> import weave
>>> a = 1
>>> weave.inline('printf("%d\\n",a);', ['a'])
1
```

In this, its most basic form, inline (c_code, var_list) requires two arguments. c_code is a string of valid $\mathrm{C} / \mathrm{C}++$ code. var_list is a list of variable names that are passed from Python into $\mathrm{C} / \mathrm{C}++$. Here we have a simple printf statement that writes the Python variable a to the screen. The first time you run this, there will be a pause while the code is written to a .cpp file, compiled into an extension module, loaded into Python, cataloged for future use, and executed. On windows ( 850 MHz PIII), this takes about 1.5 seconds when using Microsoft's C++ compiler (MSVC) and 6-12 seconds using gcc (mingw32 2.95.2). All subsequent executions of the code will happen very quickly because the code only needs to be compiled once. If you kill and restart the interpreter and then execute the same code fragment again, there will be a much shorter delay in the fractions of seconds range. This is because weave stores a catalog of all previously compiled functions in an on disk cache. When it sees a string that has been compiled, it loads the already compiled module and executes the appropriate function.

Note: If you try the printf example in a GUI shell such as IDLE, PythonWin, PyShell, etc., you're unlikely to see the output. This is because the C code is writing to stdout, instead of to the GUI window. This doesn't mean that inline doesn't work in these environments - it only means that standard out in C is not the same as the standard out for Python in these cases. Non input/output functions will work as expected.
Although effort has been made to reduce the overhead associated with calling inline, it is still less efficient for simple code snippets than using equivalent Python code. The simple printf example is actually slower by $30 \%$ or so than using Python print statement. And, it is not difficult to create code fragments that are 8-10 times slower using inline than equivalent Python. However, for more complicated algorithms, the speed up can be worth while - anywhwere from 1.5- 30 times faster. Algorithms that have to manipulate Python objects (sorting a list) usually only see a factor of 2 or so improvement. Algorithms that are highly computational or manipulate NumPy arrays can see much larger improvements. The examples/vq.py file shows a factor of 30 or more improvement on the vector quantization algorithm that is used heavily in information theory and classification problems.

## More with printf

MSVC users will actually see a bit of compiler output that distutils does not supress the first time the code executes:

```
>>> weave.inline(r'printf("%d\n",a);',['a'])
sc_e013937dbc8c647ac62438874e5795131.cpp
 Creating library C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp
 \Release\sc_e013937dbc8c647ac62438874e5795131.lib and
 object C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\sc_e013937dbc8c647ac62438874
1
```

Nothing bad is happening, its just a bit annoying. * Anyone know how to turn this off?*
This example also demonstrates using 'raw strings'. The $r$ preceeding the code string in the last example denotes that this is a 'raw string'. In raw strings, the backslash character is not interpreted as an escape character, and so it isn't necessary to use a double backslash to indicate that the ' $n$ ' is meant to be interpreted in the C print $f$ statement
instead of by Python. If your $C$ code contains a lot of strings and control characters, raw strings might make things easier. Most of the time, however, standard strings work just as well.

The printf statement in these examples is formatted to print out integers. What happens if a is a string? inline will happily, compile a new version of the code to accept strings as input, and execute the code. The result?

```
>>> a = 'string'
>>> weave.inline(r'printf("%d\n",a);',['a'])
32956972
```

In this case, the result is non-sensical, but also non-fatal. In other situations, it might produce a compile time error because a is required to be an integer at some point in the code, or it could produce a segmentation fault. Its possible to protect against passing inline arguments of the wrong data type by using asserts in Python.

```
>>> a = 'string'
>>> def protected_printf(a):
... assert(type(a) == type(1))
... weave.inline(r'printf("%d\n",a);',['a'])
>>> protected_printf(1)
1
>>> protected_printf('string')
AssertError...
```

For printing strings, the format statement needs to be changed. Also, weave doesn't convert strings to char*. Instead it uses CXX Py::String type, so you have to do a little more work. Here we convert it to a C++ std::string and then ask cor the char* version.

```
>>> a = 'string'
>>> weave.inline(r'printf("%s\n",std::string(a).c_str());', ['a'])
string
```


## XXX

This is a little convoluted. Perhaps strings should convert to std: : string objects instead of CXX objects. Or maybe to char*.

As in this case, $\mathrm{C} / \mathrm{C}++$ code fragments often have to change to accept different types. For the given printing task, however, C++ streams provide a way of a single statement that works for integers and strings. By default, the stream objects live in the std (standard) namespace and thus require the use of std: : .

```
>>> weave.inline('std::cout << a << std::endl;',['a'])
1
>>> a = 'string'
>>> weave.inline('std::cout << a << std::endl;',['a'])
string
```

Examples using printf and cout are included in examples/print_example.py.

## More examples

This section shows several more advanced uses of inline. It includes a few algorithms from the Python Cookbook that have been re-written in inline C to improve speed as well as a couple examples using NumPy and wxPython.

## Binary search

Lets look at the example of searching a sorted list of integers for a value. For inspiration, we'll use Kalle Svensson's binary_search() algorithm from the Python Cookbook. His recipe follows:

```
def binary_search(seq, t):
 min = 0; max = len(seq) - 1
 while 1:
 if max < min:
 return -1
 m = (min + max) / 2
 if seq[m] < t:
 min = m + 1
 elif seq[m] > t:
 max =m - 1
 else:
 return m
```

This Python version works for arbitrary Python data types. The C version below is specialized to handle integer values. There is a little type checking done in Python to assure that we're working with the correct data types before heading into $C$. The variables seq and $t$ don't need to be declared beacuse weave handles converting and declaring them in the C code. All other temporary variables such as min, max, etc. must be declared -it is C after all. Here's the new mixed Python/C function:

```
def c_int_binary_search(seq,t):
 # do a little type checking in Python
 assert(type(t) == type(1))
 assert(type(seq) == type([]))
 # now the C code
 code = """
 #line 29 "binary_search.py"
 int val, m, min = 0;
 int max = seq.length() - 1;
 PyObject *py_val;
 for(; ;)
 {
 if (max < min)
 {
 return_val = Py::new_reference_to(Py::Int(-1));
 break;
 }
 m = (min + max) /2;
 val = py_to_int(PyList_GetItem(seq.ptr(),m),"val");
 if (val < t)
 min = m + 1;
 else if (val > t)
 max = m - 1;
 else
 {
 return_val = Py::new_reference_to(Py::Int(m));
 break;
 }
 }
 " " "
 return inline(code,['seq','t'])
```

We have two variables seq and $t$ passed in. $t$ is guaranteed (by the assert) to be an integer. Python integers are converted to C int types in the transition from Python to C. seq is a Python list. By default, it is translated to a CXX list object. Full documentation for the CXX library can be found at its website. The basics are that the CXX provides $\mathrm{C}++$ class equivalents for Python objects that simplify, or at least object orientify, working with Python objects in $\mathrm{C} / \mathrm{C}++$. For example, seq. length () returns the length of the list. A little more about CXX and its class methods, etc. is in the ${ }^{* *}$ type conversions ** section.

Note: CXX uses templates and therefore may be a little less portable than another alternative by Gordan McMillan called SCXX which was inspired by CXX. It doesn't use templates so it should compile faster and be more portable. SCXX has a few less features, but it appears to me that it would mesh with the needs of weave quite well. Hopefully xxx_spec files will be written for SCXX in the future, and we'll be able to compare on a more empirical basis. Both sets of spec files will probably stick around, it just a question of which becomes the default.

Most of the algorithm above looks similar in C to the original Python code. There are two main differences. The first is the setting of return_val instead of directly returning from the C code with a return statement. return_val is an automatically defined variable of type PyObject* that is returned from the C code back to Python. You'll have to handle reference counting issues when setting this variable. In this example, CXX classes and functions handle the dirty work. All CXX functions and classes live in the namespace Py: . The following code converts the integer $m$ to a CXX Int () object and then to a PyObject* with an incremented reference count using Py: :new_reference_to().
return_val = Py::new_reference_to(Py::Int(m));
The second big differences shows up in the retrieval of integer values from the Python list. The simple Python seq [i] call balloons into a C Python API call to grab the value out of the list and then a separate call to py_to_int () that converts the PyObject* to an integer. py_to_int () includes both a NULL cheack and a PyInt_Check () call as well as the conversion call. If either of the checks fail, an exception is raised. The entire C++ code block is executed with in a try/catch block that handles exceptions much like Python does. This removes the need for most error checking code.

It is worth note that CXX lists do have indexing operators that result in code that looks much like Python. However, the overhead in using them appears to be relatively high, so the standard Python API was used on the seq. ptr () which is the underlying PyObject* of the List object.

The \#line directive that is the first line of the C code block isn't necessary, but it's nice for debugging. If the compilation fails because of the syntax error in the code, the error will be reported as an error in the Python file "binary_search.py" with an offset from the given line number ( 29 here).

So what was all our effort worth in terms of efficiency? Well not a lot in this case. The examples/binary_search.py file runs both Python and C versions of the functions As well as using the standard bisect module. If we run it on a 1 million element list and run the search 3000 times (for 0-2999), here are the results we get:

```
C:\home\ej\wrk\scipy\weave\examples> python binary_search.py
Binary search for 3000 items in 1000000 length list of integers:
speed in python: 0.159999966621
speed of bisect: 0.121000051498
speed up: 1.32
speed in c: 0.110000014305
speed up: 1.45
speed in c(no asserts): 0.0900000333786
speed up: 1.78
```

So, we get roughly a $50-75 \%$ improvement depending on whether we use the Python asserts in our C version. If we move down to searching a 10000 element list, the advantage evaporates. Even smaller lists might result in the Python version being faster. I'd like to say that moving to NumPy lists (and getting rid of the GetItem() call) offers a substantial speed up, but my preliminary efforts didn't produce one. I think the $\log (\mathrm{N})$ algorithm is to blame. Because the algorithm is nice, there just isn't much time spent computing things, so moving to C isn't that big of a win. If there are ways to reduce conversion overhead of values, this may improve the C/Python speed up. Anyone have other explanations or faster code, please let me know.

## Dictionary Sort

The demo in examples/dict_sort.py is another example from the Python CookBook. This submission, by Alex Martelli, demonstrates how to return the values from a dictionary sorted by their keys:

```
def sortedDictValues3(adict):
 keys = adict.keys()
 keys.sort()
 return map(adict.get, keys)
```

Alex provides 3 algorithms and this is the 3 rd and fastest of the set. The C version of this same algorithm follows:

```
def c_sort(adict):
 assert(type(adict) == type({}))
 code = """
 #line 21 "dict_sort.py"
 Py::List keys = adict.keys();
 Py::List items(keys.length()); keys.sort();
 PyObject* item = NULL;
 for(int i = 0; i < keys.length();i++)
 {
 item = PyList_GET_ITEM(keys.ptr(),i);
 item = PyDict_GetItem(adict.ptr(),item);
 Py_XINCREF (item);
 PyList_SetItem(items.ptr(),i,item);
 }
 return_val = Py::new_reference_to(items);
 """
 return inline_tools.inline(code,['adict'],verbose=1)
```

Like the original Python function, the $\mathrm{C}++$ version can handle any Python dictionary regardless of the key/value pair types. It uses CXX objects for the most part to declare python types in C++, but uses Python API calls to manipulate their contents. Again, this choice is made for speed. The C++ version, while more complicated, is about a factor of 2 faster than Python.

```
C:\home\ej\wrk\scipy\weave\examples> python dict_sort.py
Dict sort of 1000 items for 300 iterations:
 speed in python: 0.319999933243
[0, 1, 2, 3, 4]
 speed in c: 0.151000022888
 speed up: 2.12
[0, 1, 2, 3, 4]
```


## NumPy - cast/copy/transpose

CastCopyTranspose is a function called quite heavily by Linear Algebra routines in the NumPy library. Its needed in part because of the row-major memory layout of multi-demensional Python (and C) arrays vs. the col-major order of the underlying Fortran algorithms. For small matrices (say 100x100 or less), a significant portion of the common routines such as LU decompisition or singular value decompostion are spent in this setup routine. This shouldn't happen. Here is the Python version of the function using standard NumPy operations.

```
def _castCopyAndTranspose(type, array):
 if a.typecode() == type:
 cast_array = copy.copy(NumPy.transpose(a))
 else:
 cast_array = copy.copy(NumPy.transpose(a).astype(type))
 return cast_array
```

And the following is a inline C version of the same function:

```
from weave.blitz_tools import blitz_type_factories
from weave import scalar_spec
from weave import inline
def _cast_copy_transpose(type,a_2d):
```

```
assert(len(shape(a_2d)) == 2)
new_array = zeros(shape(a_2d),type)
NumPy_type = scalar_spec.NumPy_to_blitz_type_mapping[type]
code = \
" ""
for(int i = 0;i < _Na_2d[0]; i++)
 for(int j = 0; j < _Na_2d[1]; j++)
 new_array(i,j) = (%s) a_2d(j,i);
""" % NumPy_type
inline(code, ['new_array',' a_2d'],
 type_factories = blitz_type_factories,compiler=' gcc')
return new_array
```

This example uses blitz++ arrays instead of the standard representation of NumPy arrays so that indexing is simplier to write. This is accomplished by passing in the blitz++ "type factories" to override the standard Python to C++ type conversions. Blitz++ arrays allow you to write clean, fast code, but they also are sloooow to compile ( 20 seconds or more for this snippet). This is why they aren't the default type used for Numeric arrays (and also because most compilers can't compile blitz arrays...). inline () is also forced to use ' gcc ' as the compiler because the default compiler on Windows (MSVC) will not compile blitz code. ('gcc' I think will use the standard compiler on Unix machine instead of explicitly forcing gcc (check this)) Comparisons of the Python vs inline C++ code show a factor of 3 speed up. Also shown are the results of an "inplace" transpose routine that can be used if the output of the linear algebra routine can overwrite the original matrix (this is often appropriate). This provides another factor of 2 improvement.

```
#C:\home\ej\wrk\scipy\weave\examples> python cast_copy_transpose.py
Cast/Copy/Transposing (150,150)array 1 times
speed in python: 0.870999932289
speed in c: 0.25
speed up: 3.48
inplace transpose c: 0.129999995232
speed up: 6.70
```


## wxPython

inline knows how to handle wxPython objects. Thats nice in and of itself, but it also demonstrates that the type conversion mechanism is reasonably flexible. Chances are, it won't take a ton of effort to support special types you might have. The examples/wx_example.py borrows the scrolled window example from the wxPython demo, accept that it mixes inline C code in the middle of the drawing function.

```
def DoDrawing(self, dc):
 red = wxNamedColour("RED");
 blue = wxNamedColour("BLUE");
 grey_brush = wxLIGHT_GREY_BRUSH;
 code = \
 " ""
 #line 108 "wx_example.py"
 dc->BeginDrawing();
 dc->SetPen(wxPen(*red, 4,wxSOLID));
 dc->DrawRectangle (5,5,50,50);
 dc->SetBrush(*grey_brush);
 dc->SetPen(wxPen(*blue, 4,wxSOLID));
 dc->DrawRectangle(15, 15, 50, 50);
 " ""
 inline(code, ['dc','red','blue','grey_brush'])
 dc.SetFont(wxFont(14, wxSWISS, wxNORMAL, wxNORMAL))
 dc.SetTextForeground(wxColour(0xFF, 0x20, 0xFF))
```

```
te = dc.GetTextExtent("Hello World")
dc.DrawText("Hello World", 60, 65)
dc.SetPen(wxPen(wxNamedColour('VIOLET'), 4))
dc.DrawLine(5, 65+te[1], 60+te[0], 65+te[1])
```

Here, some of the Python calls to wx objects were just converted to C++ calls. There isn't any benefit, it just demonstrates the capabilities. You might want to use this if you have a computationally intensive loop in your drawing code that you want to speed up. On windows, you'll have to use the MSVC compiler if you use the standard wxPython DLLs distributed by Robin Dunn. Thats because MSVC and gcc, while binary compatible in C, are not binary compatible for C++. In fact, its probably best, no matter what platform you're on, to specify that inline use the same compiler that was used to build wxPython to be on the safe side. There isn't currently a way to learn this info from the library - you just have to know. Also, at least on the windows platform, you'll need to install the wxWindows libraries and link to them. I think there is a way around this, but I haven't found it yet - I get some linking errors dealing with wxString. One final note. You'll probably have to tweak weave/wx_spec.py or weave/wx_info.py for your machine's configuration to point at the correct directories etc. There. That should sufficiently scare people into not even looking at this... :)

## Keyword Option

The basic definition of the inline () function has a slew of optional variables. It also takes keyword arguments that are passed to distutils as compiler options. The following is a formatted cut/paste of the argument section of inline's doc-string. It explains all of the variables. Some examples using various options will follow.

```
def inline(code,arg_names,local_dict = None, global_dict = None,
 force = 0,
 compiler='',
 verbose = 0,
 support_code = None,
 customize=None,
 type_factories = None,
 auto_downcast=1,
 **kw) :
```

inline has quite a few options as listed below. Also, the keyword arguments for distutils extension modules are accepted to specify extra information needed for compiling.

## Inline Arguments

code string. A string of valid C++ code. It should not specify a return statement. Instead it should assign results that need to be returned to Python in the return_val. arg_names list of strings. A list of Python variable names that should be transferred from Python into the $\mathrm{C} / \mathrm{C}++$ code. local_dict optional. dictionary. If specified, it is a dictionary of values that should be used as the local scope for the $\mathrm{C} / \mathrm{C}++$ code. If local_dict is not specified the local dictionary of the calling function is used. global_dict optional. dictionary. If specified, it is a dictionary of values that should be used as the global scope for the $\mathrm{C} / \mathrm{C}++$ code. If global_dict is not specified the global dictionary of the calling function is used. force optional. 0 or 1 . default 0 . If 1 , the $\mathrm{C}++$ code is compiled every time inline is called. This is really only useful for debugging, and probably only useful if you're editing support_code a lot. compiler optional. string. The name of compiler to use when compiling. On windows, it understands ' msvc ' and ' gcc ' as well as all the compiler names understood by distutils. On Unix, it'll only understand the values understoof by distutils. (I should add 'gcc' though to this).

On windows, the compiler defaults to the Microsoft C++ compiler. If this isn't available, it looks for mingw32 (the gcc compiler).

On Unix, it'll probably use the same compiler that was used when compiling Python. Cygwin's behavior should be similar.
verbose optional. 0,1 , or 2 . defualt 0 . Speficies how much much information is printed during the compile phase of inlining code. 0 is silent (except on windows with msve where it still prints some garbage). 1 informs you when compiling starts, finishes, and how long it took. 2 prints out the command lines for the compilation process and can be useful if you're having problems getting code to work. Its handy for finding the name of the .cpp file if you need to examine it. verbose has no affect if the compilation isn't necessary. support_code optional. string. A string of valid $\mathrm{C}++$ code declaring extra code that might be needed by your compiled function. This could be declarations of functions, classes, or structures. customize optional. base_info.custom_info object. An alternative way to specifiy support_code, headers, etc. needed by the function see the weave.base_info module for more details. (not sure this'll be used much). type_factories optional. list of type specification factories. These guys are what convert Python data types to C/C++ data types. If you'd like to use a different set of type conversions than the default, specify them here. Look in the type conversions section of the main documentation for examples. auto_downcast optional. 0 or 1 . default 1. This only affects functions that have Numeric arrays as input variables. Setting this to 1 will cause all floating point values to be cast as float instead of double if all the NumPy arrays are of type float. If even one of the arrays has type double or double complex, all variables maintain there standard types.

## Distutils keywords

inline () also accepts a number of distutils keywords for controlling how the code is compiled. The following descriptions have been copied from Greg Ward's distutils.extension.Extension class doc- strings for convenience: sources [string] list of source filenames, relative to the distribution root (where the setup script lives), in Unix form (slash- separated) for portability. Source files may be C, C++, SWIG (.i), platform- specific resource files, or whatever else is recognized by the "build_ext" command as source for a Python extension. Note: The module_path file is always appended to the front of this list include_dirs [string] list of directories to search for C/C++ header files (in Unix form for portability) define_macros [(name : string, value : stringlNone)] list of macros to define; each macro is defined using a 2-tuple, where 'value' is either the string to define it to or None to define it without a particular value (equivalent of "\#define FOO" in source or -DFOO on Unix C compiler command line) undef_macros [string] list of macros to undefine explicitly library_dirs [string] list of directories to search for C/C++ libraries at link time libraries [string] list of library names (not filenames or paths) to link against runtime_library_dirs [string] list of directories to search for $\mathrm{C} / \mathrm{C}++$ libraries at run time (for shared extensions, this is when the extension is loaded) extra_objects [string] list of extra files to link with (eg. object files not implied by 'sources', static library that must be explicitly specified, binary resource files, etc.) extra_compile_args [string] any extra platform- and compiler-specific information to use when compiling the source files in 'sources'. For platforms and compilers where "command line" makes sense, this is typically a list of command-line arguments, but for other platforms it could be anything. extra_link_args [string] any extra platform- and compiler-specific information to use when linking object files together to create the extension (or to create a new static Python interpreter). Similar interpretation as for 'extra_compile_args'. export_symbols [string] list of symbols to be exported from a shared extension. Not used on all platforms, and not generally necessary for Python extensions, which typically export exactly one symbol: "init" + extension_name.

## Keyword Option Examples

We'll walk through several examples here to demonstrate the behavior of inline and also how the various arguments are used. In the simplest (most) cases, code and arg_names are the only arguments that need to be specified. Here's a simple example run on Windows machine that has Microsoft VC++ installed.

```
>>> from weave import inline
>>> a = 'string'
>>> code = """
... int l = a.length();
... return_val = Py::new_reference_to(Py::Int(l));
... """
>>> inline(code,['a'])
 sc_86e98826b65b047ffd2cd5f479c627f12.cpp
```

```
Creating
 library C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\sc_86e98826b65k)047ffd2cd5f4
and object C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\sc_86e98826b65k)047ff
d2cd5f479c627f12.exp
6
>>> inline(code,['a'])
6
```

When inline is first run, you'll notice that pause and some trash printed to the screen. The "trash" is acutually part of the compilers output that distutils does not supress. The name of the extension file, sc_bighonkingnumber.cpp, is generated from the md5 check sum of the C/C++ code fragment. On Unix or windows machines with only gcc installed, the trash will not appear. On the second call, the code fragment is not compiled since it already exists, and only the answer is returned. Now kill the interpreter and restart, and run the same code with a different string.

```
>>> from weave import inline
>>> a = 'a longer string'
>>> code = """
... int l = a.length();
... return_val = Py::new_reference_to(Py::Int(l));
... """
>>> inline(code,['a'])
15
```

Notice this time, inline () did not recompile the code because it found the compiled function in the persistent catalog of functions. There is a short pause as it looks up and loads the function, but it is much shorter than compiling would require.

You can specify the local and global dictionaries if you'd like (much like exec or eval () in Python), but if they aren't specified, the "expected" ones are used - i.e. the ones from the function that called inline (). This is accomplished through a little call frame trickery. Here is an example where the local_dict is specified using the same code example from above:

```
>>> a = 'a longer string'
>>> b = 'an even longer string'
>>> my_dict = {'a':b}
>>> inline(code,['a'])
15
>>> inline(code,['a'],my_dict)
21
```

Everytime, the code is changed, inline does a recompile. However, changing any of the other options in inline does not force a recompile. The force option was added so that one could force a recompile when tinkering with other variables. In practice, it is just as easy to change the code by a single character (like adding a space some place) to force the recompile.
Note: It also might be nice to add some methods for purging the cache and on disk catalogs.
I use verbose sometimes for debugging. When set to 2 , it'll output all the information (including the name of the .cpp file) that you'd expect from running a make file. This is nice if you need to examine the generated code to see where things are going haywire. Note that error messages from failed compiles are printed to the screen even if verbose is set to 0 .

The following example demonstrates using gcc instead of the standard msvc compiler on windows using same code fragment as above. Because the example has already been compiled, the force=1 flag is needed to make inline () ignore the previously compiled version and recompile using gcc. The verbose flag is added to show what is printed out:

```
>>>inline(code, ['a'],compiler=' gcc',verbose=2,force=1)
running build_ext
```

```
building 'sc_86e98826b65b047ffd2cd5f479c627f13' extension
c:\gcc-2.95.2\bin\g++.exe -mno-cygwin -mdll -o2 -w -Wstrict-prototypes -IC:
\home\ej\wrk\scipy\weave -IC:\Python21\Include -c C:\DOCUME~1\eric\LOCAL
S~1\Temp\python21_compiled\sc_86e98826b65b047ffd2cd5f479c627f13.cpp
-o C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\sc_86e98826b65b04ffd2cd5f479c627f13
skipping C:\home\ej\wrk\scipy\weave\CXX\cxxextensions.c
(C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\cxxextensions.o up-to-dat:e)
skipping C:\home\ej\wrk\scipy\weave\CXX\cxxsupport.cxx
(C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\cxxsupport.o up-to-date)
skipping C:\home\ej\wrk\scipy\weave\cXX\IndirectPythonInterface.cxx
(C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\indirectpythoninterface.o up-to-date)
skipping C:\home\ej\wrk\scipy\weave\cXX\cxx_extensions.cxx
(C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\cxx_extensions.o
up-to-date)
writing C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\sc_86e98826b65b04?ffd2cd5f479c
c:\gcc-2.95.2\bin\dllwrap.exe --driver-name g++ -mno-cygwin
-mdll -static --output-lib
C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\libsc_86e98826b65b047ffd2c:d5f479c627f1.
C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\sc_86e98826b65b047ffd2cd5f:479c627f13.de
-sC:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\sc_86e98826b65b047ffd2cd5f479c627f13
C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\cxxextensions.o
C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\cxxsupport.o
C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\indirectpythoninterface.o
C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\temp\Release\cxx_extensions.o -LC:\Python21\libs
-lpython21 -o
C:\DOCUME~1\eric\LOCALS~1\Temp\python21_compiled\sc_86e98826b65b047ffd2cd5f479c627f13.pyd
15
```

That's quite a bit of output. verbose $=1$ just prints the compile time.

```
>>>inline(code, ['a'], compiler='gcc', verbose=1, force=1)
Compiling code...
finished compiling (sec): 6.00800001621
15
```

Note: I've only used the compiler option for switching between ' msvc ' and ' gcc ' on windows. It may have use on Unix also, but I don't know yet.

The support_code argument is likely to be used a lot. It allows you to specify extra code fragments such as function, structure or class definitions that you want to use in the code string. Note that changes to support_code do not force a recompile. The catalog only relies on code (for performance reasons) to determine whether recompiling is necessary. So, if you make a change to support_code, you'll need to alter code in some way or use the force argument to get the code to recompile. I usually just add some inocuous whitespace to the end of one of the lines in code somewhere. Here's an example of defining a separate method for calculating the string length:

```
>>> from weave import inline
>>> a = 'a longer string'
>>> support_code = """
... Pyobject* length(Py::String a)
... {
... int l = a.length();
... return Py::new_reference_to(Py::Int(l));
... }
... """
>>> inline("return_val = length(a);",['a'],
 support_code = support_code)
1 5
```

customize is a left over from a previous way of specifying compiler options. It is a custom_info object that can
specify quite a bit of information about how a file is compiled. These info objects are the standard way of defining compile information for type conversion classes. However, I don't think they are as handy here, especially since we've exposed all the keyword arguments that distutils can handle. Between these keywords, and the support_code option, I think customize may be obsolete. We'll see if anyone cares to use it. If not, it'll get axed in the next version.

The type_factories variable is important to people who want to customize the way arguments are converted from Python to C. We'll talk about this in the next chapter $\mathbf{x x}$ of this document when we discuss type conversions.
auto_downcast handles one of the big type conversion issues that is common when using NumPy arrays in conjunction with Python scalar values. If you have an array of single precision values and multiply that array by a Python scalar, the result is upcast to a double precision array because the scalar value is double precision. This is not usually the desired behavior because it can double your memory usage. auto_downcast goes some distance towards changing the casting precedence of arrays and scalars. If your only using single precision arrays, it will automatically downcast all scalar values from double to single precision when they are passed into the $\mathrm{C}++$ code. This is the default behavior. If you want all values to keep there default type, set auto_downcast to 0 .

## Returning Values

Python variables in the local and global scope transfer seemlessly from Python into the $\mathrm{C}++$ snippets. And, if inline were to completely live up to its name, any modifications to variables in the $\mathrm{C}++$ code would be reflected in the Python variables when control was passed back to Python. For example, the desired behavior would be something like:

```
THIS DOES NOT WORK
>>> a = 1
>>> weave.inline("a++;",['a'])
>>> a
2
```

Instead you get:

```
>>> a = 1
>>> weave.inline("a++;",['a'])
>>> a
1
```

Variables are passed into C++ as if you are calling a Python function. Python's calling convention is sometimes called "pass by assignment". This means its as if a c_a = a assignment is made right before inline call is made and the c_a variable is used within the C++ code. Thus, any changes made to c_a are not reflected in Python's a variable. Things do get a little more confusing, however, when looking at variables with mutable types. Changes made in C++ to the contents of mutable types are reflected in the Python variables.

```
>>> a= [1,2]
>>> weave.inline("PyList_SetItem(a.ptr(),0,PyInt_FromLong(3));",['a'])
>>> print a
[3, 2]
```

So modifications to the contents of mutable types in C++ are seen when control is returned to Python. Modifications to immutable types such as tuples, strings, and numbers do not alter the Python variables. If you need to make changes to an immutable variable, you'll need to assign the new value to the "magic" variable return_val in C++. This value is returned by the inline () function:

```
>>> a = 1
>>> a = weave.inline("return_val = Py::new_reference_to(Py::Int(a+1));",['a'])
>>> a
2
```

The return_val variable can also be used to return newly created values. This is possible by returning a tuple. The following trivial example illustrates how this can be done:

```
python version
def multi_return():
 return 1, '2nd'
C version.
def c_multi_return():
 code = """"
 py::tuple results(2);
 results[0] = 1;
 results[1] = "2nd";
 return_val = results;
 """
 return inline_tools.inline(code)
```

The example is available in examples/tuple_return.py. It also has the dubious honor of demonstrating how much inline () can slow things down. The C version here is about 7-10 times slower than the Python version. Of course, something so trivial has no reason to be written in C anyway.

The issue with locals() inline passes the locals() and globals() dictionaries from Python into the $\mathrm{C}++$ function from the calling function. It extracts the variables that are used in the C++ code from these dictionaries, converts then to $\mathrm{C}++$ variables, and then calculates using them. It seems like it would be trivial, then, after the calculations were finished to then insert the new values back into the locals() and globals() dictionaries so that the modified values were reflected in Python. Unfortunately, as pointed out by the Python manual, the locals() dictionary is not writable.
I suspect locals () is not writable because there are some optimizations done to speed lookups of the local namespace. I'm guessing local lookups don't always look at a dictionary to find values. Can someone "in the know" confirm or correct this? Another thing I'd like to know is whether there is a way to write to the local namespace of another stack frame from $\mathrm{C} / \mathrm{C}++$. If so, it would be possible to have some clean up code in compiled functions that wrote final values of variables in C++ back to the correct Python stack frame. I think this goes a long way toward making inline truely live up to its name. I don't think we'll get to the point of creating variables in Python for variables created in C - although I suppose with a $\mathrm{C} / \mathrm{C}++$ parser you could do that also.

## A quick look at the code

weave generates a C++ file holding an extension function for each inline code snippet. These file names are generated using from the md5 signature of the code snippet and saved to a location specified by the PYTHONCOMPILED environment variable (discussed later). The cpp files are generally about 200-400 lines long and include quite a few functions to support type conversions, etc. However, the actual compiled function is pretty simple. Below is the familiar printf example:

```
>>> import weave
>>> a = 1
>>> weave.inline('printf("%d\\n",a);',['a'])
1
```

And here is the extension function generated by inline:

```
static PyObject* compiled_func(PyObject*self, PyObject* args)
{
 py::object return_val;
 int exception_occured = 0;
 PyObject *py__locals = NULL;
 PyObject *py__globals = NULL;
 PyObject *py_a;
 py_a = NULL;
```

```
if(!PyArg_ParseTuple(args,"OO:compiled_func",&py__locals,&py__globals))
 return NULL;
 try
{
 PyObject* raw_locals = py_to_raw_dict(py__locals,"_locals");
 PyObject* raw_globals = py_to_raw_dict(py__globals,"_globals");
 /* argument conversion code */
 py_a = get_variable("a",raw_locals,raw_globals);
 int a = convert_to_int(py_a,"a");
 /* inline code */
 /* NDARRAY API VERSION 90907 */
 printf("%d\n",a); /*I would like to fill in changed locals and globals here...*/
}
catch(...)
{
 return_val = py::object();
 exception_occured = 1;
}
/* cleanup code */
if(!(PyObject*)return_val && !exception_occured)
{
 return_val = Py_None;
}
return return_val.disown();
```

\}

Every inline function takes exactly two arguments - the local and global dictionaries for the current scope. All variable values are looked up out of these dictionaries. The lookups, along with all inline code execution, are done within a C++ try block. If the variables aren't found, or there is an error converting a Python variable to the appropriate type in $\mathrm{C}++$, an exception is raised. The $\mathrm{C}++$ exception is automatically converted to a Python exception by SCXX and returned to Python. The py_to_int () function illustrates how the conversions and exception handling works. py_to_int first checks that the given PyObject* pointer is not NULL and is a Python integer. If all is well, it calls the Python API to convert the value to an int. Otherwise, it calls handle_bad_type () which gathers information about what went wrong and then raises a SCXX TypeError which returns to Python as a TypeError.

```
int py_to_int(PyObject* py_obj,char* name)
{
 if (!Py_obj || !PyInt_Check(py_obj))
 handle_bad_type(py_obj,"int", name);
 return (int) PyInt_AsLong(py_obj);
}
void handle_bad_type(PyObject* py_obj, char* good_type, char* var_name)
{
 char msg[500];
 sprintf(msg,"received '%s' type instead of '%s' for variable '%s'",
 find_type(py_obj),good_type,var_name);
 throw Py::TypeError(msg);
}
char* find_type(PyObject* py_obj)
{
 if(py_obj == NULL) return "C NULL value";
 if(PyCallable_Check(py_obj)) return "callable";
 if(PyString_Check(py_obj)) return "string";
 if(PyInt_Check(py_obj)) return "int";
 if(PyFloat_Check(py_obj)) return "float";
 if(PyDict_Check(py_obj)) return "dict";
```

```
if(PyList_Check(py_obj)) return "list";
if(PyTuple_Check(py_obj)) return "tuple";
if(PyFile_Check(py_obj)) return "file";
if(PyModule_Check(py_obj)) return "module";
//should probably do more interagation (and thinking) on these.
if(PyCallable_Check(py_obj) && PyInstance_Check(py_obj)) return "callable";
if(PyInstance_Check(py_obj)) return "instance";
if(PyCallable_Check(py_obj)) return "callable";
return "unkown type";
```

\}

Since the inline is also executed within the try/catch block, you can use CXX exceptions within your code. It is usually a bad idea to directly return from your code, even if an error occurs. This skips the clean up section of the extension function. In this simple example, there isn't any clean up code, but in more complicated examples, there may be some reference counting that needs to be taken care of here on converted variables. To avoid this, either uses exceptions or set return_val to NULL and use if/then's to skip code after errors.

## Technical Details

There are several main steps to using $\mathrm{C} / \mathrm{C}++$ code withing Python:

1. Type conversion
2. Generating C/C++ code
3. Compile the code to an extension module
4. Catalog (and cache) the function for future use

Items 1 and 2 above are related, but most easily discussed separately. Type conversions are customizable by the user if needed. Understanding them is pretty important for anything beyond trivial uses of inline. Generating the C/C++ code is handled by ext_function and ext_module classes and. For the most part, compiling the code is handled by distutils. Some customizations were needed, but they were relatively minor and do not require changes to distutils itself. Cataloging is pretty simple in concept, but surprisingly required the most code to implement (and still likely needs some work). So, this section covers items 1 and 4 from the list. Item 2 is covered later in the chapter covering the ext_tools module, and distutils is covered by a completely separate document xxx.

## Passing Variables in/out of the C/C++ code

Note: Passing variables into the C code is pretty straight forward, but there are subtlties to how variable modifications in C are returned to Python. see Returning Values for a more thorough discussion of this issue.

## Type Conversions

Note: Maybe $x x x$ converter instead of $x x x$ _specification is a more descriptive name. Might change in future version?
By default, inline () makes the following type conversions between Python and C++ types.

Table 1.3: Default Data Type Conversions

| Python | C++ |
| :--- | :--- |
| int | int |
| float | double |
| complex | std::complex |
| string | py::string |
| list | py::list |
| dict | py::dict |
| tuple | py::tuple |
| file | FILE* |
| callable | py::object |
| instance | py::object |
| numpy.ndarray | PyArrayObject* |
| wxXXX | wxXXX* |

The Py : : namespace is defined by the SCXX library which has C++ class equivalents for many Python types. std: : is the namespace of the standard library in $\mathrm{C}++$.

## Note:

- I haven't figured out how to handle long int yet (I think they are currenlty converted to int - - check this).
- Hopefully VTK will be added to the list soon

Python to $\mathrm{C}++$ conversions fill in code in several locations in the generated inline extension function. Below is the basic template for the function. This is actually the exact code that is generated by calling weave.inline (" ").

The /* inline code */ section is filled with the code passed to the inline() function call. The /*argument convserion code*/ and /* cleanup code */ sections are filled with code that handles conversion from Python to C++ types and code that deallocates memory or manipulates reference counts before the function returns. The following sections demostrate how these two areas are filled in by the default conversion methods. * Note: I'm not sure I have reference counting correct on a few of these. The only thing I increase/decrease the ref count on is NumPy arrays. If you see an issue, please let me know.

## NumPy Argument Conversion

Integer, floating point, and complex arguments are handled in a very similar fashion. Consider the following inline function that has a single integer variable passed in:

```
>>> a=1
>>> inline("", ['a'])
```

The argument conversion code inserted for a is:

```
/* argument conversion code */
int a = py_to_int (get_variable("a",raw_locals,raw_globals),"a");
```

get_variable() reads the variable a from the local and global namespaces. py_to_int () has the following form:

```
static int py_to_int(PyObject* py_obj,char* name)
{
 if (!py_obj || !PyInt_Check(py_obj))
 handle_bad_type(py_obj,"int", name);
 return (int) PyInt_AsLong(py_obj);
}
```

Similarly, the float and complex conversion routines look like:

## SciPy Reference Guide, Release 0.10.0.dev

```
static double py_to_float(PyObject* py_obj,char* name)
{
 if (!py_obj || !PyFloat_Check(py_obj))
 handle_bad_type(py_obj,"float", name);
 return PyFloat_AsDouble(py_obj);
}
static std::complex py_to_complex(PyObject* py_obj,char* name)
{
 if (!py_obj || !PyComplex_Check(py_obj))
 handle_bad_type(py_obj,"complex", name);
 return std::complex(PyComplex_RealAsDouble(py_obj),
 PyComplex_ImagAsDouble(py_obj));
}
```

NumPy conversions do not require any clean up code.

## String, List, Tuple, and Dictionary Conversion

Strings, Lists, Tuples and Dictionary conversions are all converted to SCXX types by default. For the following code,

```
>>> a = [1]
>>> inline(" ", ['a'])
```

The argument conversion code inserted for a is:

```
/* argument conversion code */
Py::List a = py_to_list(get_variable("a",raw_locals,raw_globals),"a");
```

get_variable () reads the variable a from the local and global namespaces. py_to_list () and its friends has the following form:

```
static Py::List py_to_list(PyObject* py_obj,char* name)
{
 if (!py_obj || !PyList_Check(py_obj))
 handle_bad_type(py_obj,"list", name);
 return Py::List(py_obj);
}
static Py::String py_to_string(PyObject* py_obj,char* name)
{
 if (!PyString_Check(py_obj))
 handle_bad_type(py_obj,"string", name);
 return Py::String(py_obj);
}
static Py::Dict py_to_dict(PyObject* py_obj,char* name)
{
 if (!py_obj || !PyDict_Check(py_obj))
 handle_bad_type(py_obj,"dict", name);
 return Py::Dict(py_obj);
}
static Py::Tuple py_to_tuple(PyObject* py_obj,char* name)
{
 if (!py_obj || !PyTuple_Check(py_obj))
 handle__bad_type(py_obj,"tuple", name);
 return Py::Tuple(py_obj);
}
```

SCXX handles reference counts on for strings, lists, tuples, and dictionaries, so clean up code isn't necessary.

## File Conversion

For the following code,

```
>>> a = open("bob",',w')
>>> inline("",['a'])
```

The argument conversion code is:

```
/* argument conversion code */
PyObject* py_a = get_variable("a",raw_locals,raw_globals);
FILE* a = py_to_file(py_a,"a");
```

get_variable () reads the variable a from the local and global namespaces. py_to_file () converts PyObject*
to a FILE* and increments the reference count of the PyObject*:

```
FILE* py_to_file(PyObject* py_obj, char* name)
{
 if (!py_obj || !PyFile_Check(py_obj))
 handle_bad_type(py_obj,"file", name);
 Py_INCREF(py_obj);
 return PyFile_AsFile(py_obj);
}
```

Because the PyObject* was incremented, the clean up code needs to decrement the counter

```
/* cleanup code */
Py_XDECREF (py_a);
```

Its important to understand that file conversion only works on actual files - i.e. ones created using the open () command in Python. It does not support converting arbitrary objects that support the file interface into C FILE* pointers. This can affect many things. For example, in initial printf () examples, one might be tempted to solve the problem of C and Python IDE's (PythonWin, PyCrust, etc.) writing to different stdout and stderr by using fprintf () and passing in sys.stdout and sys.stderr. For example, instead of

```
>>> weave.inline('printf("hello\\n");')
```

You might try:

```
>>> buf = sys.stdout
>>> weave.inline('fprintf(buf,"hello\\n");', ['buf'])
```

This will work as expected from a standard python interpreter, but in PythonWin, the following occurs:

```
>>> buf = sys.stdout
>>> weave.inline('fprintf(buf,"hello\\n");',['buf'])
```

The traceback tells us that inline () was unable to convert 'buf' to a C++ type (If instance conversion was implemented, the error would have occurred at runtime instead). Why is this? Let's look at what the buf object really is:

```
>>> buf
pywin.framework.interact.InteractiveView instance at 00EAD014
```

PythonWin has reassigned sys.stdout to a special object that implements the Python file interface. This works great in Python, but since the special object doesn't have a FILE* pointer underlying it, fprintf doesn't know what to do with it (well this will be the problem when instance conversion is implemented...).

## Callable, Instance, and Module Conversion

Note: Need to look into how ref counts should be handled. Also, Instance and Module conversion are not currently implemented.

```
>>> def a():
 pass
>>> inline("",['a'])
```

Callable and instance variables are converted to PyObject*. Nothing is done to there reference counts.

```
/* argument conversion code */
PyObject* a = py_to_callable(get_variable("a",raw_locals,raw_globals),"a");
```

get_variable() reads the variable a from the local and global namespaces. The py_to_callable() and py_to_instance () don't currently increment the ref count.

```
PyObject* py_to_callable(PyObject* py_obj, char* name)
{
 if (!py_obj || !PyCallable_Check(py_obj))
 handle_bad_type(py_obj,"callable", name);
 return py_obj;
}
PyObject* py_to_instance(PyObject* py_obj, char* name)
{
 if (!py_obj || !PyFile_Check(py_obj))
 handle_bad_type(py_obj,"instance", name);
 return py_obj;
}
```

There is no cleanup code for callables, modules, or instances.

## Customizing Conversions

Converting from Python to $\mathrm{C}++$ types is handled by $x x x \_$specification classes. A type specification class actually serve in two related but different roles. The first is in determining whether a Python variable that needs to be converted should be represented by the given class. The second is as a code generator that generate $\mathrm{C}++$ code needed to convert from Python to C++ types for a specific variable.

When

```
>>> a = 1
>>> weave.inline('printf("%d",a);',['a'])
```

is called for the first time, the code snippet has to be compiled. In this process, the variable ' $a$ ' is tested against a list of type specifications (the default list is stored in weave/ext_tools.py). The first specification in the list is used to represent the variable.

Examples of $x x x$ _specification are scattered throughout numerous "xxx_spec.py" files in the weave package. Closely related to the $x x x$ _specification classes are yyy_info classes. These classes contain compiler, header, and support code information necessary for including a certain set of capabilities (such as blitz++ or CXX support) in a compiled module. xxx_specification classes have one or more yyy_info classes associated with them. If you'd like to define your own set of type specifications, the current best route is to examine some of the existing spec and info files. Maybe looking over sequence_spec.py and cxx_info.py are a good place to start. After defining specification classes, you'll need to pass them into inline using the type_factories argument. A lot of times you may just want to change how a specific variable type is represented. Say you'd rather have Python strings converted to std: : string or maybe char* instead of using the CXX string object, but would like all other type conversions to have default behavior. This requires that a new specification class that handles strings is written
and then prepended to a list of the default type specifications. Since it is closer to the front of the list, it effectively overrides the default string specification. The following code demonstrates how this is done: ...

## The Catalog

catalog.py has a class called catalog that helps keep track of previously compiled functions. This prevents inline () and related functions from having to compile functions everytime they are called. Instead, catalog will check an in memory cache to see if the function has already been loaded into python. If it hasn't, then it starts searching through persisent catalogs on disk to see if it finds an entry for the given function. By saving information about compiled functions to disk, it isn't necessary to re-compile functions everytime you stop and restart the interpreter. Functions are compiled once and stored for future use.

When inline (cpp_code) is called the following things happen:

1. A fast local cache of functions is checked for the last function called for cpp_code. If an entry for cpp_code doesn't exist in the cache or the cached function call fails (perhaps because the function doesn't have compatible types) then the next step is to check the catalog.
2. The catalog class also keeps an in-memory cache with a list of all the functions compiled for cpp_code. If cpp_code has ever been called, then this cache will be present (loaded from disk). If the cache isn't present, then it is loaded from disk.

If the cache is present, each function in the cache is called until one is found that was compiled for the correct argument types. If none of the functions work, a new function is compiled with the given argument types. This function is written to the on-disk catalog as well as into the in-memory cache.
3. When a lookup for cpp_code fails, the catalog looks through the on-disk function catalogs for the entries. The PYTHONCOMPILED variable determines where to search for these catalogs and in what order. If PYTHONCOMPILED is not present several platform dependent locations are searched. All functions found for cpp_code in the path are loaded into the in-memory cache with functions found earlier in the search path closer to the front of the call list.
If the function isn't found in the on-disk catalog, then the function is compiled, written to the first writable directory in the PYTHONCOMPILED path, and also loaded into the in-memory cache.

## Function Storage

Function caches are stored as dictionaries where the key is the entire C++ code string and the value is either a single function (as in the "level 1" cache) or a list of functions (as in the main catalog cache). On disk catalogs are stored in the same manor using standard Python shelves.
Early on, there was a question as to whether md5 check sums of the C++ code strings should be used instead of the actual code strings. I think this is the route inline Perl took. Some (admittedly quick) tests of the md5 vs. the entire string showed that using the entire string was at least a factor of 3 or 4 faster for Python. I think this is because it is more time consuming to compute the md5 value than it is to do look-ups of long strings in the dictionary. Look at the examples/md5_speed.py file for the test run.

## Catalog search paths and the PYTHONCOMPILED variable

The default location for catalog files on Unix is is $\sim /$.pythonXX_compiled where XX is version of Python being used. If this directory doesn't exist, it is created the first time a catalog is used. The directory must be writable. If, for any reason it isn't, then the catalog attempts to create a directory based on your user id in the /tmp directory. The directory permissions are set so that only you have access to the directory. If this fails, I think you're out of luck. I don't think either of these should ever fail though. On Windows, a directory called pythonXX_compiled is created in the user's temporary directory.

The actual catalog file that lives in this directory is a Python shelve with a platform specific name such as "nt21compiled_catalog" so that multiple OSes can share the same file systems without trampling on each other. Along
with the catalog file, the .cpp and .so or .pyd files created by inline will live in this directory. The catalog file simply contains keys which are the $\mathrm{C}++$ code strings with values that are lists of functions. The function lists point at functions within these compiled modules. Each function in the lists executes the same C++ code string, but compiled for different input variables.
You can use the PYTHONCOMPILED environment variable to specify alternative locations for compiled functions. On Unix this is a colon ( $\because \because$ ') separated list of directories. On windows, it is a ( $‘ ;$ ') separated list of directories. These directories will be searched prior to the default directory for a compiled function catalog. Also, the first writable directory in the list is where all new compiled function catalogs, .cpp and .so or .pyd files are written. Relative directory paths (' $\because$ ' and '..') should work fine in the PYTHONCOMPILED variable as should environement variables.

There is a "special" path variable called MODULE that can be placed in the PYTHONCOMPILED variable. It specifies that the compiled catalog should reside in the same directory as the module that called it. This is useful if an admin wants to build a lot of compiled functions during the build of a package and then install them in site-packages along with the package. User's who specify MODULE in their PYTHONCOMPILED variable will have access to these compiled functions. Note, however, that if they call the function with a set of argument types that it hasn't previously been built for, the new function will be stored in their default directory (or some other writable directory in the PYTHONCOMPILED path) because the user will not have write access to the site-packages directory.

An example of using the PYTHONCOMPILED path on bash follows:
PYTHONCOMP ILED=MODULE:/some/path;export PYTHONCOMPILED;
If you are using python 21 on linux, and the module bob.py in site-packages has a compiled function in it, then the catalog search order when calling that function for the first time in a python session would be:

```
/usr/lib/python21/site-packages/linuxpython_compiled
/some/path/linuxpython_compiled
~/.python21_compiled/linuxpython_compiled
```

The default location is always included in the search path.
Note: hmmm. see a possible problem here. I should probably make a sub- directory such as /usr/lib/python21/sitepackages/python21_compiled/linuxpython_compiled so that library files compiled with python21 are tried to link with python22 files in some strange scenarios. Need to check this.
The in-module cache (in weave.inline_tools reduces the overhead of calling inline functions by about a factor of 2 . It can be reduced a little more for type loop calls where the same function is called over and over again if the cache was a single value instead of a dictionary, but the benefit is very small (less than $5 \%$ ) and the utility is quite a bit less. So, we'll stick with a dictionary as the cache.

### 1.13.8 Blitz

Note: most of this section is lifted from old documentation. It should be pretty accurate, but there may be a few discrepancies.
weave.blitz () compiles NumPy Python expressions for fast execution. For most applications, compiled expressions should provide a factor of 2-10 speed-up over NumPy arrays. Using compiled expressions is meant to be as unobtrusive as possible and works much like pythons exec statement. As an example, the following code fragment takes a 5 point average of the $512 \times 5122$ dimage, b , and stores it in array, a:

```
from scipy import * # or from NumPy import *
a =ones((512,512), Float64)
b =ones((512,512), Float64)
...do some stuff to fill in b...
now average
a[1:-1,1:-1]= (b[1:-1,1:-1] + b[2:,1:-1] + b[:-2,1:-1] \
 + b[1:-1,2:] + b[1:-1,:-2]) / 5.
```

To compile the expression, convert the expression to a string by putting quotes around it and then use weave.blitz:
import weave
expr $=$ "a[1:-1,1:-1] $=(b[1:-1,1:-1]+b[2:, 1:-1]+b[:-2,1:-1] "$ \}
"+ b[1:-1,2:] + b[1:-1,:-2]) / 5."
weave.blitz (expr)
The first time weave.blitz is run for a given expression and set of arguements, $\mathrm{C}++$ code that accomplishes the exact same task as the Python expression is generated and compiled to an extension module. This can take up to a couple of minutes depending on the complexity of the function. Subsequent calls to the function are very fast. Futher, the generated module is saved between program executions so that the compilation is only done once for a given expression and associated set of array types. If the given expression is executed with a new set of array types, the code most be compiled again. This does not overwrite the previously compiled function - both of them are saved and available for exectution.

The following table compares the run times for standard NumPy code and compiled code for the 5 point averaging.
Method Run Time (seconds) Standard NumPy 0.46349 blitz (1st time compiling) 78.95526 blitz (subsequent calls) 0.05843 (factor of 8 speedup)

These numbers are for a $512 \times 512$ double precision image run on a 400 MHz Celeron processor under RedHat Linux 6.2.

Because of the slow compile times, its probably most effective to develop algorithms as you usually do using the capabilities of scipy or the NumPy module. Once the algorithm is perfected, put quotes around it and execute it using weave.blitz. This provides the standard rapid prototyping strengths of Python and results in algorithms that run close to that of hand coded C or Fortran.

## Requirements

Currently, the weave.blitz has only been tested under Linux with gcc-2.95-3 and on Windows with Mingw32 (2.95.2). Its compiler requirements are pretty heavy duty (see the blitz++ home page), so it won't work with just any compiler. Particularly MSVC++ isn't up to snuff. A number of other compilers such as KAI++ will also work, but my suspicions are that gcc will get the most use.

## Limitations

1. Currently, weave.blitz handles all standard mathematic operators except for the ${ }^{* *}$ power operator. The built-in trigonmetric, log, floor/ceil, and fabs functions might work (but haven't been tested). It also handles all types of array indexing supported by the NumPy module. numarray's NumPy compatible array indexing modes are likewise supported, but numarray's enhanced (array based) indexing modes are not supported.
weave.blitz does not currently support operations that use array broadcasting, nor have any of the special purpose functions in NumPy such as take, compress, etc. been implemented. Note that there are no obvious reasons why most of this functionality cannot be added to scipy.weave, so it will likely trickle into future versions. Using slice () objects directly instead of start: stop: step is also not supported.
2. Currently Python only works on expressions that include assignment such as
```
>>> result = b + c + d
```

This means that the result array must exist before calling weave.blitz. Future versions will allow the following:

```
>>> result = weave.blitz_eval("b + c + d")
```

3. weave.blitz works best when algorithms can be expressed in a "vectorized" form. Algorithms that have a large number of if/thens and other conditions are better hand written in C or Fortran. Further, the restrictions
imposed by requiring vectorized expressions sometimes preclude the use of more efficient data structures or algorithms. For maximum speed in these cases, hand-coded C or Fortran code is the only way to go.
4. weave.blitz can produce different results than NumPy in certain situations. It can happen when the array receiving the results of a calculation is also used during the calculation. The NumPy behavior is to carry out the entire calculation on the right hand side of an equation and store it in a temporary array. This temprorary array is assigned to the array on the left hand side of the equation. blitz, on the other hand, does a "running" calculation of the array elements assigning values from the right hand side to the elements on the left hand side immediately after they are calculated. Here is an example, provided by Prabhu Ramachandran, where this happens:
```
4 point average.
>>> expr = "u[1:-1, 1:-1] = (u[0:-2, 1:-1] + u[2:, 1:-1] + \
... "u[1:-1,0:-2] + u[1:-1, 2:])*0.25"
>>> u = zeros((5, 5), 'd'); u[0,:] = 100
>>> exec (expr)
>>> u
array([[100., 100., 100., 100., 100.],
 [0., 25., 25., 25., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.]])
>>> u = zeros((5, 5), 'd'); u[0,:] = 100
>>> weave.blitz (expr)
>>> u
array([[100. , 100. , 100. , 100. , 100.],
 [0. , 25. , 31.25 , 32.8125 , 0.],
 [0. , 6.25 , 9.375 , 10.546875, 0.],
 [0. , 1.5625 , 2.734375, 3.3203125, 0.],
 [0. , 0. 0. 0. 0. , 0.]])
```

You can prevent this behavior by using a temporary array.

```
>>> u = zeros((5, 5), 'd'); u[0,:] = 100
>>> temp = zeros((4, 4), 'd');
>>> expr = "temp = (u[0:-2, 1:-1] + u[2:, 1:-1] + "\
... "u[1:-1,0:-2] + u[1:-1, 2:])*0.25;"\
... "u[1:-1,1:-1] = temp"
>>> weave.blitz (expr)
>>> u
array([[100., 100., 100., 100., 100.],
 [0., 25., 25., 25., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0.,
```

5. One other point deserves mention lest people be confused. weave.blitz is not a general purpose Python->C compiler. It only works for expressions that contain NumPy arrays and/or Python scalar values. This focused scope concentrates effort on the compuationally intensive regions of the program and sidesteps the difficult issues associated with a general purpose Python->C compiler.

## NumPy efficiency issues: What compilation buys you

Some might wonder why compiling NumPy expressions to C++ is beneficial since operations on NumPy array operations are already executed within C loops. The problem is that anything other than the simplest expression are executed in less than optimal fashion. Consider the following NumPy expression:

```
a}=1.2*b+c*
```

When NumPy calculates the value for the 2d array, a, it does the following steps:

```
temp1 = 1.2 * b
temp2 = c * d
a = temp1 + temp2
```

Two things to note. Since $c$ is an (perhaps large) array, a large temporary array must be created to store the results of $1.2 * \mathrm{~b}$. The same is true for temp2. Allocation is slow. The second thing is that we have 3 loops executing, one to calculate temp1, one for temp2 and one for adding them up. A C loop for the same problem might look like:

```
for(int i = 0; i < M; i++)
 for(int j = 0; j < N; j++)
 a[i,j] = 1.2 * b[i,j] + c[i,j] * d[i,j]
```

Here, the 3 loops have been fused into a single loop and there is no longer a need for a temporary array. This provides a significant speed improvement over the above example (write me and tell me what you get).
So, converting NumPy expressions into $\mathrm{C} / \mathrm{C}++$ loops that fuse the loops and eliminate temporary arrays can provide big gains. The goal then, is to convert NumPy expression to $\mathrm{C} / \mathrm{C}++$ loops, compile them in an extension module, and then call the compiled extension function. The good news is that there is an obvious correspondence between the NumPy expression above and the C loop. The bad news is that NumPy is generally much more powerful than this simple example illustrates and handling all possible indexing possibilities results in loops that are less than straight forward to write. (take a peak in NumPy for confirmation). Luckily, there are several available tools that simplify the process.

## The Tools

weave.blitz relies heavily on several remarkable tools. On the Python side, the main facilitators are Jermey Hylton's parser module and Travis Oliphant's NumPy module. On the compiled language side, Todd Veldhuizen's blitz++ array library, written in C++ (shhhh. don't tell David Beazley), does the heavy lifting. Don't assume that, because it's C++, it's much slower than C or Fortran. Blitz++ uses a jaw dropping array of template techniques (metaprogramming, template expression, etc) to convert innocent looking and readable $\mathrm{C}++$ expressions into to code that usually executes within a few percentage points of Fortran code for the same problem. This is good. Unfortunately all the template raz-ma-taz is very expensive to compile, so the 200 line extension modules often take 2 or more minutes to compile. This isn't so good. weave. blitz works to minimize this issue by remembering where compiled modules live and reusing them instead of re-compiling every time a program is re-run.

## Parser

Tearing NumPy expressions apart, examining the pieces, and then rebuilding them as $\mathrm{C}++$ (blitz) expressions requires a parser of some sort. I can imagine someone attacking this problem with regular expressions, but it'd likely be ugly and fragile. Amazingly, Python solves this problem for us. It actually exposes its parsing engine to the world through the parser module. The following fragment creates an Abstract Syntax Tree (AST) object for the expression and then converts to a (rather unpleasant looking) deeply nested list representation of the tree.

```
>>> import parser
>>> import scipy.weave.misc
>>> ast = parser.suite("a = b * c + d")
>>> ast_list = ast.tolist()
>>> sym_list = scipy.weave.misc.translate_symbols(ast_list)
>>> pprint.pprint(sym_list)
['file_input',
 ['stmt',
 ['simple_stmt',
 ['small_stmt',
```

```
 ['expr_stmt',
 ['testlist',
 ['test',
 ['and_test',
 ['not_test',
 ['comparison',
 ['expr',
 ['xor_expr',
 ['and_expr',
 ['shift_expr',
 ['arith_expr',
 ['term',
 ['factor', ['power', ['atom', ['NAME', 'a']]]]]]]]]]]]]]],
 ['EQUAL', '='],
 ['testlist',
 ['test',
 [' and_test',
 ['not_test',
 ['comparison',
 ['expr',
 ['xor_expr',
 [' and_expr',
 ['shift_expr',
 ['arith_expr',
 ['term',
 ['factor', ['power', ['atom', ['NAME', 'b']]]],
 ['STAR', '*'],
 ['factor', ['power', ['atom', ['NAME', 'c']]]]],
 ['PLUS', '+'],
 ['term',
 ['factor', ['power', ['atom', ['NAME', 'd']]]]]]]]]]]]]]]]],
['NEWLINE', '']]],
['ENDMARKER', '']]
```

Despite its looks, with some tools developed by Jermey H., its possible to search these trees for specific patterns (subtrees), extract the sub-tree, manipulate them converting python specific code fragments to blitz code fragments, and then re-insert it in the parse tree. The parser module documentation has some details on how to do this. Traversing the new blitzified tree, writing out the terminal symbols as you go, creates our new blitz++ expression string.

## Blitz and NumPy

The other nice discovery in the project is that the data structure used for NumPy arrays and blitz arrays is nearly identical. NumPy stores "strides" as byte offsets and blitz stores them as element offsets, but other than that, they are the same. Further, most of the concept and capabilities of the two libraries are remarkably similar. It is satisfying that two completely different implementations solved the problem with similar basic architectures. It is also fortuitous. The work involved in converting NumPy expressions to blitz expressions was greatly diminished. As an example, consider the code for slicing an array in Python with a stride:

```
>>> a = b[0:4:2] + c
>>> a
[0,2,4]
```

In Blitz it is as follows:

```
Array<2,int> b(10);
Array<2,int> c(3);
// ...
Array<2,int> a = b(Range(0,3,2)) + c;
```

Here the range object works exactly like Python slice objects with the exception that the top index (3) is inclusive where as Python's (4) is exclusive. Other differences include the type declaraions in C++ and parentheses instead of brackets for indexing arrays. Currently, weave.blitz handles the inclusive/exclusive issue by subtracting one from upper indices during the translation. An alternative that is likely more robust/maintainable in the long run, is to write a PyRange class that behaves like Python's range. This is likely very easy.

The stock blitz also doesn't handle negative indices in ranges. The current implementation of the blitz () has a partial solution to this problem. It calculates and index that starts with a '-' sign by subtracting it from the maximum index in the array so that:

```
 upper index limit
 /-----\
b[:-1] -> b(Range(0,Nb[0]-1-1))
```

This approach fails, however, when the top index is calculated from other values. In the following scenario, if $i+j$ evaluates to a negative value, the compiled code will produce incorrect results and could even core- dump. Right now, all calculated indices are assumed to be positive.
b[:i-j] $->$ b(Range ( $0, i+j)$ )
A solution is to calculate all indices up front using if/then to handle the $+/$ - cases. This is a little work and results in more code, so it hasn't been done. I'm holding out to see if blitz++ can be modified to handle negative indexing, but haven't looked into how much effort is involved yet. While it needs fixin', I don't think there is a ton of code where this is an issue.

The actual translation of the Python expressions to blitz expressions is currently a two part process. First, all x:y:z slicing expression are removed from the AST, converted to slice ( $x, y, z$ ) and re-inserted into the tree. Any math needed on these expressions (subtracting from the maximum index, etc.) are also preformed here. _beg and _end are used as special variables that are defined as blitz::fromBegin and blitz::toEnd.
$a[i+j: i+j+1,:]=b[2: 3,:]$
becomes a more verbose:

```
a[slice(i+j,i+j+1),slice(_beg,_end)] = b[slice(2,3),slice(_beg,_end)]
```

The second part does a simple string search/replace to convert to a blitz expression with the following translations:

```
slice(_beg,_end) -> _all # not strictly needed, but cuts down on code.
slice -> blitz::Range
[-> (
] ->)
_stp -> 1
```

_all is defined in the compiled function as blitz: : Range.all(). These translations could of course happen directly in the syntax tree. But the string replacement is slightly easier. Note that name spaces are maintained in the $\mathrm{C}++$ code to lessen the likelyhood of name clashes. Currently no effort is made to detect name clashes. A good rule of thumb is don't use values that start with '_' or 'py_' in compiled expressions and you'll be fine.

## Type definitions and coersion

So far we've glossed over the dynamic vs. static typing issue between Python and C++. In Python, the type of value that a variable holds can change through the course of program execution. $\mathrm{C} / \mathrm{C}++$, on the other hand, forces you to declare the type of value a variables will hold prior at compile time. weave.blitz handles this issue by examining the types of the variables in the expression being executed, and compiling a function for those explicit types. For example:
$a=$ ones $((5,5)$, Float 32$)$
$\mathrm{b}=$ ones $((5,5)$, Float 32$)$
weave.blitz("a = $\mathrm{a}+\mathrm{b}$ ")
When compiling this expression to $C++$, weave. blitz sees that the values for $a$ and $b$ in the local scope have type Float 32, or 'float' on a 32 bit architecture. As a result, it compiles the function using the float type (no attempt has been made to deal with 64 bit issues).

What happens if you call a compiled function with array types that are different than the ones for which it was originally compiled? No biggie, you'll just have to wait on it to compile a new version for your new types. This doesn't overwrite the old functions, as they are still accessible. See the catalog section in the inline() documentation to see how this is handled. Suffice to say, the mechanism is transparent to the user and behaves like dynamic typing with the occasional wait for compiling newly typed functions.
When working with combined scalar/array operations, the type of the array is always used. This is similar to the savespace flag that was recently added to NumPy. This prevents issues with the following expression perhaps unexpectedly being calculated at a higher (more expensive) precision that can occur in Python:

```
>>> a = array((1,2,3),typecode = Float32)
>>> b = a * 2.1 # results in b being a Float64 array.
```

In this example,

```
>>> a = ones((5,5),Float 32)
>>> b = ones((5,5),Float32)
>>> weave.blitz("b = a * 2.1")
```

the 2.1 is cast down to a float before carrying out the operation. If you really want to force the calculation to be a double, define a and bas double arrays.
One other point of note. Currently, you must include both the right hand side and left hand side (assignment side) of your equation in the compiled expression. Also, the array being assigned to must be created prior to calling weave.blitz. I'm pretty sure this is easily changed so that a compiled_eval expression can be defined, but no effort has been made to allocate new arrays (and decern their type) on the fly.

## Cataloging Compiled Functions

See The Catalog section in the weave.inline () documentation.

## Checking Array Sizes

Surprisingly, one of the big initial problems with compiled code was making sure all the arrays in an operation were of compatible type. The following case is trivially easy:
$\mathrm{a}=\mathrm{b}+\mathrm{c}$
It only requires that arrays $a, b$, and $c$ have the same shape. However, expressions like:
$a[i+j: i+j+1,:]=b[2: 3,:]+c$
are not so trivial. Since slicing is involved, the size of the slices, not the input arrays must be checked. Broadcasting complicates things further because arrays and slices with different dimensions and shapes may be compatible for math operations (broadcasting isn't yet supported by weave.blitz). Reductions have a similar effect as their results are different shapes than their input operand. The binary operators in NumPy compare the shapes of their two operands just before they operate on them. This is possible because NumPy treats each operation independently. The intermediate (temporary) arrays created during sub-operations in an expression are tested for the correct shape before they are
combined by another operation. Because weave.blitz fuses all operations into a single loop, this isn't possible. The shape comparisons must be done and guaranteed compatible before evaluating the expression.
The solution chosen converts input arrays to "dummy arrays" that only represent the dimensions of the arrays, not the data. Binary operations on dummy arrays check that input array sizes are comptible and return a dummy array with the size correct size. Evaluating an expression of dummy arrays traces the changing array sizes through all operations and fails if incompatible array sizes are ever found.

The machinery for this is housed in weave.size_check. It basically involves writing a new class (dummy array) and overloading it math operators to calculate the new sizes correctly. All the code is in Python and there is a fair amount of logic (mainly to handle indexing and slicing) so the operation does impose some overhead. For large arrays (ie. $50 \times 50 \times 50$ ), the overhead is negligible compared to evaluating the actual expression. For small arrays (ie. 16x16), the overhead imposed for checking the shapes with this method can cause the weave.blitz to be slower than evaluating the expression in Python.
What can be done to reduce the overhead? (1) The size checking code could be moved into C. This would likely remove most of the overhead penalty compared to NumPy (although there is also some calling overhead), but no effort has been made to do this. (2) You can also call weave.blitz with check_size=0 and the size checking isn't done. However, if the sizes aren't compatible, it can cause a core-dump. So, foregoing size_checking isn't advisable until your code is well debugged.

## Creating the Extension Module

weave.blitz uses the same machinery as weave. inline to build the extension module. The only difference is the code included in the function is automatically generated from the NumPy array expression instead of supplied by the user.

### 1.13.9 Extension Modules

weave.inline and weave.blitz are high level tools that generate extension modules automatically. Under the covers, they use several classes from weave. ext_tools to help generate the extension module. The main two classes are ext_module and ext_function (I'd like to add ext_class and ext_method also). These classes simplify the process of generating extension modules by handling most of the "boiler plate" code automatically.

Note: inline actually sub-classes weave.ext_tools.ext_function to generate slightly different code than the standard ext_function. The main difference is that the standard class converts function arguments to C types, while inline always has two arguments, the local and global dicts, and the grabs the variables that need to be convereted to C from these.

## A Simple Example

The following simple example demonstrates how to build an extension module within a Python function:

```
examples/increment_example.py
from weave import ext_tools
def build_increment_ext():
 """ Build a simple extension with functions that increment numbers.
 The extension will be built in the local directory.
 "" "
 mod = ext_tools.ext_module('increment_ext')
 a = 1 # effectively a type declaration for 'a' in the
 # following functions.
```

```
ext_code = "return_val = Py::new_reference_to(Py::Int(a+1));"
func = ext_tools.ext_function('increment',ext_code,['a'])
mod.add_function(func)
ext_code = "return_val = Py::new_reference_to(Py::Int(a+2));"
func = ext_tools.ext_function('increment_by_2',ext_code, ['a'])
mod.add_function(func)
mod.compile()
```

The function build_increment_ext () creates an extension module named increment_ext and compiles it to a shared library (.so or .pyd) that can be loaded into Python.. increment_ext contains two functions, increment and increment_by_2. The first line of build_increment_ext(),
$\bmod =$ ext_tools.ext_module('increment_ext')
creates an ext_module instance that is ready to have ext_function instances added to it. ext_function instances are created much with a calling convention similar to weave. inline (). The most common call includes a C/C++ code snippet and a list of the arguments for the function. The following
ext_code = "return_val = Py::new_reference_to(Py::Int(a+1));" func =
ext_tools.ext_function('increment',ext_code,['a'])
creates a $\mathrm{C} / \mathrm{C}++$ extension function that is equivalent to the following Python function:

```
def increment(a):
 return a + 1
```

A second method is also added to the module and then,

```
mod.compile()
```

is called to build the extension module. By default, the module is created in the current working directory. This example is available in the examples/increment_example.py file found in the weave directory. At the bottom of the file in the module's "main" program, an attempt to import increment_ext without building it is made. If this fails (the module doesn't exist in the PYTHONPATH), the module is built by calling build_increment_ext (). This approach only takes the time consuming (a few seconds for this example) process of building the module if it hasn't been built before.

```
if ___name___ == "___main___":
 try:
 import increment_ext
 except ImportError:
 build_increment_ext()
 import increment_ext
 a = 1
 print 'a, a+1:', a, increment_ext.increment(a)
 print 'a, a+2:', a, increment_ext.increment_by_2(a)
```

Note: If we were willing to always pay the penalty of building the $\mathrm{C}++$ code for a module, we could store the md5 checksum of the C++ code along with some information about the compiler, platform, etc. Then, ext_module.compile () could try importing the module before it actually compiles it, check the md5 checksum and other meta-data in the imported module with the meta-data of the code it just produced and only compile the code if the module didn't exist or the meta-data didn't match. This would reduce the above code to:

```
if ___name___ == "___main___":
 build_increment_ext()
 a = 1
```

```
print 'a, a+1:', a, increment_ext.increment(a)
print 'a, a+2:', a, increment_ext.increment_by_2(a)
```

Note: There would always be the overhead of building the C++ code, but it would only actually compile the code once. You pay a little in overhead and get cleaner "import" code. Needs some thought.

If you run increment_example.py from the command line, you get the following:

```
[eric@n0]$ python increment_example.py
a, a+1: 1 2
a, a+2: 1 3
```

If the module didn't exist before it was run, the module is created. If it did exist, it is just imported and used.

## Fibonacci Example

examples/fibonacci.py provides a little more complex example of how to use ext_tools. Fibonacci numbers are a series of numbers where each number in the series is the sum of the previous two: $1,1,2,3,5,8$, etc. Here, the first two numbers in the series are taken to be 1 . One approach to calculating Fibonacci numbers uses recursive function calls. In Python, it might be written as:

```
def fib(a):
 if a <= 2:
 return 1
 else:
 return fib(a-2) + fib(a-1)
```

In C, the same function would look something like this:

```
int fib(int a)
{
 if(a <= 2)
 return 1;
 else
 return fib(a-2) + fib(a-1);
}
```

Recursion is much faster in C than in Python, so it would be beneficial to use the C version for fibonacci number calculations instead of the Python version. We need an extension function that calls this $C$ function to do this. This is possible by including the above code snippet as "support code" and then calling it from the extension function. Support code snippets (usually structure definitions, helper functions and the like) are inserted into the extension module $\mathrm{C} / \mathrm{C}++$ file before the extension function code. Here is how to build the C version of the fibonacci number generator:

```
def build_fibonacci():
 """ Builds an extension module with fibonacci calculators.
 """
 mod = ext_tools.ext_module('fibonacci__ext')
 a = 1 # this is effectively a type declaration
 # recursive fibonacci in C
 fib_code = """
 int fibl(int a)
 {
 if(a <= 2)
 return 1;
 else
 return fib1(a-2) + fibl(a-1);
```

```
 }
ext_code = """
 int val = fibl(a);
 return_val = Py::new_reference_to(Py::Int(val));
 " ""
fib = ext_tools.ext_function('fib',ext_code,['a'])
fib.customize.add_support_code(fib_code)
mod.add_function(fib)
mod.compile()
```

XXX More about custom_info, and what xxx_info instances are good for.
Note: recursion is not the fastest way to calculate fibonacci numbers, but this approach serves nicely for this example.

### 1.13.10 Customizing Type Conversions - Type Factories

not written

### 1.13.11 Things I wish weave did

It is possible to get name clashes if you uses a variable name that is already defined in a header automatically included (such as stdio.h) For instance, if you try to pass in a variable named st dout, you'll get a cryptic error report due to the fact that stdio.h also defines the name. weave should probably try and handle this in some way. Other things...

## RELEASE NOTES

### 2.1 SciPy 0.9.0 Release Notes

## Contents

- SciPy 0.9.0 Release Notes
- Python 3
- Scipy source code location to be changed
- New features
* Delaunay tesselations (scipy.spatial)
* N-dimensional interpolation (scipy.interpolate)
* Nonlinear equation solvers (scipy.optimize)
* New linear algebra routines (scipy.linalg)
* Improved FIR filter design functions (scipy.signal)
* Improved statistical tests (scipy.stats)
- Deprecated features
* Obsolete nonlinear solvers (in scipy.optimize)
- Removed features
* Old correlate/convolve behavior (in scipy.signal)
* scipy.stats
* scipy.sparse
* scipy.sparse.linalg.arpack.speigs
- Other changes
* ARPACK interface changes

SciPy 0.9.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bugfixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.9.x branch, and on adding new features on the development trunk.
This release requires Python 2.4-2.7 or 3.1-and NumPy 1.5 or greater.
Please note that SciPy is still considered to have "Beta" status, as we work toward a SciPy 1.0.0 release. The 1.0.0 release will mark a major milestone in the development of SciPy, after which changing the package structure or API will be much more difficult. Whilst these pre-1.0 releases are considered to have "Beta" status, we are committed to making them as bug-free as possible.

However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface. This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we
need help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything - from which algorithms we implement, to details about our function's call signatures.

### 2.1.1 Python 3

Scipy 0.9.0 is the first SciPy release to support Python 3. The only module that is not yet ported is scipy. weave.

### 2.1.2 Scipy source code location to be changed

Soon after this release, Scipy will stop using SVN as the version control system, and move to Git. The development source code for Scipy can from then on be found at
http://github.com/scipy/scipy

### 2.1.3 New features

Delaunay tesselations (scipy.spatial)
Scipy now includes routines for computing Delaunay tesselations in N dimensions, powered by the Qhull computational geometry library. Such calculations can now make use of the new scipy. spatial. Delaunay interface.

## N -dimensional interpolation (scipy .interpolate)

Support for scattered data interpolation is now significantly improved. This version includes a scipy.interpolate.griddata function that can perform linear and nearest-neighbour interpolation for N -dimensional scattered data, in addition to cubic spline (C1-smooth) interpolation in 2D and 1D. An object-oriented interface to each interpolator type is also available.

## Nonlinear equation solvers (scipy .optimize)

Scipy includes new routines for large-scale nonlinear equation solving in scipy. optimize. The following methods are implemented:

- Newton-Krylov (scipy.optimize.newton_krylov)
- (Generalized) secant methods:
- Limited-memory meyden mads (scipy.optimize.broyden1,
scipy.optimize.broyden2)
- Anderson method (scipy.optimize.anderson)
- Simple iterations (scipy.optimize.diagbroyden, scipy.optimize.excitingmixing, scipy.optimize.linearmixing)

The scipy.optimize.nonlin module was completely rewritten, and some of the functions were deprecated (see above).

## New linear algebra routines (scipy.linalg)

Scipy now contains routines for effectively solving triangular equation systems (scipy.linalg.solve_triangular).

## Improved FIR filter design functions (scipy.signal)

The function scipy.signal.firwin was enhanced to allow the design of highpass, bandpass, bandstop and multi-band FIR filters.

The function scipy.signal.firwin2 was added. This function uses the window method to create a linear phase FIR filter with an arbitrary frequency response.

The functions scipy.signal.kaiser_atten and scipy.signal.kaiser_beta were added.

## Improved statistical tests (scipy.stats)

A new function scipy.stats.fisher_exact was added, that provides Fisher's exact test for 2 x 2 contingency tables.

The function scipy. stats. kendalltau was rewritten to make it much faster $\left(\mathrm{O}(\mathrm{n} \log (\mathrm{n}))\right.$ vs $\left.\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)\right)$.

### 2.1.4 Deprecated features

## Obsolete nonlinear solvers (in scipy.optimize)

The following nonlinear solvers from scipy.optimize are deprecated:

- broyden_modified (bad performance)
- broyden1_modified (bad performance)
- broyden_generalized (equivalent to anderson)
- anderson2 (equivalent to anderson)
- broyden 3 (obsoleted by new limited-memory broyden methods)
- vackar (renamed to diagbroyden)


### 2.1.5 Removed features

The deprecated modules helpmod, pexec and ppimport were removed from scipy.misc.
The output_type keyword in many scipy. ndimage interpolation functions has been removed.
The econ keyword in scipy.linalg. qr has been removed. The same functionality is still available by specifying mode='economic'.

## Old correlate/convolve behavior (in scipy.signal)

The old behavior for scipy.signal.convolve, scipy.signal.convolve2d, scipy.signal.correlate and scipy.signal.correlate2d was deprecated in 0.8 .0 and has now been removed. Convolve and correlate used to swap their arguments if the second argument has dimensions larger than the first one, and the mode was relative to the input with the largest dimension. The current behavior is to never swap the inputs, which is what most people expect, and is how correlation is usually defined.
scipy.stats
Many functions in scipy.stats that are either available from numpy or have been superseded, and have been deprecated since version 0.7, have been removed: std, var, mean, median, cov, corrcoef, z, zs, stderr, samplestd, samplevar, pdfapprox, pdf_moments and erfc. These changes are mirrored in scipy.stats.mstats.

```
scipy.sparse
```

Several methods of the sparse matrix classes in scipy. sparse which had been deprecated since version 0.7 were removed: save, rowcol, getdata, listprint, ensure_sorted_indices, matvec, matmat and rmatvec.

The functions spkron, speye, spidentity, lil_eye and lil_diags were removed from scipy. sparse. The first three functions are still available as scipy.sparse.kron, scipy.sparse.eye and scipy.sparse.identity.

The dims and nzmax keywords were removed from the sparse matrix constructor. The colind and rowind attributes were removed from CSR and CSC matrices respectively.

```
scipy.sparse.linalg.arpack.speigs
```

A duplicated interface to the ARPACK library was removed.

### 2.1.6 Other changes

## ARPACK interface changes

The interface to the ARPACK eigenvalue routines in scipy. sparse. linalg was changed for more robustness.
The eigenvalue and SVD routines now raise ArpackNoConvergence if the eigenvalue iteration fails to converge. If partially converged results are desired, they can be accessed as follows:

```
import numpy as np
from scipy.sparse.linalg import eigs, ArpackNoConvergence
m = np.random.randn (30, 30)
try:
 w, v = eigs(m, 6)
except ArpackNoConvergence, err:
 partially_converged_w = err.eigenvalues
 partially_converged_v = err.eigenvectors
```

Several bugs were also fixed.
The routines were moreover renamed as follows:

- eigen $->$ eigs
- eigen_symmetric $->$ eigsh
- svd -> svds


### 2.2 SciPy 0.8.0 Release Notes

## Contents

- SciPy 0.8.0 Release Notes
- Python 3
- Major documentation improvements
- Deprecated features
* Swapping inputs for correlation functions (scipy.signal)
* Obsolete code deprecated (scipy.misc)
* Additional deprecations
- New features
* DCT support (scipy.fftpack)
* Single precision support for fft functions (scipy.fftpack)
* Correlation functions now implement the usual definition (scipy.signal)
* Additions and modification to LTI functions (scipy.signal)
* Improved waveform generators (scipy.signal)
* New functions and other changes in scipy.linalg
* New function and changes in scipy.optimize
* New sparse least squares solver
* ARPACK-based sparse SVD
* Alternative behavior available for scipy. constants.find
* Incomplete sparse LU decompositions
* Faster matlab file reader and default behavior change
* Faster evaluation of orthogonal polynomials
* Lambert W function
* Improved hypergeometric 2F1 function
* More flexible interface for Radial basis function interpolation
- Removed features
* scipy.io

SciPy 0.8.0 is the culmination of 17 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.8.x branch, and on adding new features on the development trunk. This release requires Python 2.4-2.6 and NumPy 1.4.1 or greater.

Please note that SciPy is still considered to have "Beta" status, as we work toward a SciPy 1.0.0 release. The 1.0.0 release will mark a major milestone in the development of SciPy, after which changing the package structure or API will be much more difficult. Whilst these pre-1.0 releases are considered to have "Beta" status, we are committed to making them as bug-free as possible.
However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface. This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we need help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything - from which algorithms we implement, to details about our function's call signatures.

### 2.2.1 Python 3

Python 3 compatibility is planned and is currently technically feasible, since Numpy has been ported. However, since the Python 3 compatible Numpy 1.5 has not been released yet, support for Python 3 in Scipy is not yet included in Scipy 0.8. SciPy 0.9, planned for fall 2010, will very likely include experimental support for Python 3.

### 2.2.2 Major documentation improvements

SciPy documentation is greatly improved.

### 2.2.3 Deprecated features

## Swapping inputs for correlation functions (scipy.signal)

Concern correlate, correlate2d, convolve and convolve2d. If the second input is larger than the first input, the inputs are swapped before calling the underlying computation routine. This behavior is deprecated, and will be removed in scipy 0.9.0.

## Obsolete code deprecated (scipy.misc)

The modules helpmod, ppimport and pexec from scipy.misc are deprecated. They will be removed from SciPy in version 0.9.

## Additional deprecations

- linalg: The function solveh_banded currently returns a tuple containing the Cholesky factorization and the solution to the linear system. In SciPy 0.9, the return value will be just the solution.
- The function constants.codata.find will generate a DeprecationWarning. In Scipy version 0.8.0, the keyword argument 'disp' was added to the function, with the default value 'True'. In 0.9.0, the default will be 'False'.
- The qshape keyword argument of signal.chirp is deprecated. Use the argument vertex_zero instead.
- Passing the coefficients of a polynomial as the argument $f 0$ to signal.chirp is deprecated. Use the function signal.sweep_poly instead.
- The io.recaster module has been deprecated and will be removed in 0.9.0.


### 2.2.4 New features

## DCT support (scipy.fftpack)

New realtransforms have been added, namely dct and idct for Discrete Cosine Transform; type I, II and III are available.

## Single precision support for fft functions (scipy.fftpack)

fft functions can now handle single precision inputs as well: $\mathrm{fft}(\mathrm{x})$ will return a single precision array if x is single precision.
At the moment, for FFT sizes that are not composites of 2,3 , and 5 , the transform is computed internally in double precision to avoid rounding error in FFTPACK.

## Correlation functions now implement the usual definition (scipy.signal)

The outputs should now correspond to their matlab and R counterparts, and do what most people expect if the old_behavior=False argument is passed:

- correlate, convolve and their 2d counterparts do not swap their inputs depending on their relative shape anymore;
- correlation functions now conjugate their second argument while computing the slided sum-products, which correspond to the usual definition of correlation.


## Additions and modification to LTI functions (scipy.signal)

- The functions impulse2 and step2 were added to scipy.signal. They use the function scipy.signal.lsim2 to compute the impulse and step response of a system, respectively.
- The function scipy.signal. lsim2 was changed to pass any additional keyword arguments to the ODE solver.


## Improved waveform generators (scipy.signal)

Several improvements to the chirp function in scipy.signal were made:

- The waveform generated when method="logarithmic" was corrected; it now generates a waveform that is also known as an "exponential" or "geometric" chirp. (See http://en.wikipedia.org/wiki/Chirp.)
- A new chirp method, "hyperbolic", was added.
- Instead of the keyword qshape, chirp now uses the keyword vertex_zero, a boolean.
- chirp no longer handles an arbitrary polynomial. This functionality has been moved to a new function, sweep_poly.

A new function, sweep_poly, was added.

## New functions and other changes in scipy.linalg

The functions cho_solve_banded, circulant, companion, hadamard and leslie were added to scipy.linalg.
The function block_diag was enhanced to accept scalar and 1D arguments, along with the usual 2D arguments.

## New function and changes in scipy.optimize

The curve_fit function has been added; it takes a function and uses non-linear least squares to fit that to the provided data.

The leasts $q$ and fsolve functions now return an array of size one instead of a scalar when solving for a single parameter.

## New sparse least squares solver

The $l$ sqr function was added to scipy. sparse. This routine finds a least-squares solution to a large, sparse, linear system of equations.

## ARPACK-based sparse SVD

A naive implementation of SVD for sparse matrices is available in scipy.sparse.linalg.eigen.arpack. It is based on using an symmetric solver on $<\mathrm{A}, \mathrm{A}>$, and as such may not be very precise.

## Alternative behavior available for scipy.constants.find

The keyword argument disp was added to the function scipy.constants.find, with the default value True. When disp is True, the behavior is the same as in Scipy version 0.7. When False, the function returns the list of keys instead of printing them. (In SciPy version 0.9, the default will be reversed.)

## Incomplete sparse LU decompositions

Scipy now wraps SuperLU version 4.0, which supports incomplete sparse LU decompositions. These can be accessed via scipy.sparse.linalg.spilu. Upgrade to SuperLU 4.0 also fixes some known bugs.

## Faster matlab file reader and default behavior change

We've rewritten the matlab file reader in Cython and it should now read matlab files at around the same speed that Matlab does.

The reader reads matlab named and anonymous functions, but it can't write them.
Until scipy 0.8 .0 we have returned arrays of matlab structs as numpy object arrays, where the objects have attributes named for the struct fields. As of 0.8.0, we return matlab structs as numpy structured arrays. You can get the older behavior by using the optional struct_as_record=False keyword argument to scipy.io.loadmat and friends.

There is an inconsistency in the matlab file writer, in that it writes numpy 1D arrays as column vectors in matlab 5 files, and row vectors in matlab 4 files. We will change this in the next version, so both write row vectors. There is a FutureWarning when calling the writer to warn of this change; for now we suggest using the oned_as=' row' keyword argument to scipy.io. savemat and friends.

## Faster evaluation of orthogonal polynomials

Values of orthogonal polynomials can be evaluated with new vectorized functions in scipy.special: eval_legendre, eval_chebyt, eval_chebyu, eval_chebyc, eval_chebys, eval_jacobi, eval_laguerre, eval_genlaguerre, eval_hermite, eval_hermitenorm, eval_gegenbauer, eval_sh_legendre, eval_sh_chebyt, eval_sh_chebyu, eval_sh_jacobi. This is faster than constructing the full coefficient representation of the polynomials, which was previously the only available way.

Note that the previous orthogonal polynomial routines will now also invoke this feature, when possible.

## Lambert W function

scipy.special.lambertw can now be used for evaluating the Lambert W function.

## Improved hypergeometric 2F1 function

Implementation of scipy.special.hyp2f1 for real parameters was revised. The new version should produce accurate values for all real parameters.

## More flexible interface for Radial basis function interpolation

The scipy.interpolate. Rbf class now accepts a callable as input for the "function" argument, in addition to the built-in radial basis functions which can be selected with a string argument.

### 2.2.5 Removed features

scipy.stsci: the package was removed
The module scipy.misc.limits was removed.
The IO code in both NumPy and SciPy is being extensively reworked. NumPy will be where basic code for reading and writing NumPy arrays is located, while SciPy will house file readers and writers for various data formats (data, audio, video, images, matlab, etc.).

Several functions in scipy.io are removed in the 0.8 .0 release including: npfile, save, load, create_module, create_shelf, objload, objsave, fopen, read_array, write_array, fread, fwrite, bswap, packbits, unpackbits, and convert_objectarray. Some of these functions have been replaced by NumPy's raw reading and writing capabilities, memory-mapping capabilities, or array methods. Others have been moved from SciPy to NumPy, since basic array reading and writing capability is now handled by NumPy.

### 2.3 SciPy 0.7.2 Release Notes

## Contents

- SciPy 0.7.2 Release Notes

SciPy 0.7.2 is a bug-fix release with no new features compared to 0.7 .1 . The only change is that all C sources from Cython code have been regenerated with Cython 0.12 .1. This fixes the incompatibility between binaries of SciPy 0.7.1 and NumPy 1.4.

### 2.4 SciPy 0.7.1 Release Notes

## Contents

- SciPy 0.7.1 Release Notes
- scipy.io
- scipy.odr
- scipy.signal
- scipy.sparse
- scipy.special
- scipy.stats
- Windows binaries for python 2.6
- Universal build for scipy

SciPy 0.7.1 is a bug-fix release with no new features compared to 0.7.0.
Bugs fixed:

- Several fixes in Matlab file IO

Bugs fixed:

- Work around a failure with Python 2.6

Memory leak in lfilter have been fixed, as well as support for array object
Bugs fixed:

- \#880, \#925: lifilter fixes
- \#871: bicgstab fails on Win32

Bugs fixed:

- \#883: scipy.io.mmread with scipy.sparse.lil_matrix broken
- lil_matrix and csc_matrix reject now unexpected sequences, cf. http://thread.gmane.org/gmane.comp.python.scientific.user/19996

Several bugs of varying severity were fixed in the special functions:

- \#503, \#640: iv: problems at large arguments fixed by new implementation
- \#623: jv: fix errors at large arguments
- \#679: struve: fix wrong output for $\mathrm{v}<0$
- \#803: pbdv produces invalid output
- \#804: lqmn: fix crashes on some input
- \#823: betainc: fix documentation
- \#834: exp1 strange behavior near negative integer values
- \#852: jn_zeros: more accurate results for large s, also in jnp/yn/ynp_zeros
- \#853: jv, yv, iv: invalid results for non-integer $\mathrm{v}<0$, complex x
- \#854: jv, yv, iv, kv: return nan more consistently when out-of-domain
- \#927: ellipj: fix segfault on Windows
- \#946: ellpj: fix segfault on Mac OS X/python 2.6 combination.
- ive, jve, yve, kv, kve: with real-valued input, return nan for out-of-domain instead of returning only the real part of the result.

Also, when scipy.special.errprint (1) has been enabled, warning messages are now issued as Python warnings instead of printing them to stderr.

- linregress, mannwhitneyu, describe: errors fixed
- kstwobign, norm, expon, exponweib, exponpow, frechet, genexpon, rdist, truncexpon, planck: improvements to numerical accuracy in distributions


### 2.4.1 Windows binaries for python 2.6

python 2.6 binaries for windows are now included. The binary for python 2.5 requires numpy 1.2 .0 or above, and and the one for python 2.6 requires numpy 1.3.0 or above.

### 2.4.2 Universal build for scipy

Mac OS X binary installer is now a proper universal build, and does not depend on gfortran anymore (libgfortran is statically linked). The python 2.5 version of scipy requires numpy 1.2 .0 or above, the python 2.6 version requires numpy 1.3.0 or above.

### 2.5 SciPy 0.7.0 Release Notes

## Contents

- SciPy 0.7.0 Release Notes
- Python 2.6 and 3.0
- Major documentation improvements
- Running Tests
- Building SciPy
- Sandbox Removed
- Sparse Matrices
- Statistics package
- Reworking of IO package
- New Hierarchical Clustering module
- New Spatial package
- Reworked fftpack package
- New Constants package
- New Radial Basis Function module
- New complex ODE integrator
- New generalized symmetric and hermitian eigenvalue problem solver
- Bug fixes in the interpolation package
- Weave clean up
- Known problems

SciPy 0.7 .0 is the culmination of 16 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.7.x branch, and on adding new features on the development trunk. This release requires Python 2.4 or 2.5 and NumPy 1.2 or greater.

Please note that SciPy is still considered to have "Beta" status, as we work toward a SciPy 1.0 .0 release. The 1.0.0 release will mark a major milestone in the development of SciPy, after which changing the package structure or API will be much more difficult. Whilst these pre- 1.0 releases are considered to have "Beta" status, we are committed to making them as bug-free as possible. For example, in addition to fixing numerous bugs in this release, we have also doubled the number of unit tests since the last release.

However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface. This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we need help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything - from which algorithms we implement, to details about our function's call signatures.

Over the last year, we have seen a rapid increase in community involvement, and numerous infrastructure improvements to lower the barrier to contributions (e.g., more explicit coding standards, improved testing infrastructure, better documentation tools). Over the next year, we hope to see this trend continue and invite everyone to become more involved.

### 2.5.1 Python 2.6 and 3.0

A significant amount of work has gone into making SciPy compatible with Python 2.6; however, there are still some issues in this regard. The main issue with 2.6 support is NumPy. On UNIX (including Mac OS X), NumPy 1.2.1 mostly works, with a few caveats. On Windows, there are problems related to the compilation process. The upcoming

NumPy 1.3 release will fix these problems. Any remaining issues with 2.6 support for SciPy 0.7 will be addressed in a bug-fix release.
Python 3.0 is not supported at all; it requires NumPy to be ported to Python 3.0. This requires immense effort, since a lot of C code has to be ported. The transition to 3.0 is still under consideration; currently, we don't have any timeline or roadmap for this transition.

### 2.5.2 Major documentation improvements

SciPy documentation is greatly improved; you can view a HTML reference manual online or download it as a PDF file. The new reference guide was built using the popular Sphinx tool.
This release also includes an updated tutorial, which hadn't been available since SciPy was ported to NumPy in 2005. Though not comprehensive, the tutorial shows how to use several essential parts of Scipy. It also includes the ndimage documentation from the numarray manual.

Nevertheless, more effort is needed on the documentation front. Luckily, contributing to Scipy documentation is now easier than before: if you find that a part of it requires improvements, and want to help us out, please register a user name in our web-based documentation editor at http://docs.scipy.org/ and correct the issues.

### 2.5.3 Running Tests

NumPy 1.2 introduced a new testing framework based on nose. Starting with this release, SciPy now uses the new NumPy test framework as well. Taking advantage of the new testing framework requires nose version 0.10 , or later. One major advantage of the new framework is that it greatly simplifies writing unit tests - which has all ready paid off, given the rapid increase in tests. To run the full test suite:

```
>>> import scipy
>>> scipy.test('full')
```

For more information, please see The NumPy/SciPy Testing Guide.
We have also greatly improved our test coverage. There were just over 2,000 unit tests in the 0.6 .0 release; this release nearly doubles that number, with just over 4,000 unit tests.

### 2.5.4 Building SciPy

Support for NumScons has been added. NumScons is a tentative new build system for NumPy/SciPy, using SCons at its core.
SCons is a next-generation build system, intended to replace the venerable Make with the integrated functionality of autoconf/automake and ccache. Scons is written in Python and its configuration files are Python scripts. NumScons is meant to replace NumPy's custom version of distutils providing more advanced functionality, such as autoconf, improved fortran support, more tools, and support for numpy. distutils/scons cooperation.

### 2.5.5 Sandbox Removed

While porting SciPy to NumPy in 2005, several packages and modules were moved into scipy.sandbox. The sandbox was a staging ground for packages that were undergoing rapid development and whose APIs were in flux. It was also a place where broken code could live. The sandbox has served its purpose well, but was starting to create confusion. Thus scipy.sandbox was removed. Most of the code was moved into scipy, some code was made into a scikit, and the remaining code was just deleted, as the functionality had been replaced by other code.

### 2.5.6 Sparse Matrices

Sparse matrices have seen extensive improvements. There is now support for integer dtypes such int 8, uint 32, etc. Two new sparse formats were added:

- new class dia_matrix: the sparse DIAgonal format
- new class bsr_matrix: the Block CSR format

Several new sparse matrix construction functions were added:

- sparse.kron: sparse Kronecker product
- sparse.bmat : sparse version of numpy.bmat
- sparse.vstack: sparse version of numpy.vstack
- sparse.hstack: sparse version of numpy.hstack

Extraction of submatrices and nonzero values have been added:

- sparse.tril: extract lower triangle
- sparse.triu: extract upper triangle
- sparse.find: nonzero values and their indices
csr_matrix and csc_matrix now support slicing and fancy indexing (e.g., A[1:3, 4:7] and A $[[3,2,6,8],:]$ ). Conversions among all sparse formats are now possible:
- using member functions such as .tocsr() and .tolil()
- using the . as format () member function, e.g. A. asformat ('csr')
- using constructors $A=$ lil_matrix([ [1, 2]]); $B=$ csr_matrix(A)

All sparse constructors now accept dense matrices and lists of lists. For example:

```
- A = csr_matrix(rand(3,3)) and B = lil_matrix([[1,2],[3,4]])
```

The handling of diagonals in the spdiags function has been changed. It now agrees with the MATLAB(TM) function of the same name.

Numerous efficiency improvements to format conversions and sparse matrix arithmetic have been made. Finally, this release contains numerous bugfixes.

### 2.5.7 Statistics package

Statistical functions for masked arrays have been added, and are accessible through scipy.stats.mstats. The functions are similar to their counterparts in scipy. stats but they have not yet been verified for identical interfaces and algorithms.

Several bugs were fixed for statistical functions, of those, kstest and percentileofscore gained new keyword arguments.

Added deprecation warning for mean, median, var, std, cov, and corrcoef. These functions should be replaced by their numpy counterparts. Note, however, that some of the default options differ between the scipy. stats and numpy versions of these functions.
Numerous bug fixes to stats.distributions: all generic methods now work correctly, several methods in individual distributions were corrected. However, a few issues remain with higher moments (skew, kurtosis) and entropy. The maximum likelihood estimator, fit, does not work out-of-the-box for some distributions - in some cases, starting values have to be carefully chosen, in other cases, the generic implementation of the maximum likelihood method might not be the numerically appropriate estimation method.

We expect more bugfixes, increases in numerical precision and enhancements in the next release of scipy.

### 2.5.8 Reworking of IO package

The IO code in both NumPy and SciPy is being extensively reworked. NumPy will be where basic code for reading and writing NumPy arrays is located, while SciPy will house file readers and writers for various data formats (data, audio, video, images, matlab, etc.).

Several functions in scipy.io have been deprecated and will be removed in the 0.8.0 release including npfile, save, load, create_module, create_shelf, objload, objsave, fopen, read_array, write_array, fread, fwrite, bswap, packbits, unpackbits, and convert_objectarray. Some of these functions have been replaced by NumPy's raw reading and writing capabilities, memory-mapping capabilities, or array methods. Others have been moved from SciPy to NumPy, since basic array reading and writing capability is now handled by NumPy.

The Matlab (TM) file readers/writers have a number of improvements:

- default version 5
- v5 writers for structures, cell arrays, and objects
- v5 readers/writers for function handles and 64-bit integers
- new struct_as_record keyword argument to loadmat, which loads struct arrays in matlab as record arrays in numpy
- string arrays have $d t y p e=$ ' $U . .^{\prime}$ instead of dtype=object
- loadmat no longer squeezes singleton dimensions, i.e. squeeze_me=Fal se by default


### 2.5.9 New Hierarchical Clustering module

This module adds new hierarchical clustering functionality to the scipy.cluster package. The function interfaces are similar to the functions provided MATLAB(TM)'s Statistics Toolbox to help facilitate easier migration to the NumPy/SciPy framework. Linkage methods implemented include single, complete, average, weighted, centroid, median, and ward.

In addition, several functions are provided for computing inconsistency statistics, cophenetic distance, and maximum distance between descendants. The fcluster and fclusterdata functions transform a hierarchical clustering into a set of flat clusters. Since these flat clusters are generated by cutting the tree into a forest of trees, the leaders function takes a linkage and a flat clustering, and finds the root of each tree in the forest. The ClusterNode class represents a hierarchical clusterings as a field-navigable tree object. to_tree converts a matrix-encoded hierarchical clustering to a ClusterNode object. Routines for converting between MATLAB and SciPy linkage encodings are provided. Finally, a dendrogram function plots hierarchical clusterings as a dendrogram, using matplotlib.

### 2.5.10 New Spatial package

The new spatial package contains a collection of spatial algorithms and data structures, useful for spatial statistics and clustering applications. It includes rapidly compiled code for computing exact and approximate nearest neighbors, as well as a pure-python kd-tree with the same interface, but that supports annotation and a variety of other algorithms. The API for both modules may change somewhat, as user requirements become clearer.

It also includes a distance module, containing a collection of distance and dissimilarity functions for computing distances between vectors, which is useful for spatial statistics, clustering, and kd-trees. Distance and dissimilarity functions provided include Bray-Curtis, Canberra, Chebyshev, City Block, Cosine, Dice, Euclidean, Hamming,

Jaccard, Kulsinski, Mahalanobis, Matching, Minkowski, Rogers-Tanimoto, Russell-Rao, Squared Euclidean, Standardized Euclidean, Sokal-Michener, Sokal-Sneath, and Yule.
The pdist function computes pairwise distance between all unordered pairs of vectors in a set of vectors. The cdist computes the distance on all pairs of vectors in the Cartesian product of two sets of vectors. Pairwise distance matrices are stored in condensed form; only the upper triangular is stored. squareform converts distance matrices between square and condensed forms.

### 2.5.11 Reworked fftpack package

FFTW2, FFTW3, MKL and DJBFFT wrappers have been removed. Only (NETLIB) fftpack remains. By focusing on one backend, we hope to add new features - like float 32 support - more easily.

### 2.5.12 New Constants package

scipy. constants provides a collection of physical constants and conversion factors. These constants are taken from CODATA Recommended Values of the Fundamental Physical Constants: 2002. They may be found at physics.nist.gov/constants. The values are stored in the dictionary physical_constants as a tuple containing the value, the units, and the relative precision - in that order. All constants are in SI units, unless otherwise stated. Several helper functions are provided.

### 2.5.13 New Radial Basis Function module

scipy.interpolate now contains a Radial Basis Function module. Radial basis functions can be used for smoothing/interpolating scattered data in n-dimensions, but should be used with caution for extrapolation outside of the observed data range.

### 2.5.14 New complex ODE integrator

scipy.integrate. ode now contains a wrapper for the ZVODE complex-valued ordinary differential equation solver (by Peter N. Brown, Alan C. Hindmarsh, and George D. Byrne).

### 2.5.15 New generalized symmetric and hermitian eigenvalue problem solver

scipy.linalg.eigh now contains wrappers for more LAPACK symmetric and hermitian eigenvalue problem solvers. Users can now solve generalized problems, select a range of eigenvalues only, and choose to use a faster algorithm at the expense of increased memory usage. The signature of the scipy.linalg.eigh changed accordingly.

### 2.5.16 Bug fixes in the interpolation package

The shape of return values from scipy.interpolate.interpld used to be incorrect, if interpolated data had more than 2 dimensions and the axis keyword was set to a non-default value. This has been fixed. Moreover, interp1d returns now a scalar (0D-array) if the input is a scalar. Users of scipy.interpolate.interp1d may need to revise their code if it relies on the previous behavior.

### 2.5.17 Weave clean up

There were numerous improvements to scipy.weave. blitz++ was relicensed by the author to be compatible with the SciPy license. wx_spec.py was removed.

### 2.5.18 Known problems

Here are known problems with scipy 0.7.0:

- weave test failures on windows: those are known, and are being revised.
- weave test failure with gcc 4.3 (std::labs): this is a gcc 4.3 bug. A workaround is to add \#include <cstdlib> in scipy/weave/blitz/blitz/funcs.h (line 27). You can make the change in the installed scipy (in site-packages).


## REFERENCE

### 3.1 Clustering package (scipy.cluster)

### 3.1.1 Hierarchical clustering (scipy.cluster.hierarchy)

Warning: This documentation is work-in-progress and unorganized.

## Function Reference

These functions cut hierarchical clusterings into flat clusterings or find the roots of the forest formed by a cut by providing the flat cluster ids of each observation.


Forms flat clusters from the hierarchical clustering defined by the linkage matrix Z .

## Parameters

$\mathbf{Z}$ : ndarray
The hierarchical clustering encoded with the matrix returned by the linkage function.
t : float
The threshold to apply when forming flat clusters.
criterion : str, optional
The criterion to use in forming flat clusters. This can be any of the following values:
'inconsistent':
If a cluster node and all its descendants have an inconsistent value less than or equal to $t$ then all its leaf descendants belong to the same flat cluster. When no non-singleton cluster meets this criterion, every node is assigned to its own cluster. (Default)

## 'distance':

Forms flat clusters so that the original observations in each flat cluster have no greater a cophenetic distance than $t$.

## 'maxclust':

Finds a minimum threshold $r$ so that the cophenetic distance between any two original observations in the same flat cluster is no more than $r$ and no more than $t$ flat clusters are formed.
'monocrit':
Forms a flat cluster from a cluster node c with index i when monocrit [j] $<=t$.

For example, to threshold on the maximum mean distance as computed in the inconsistency matrix R with a threshold of 0.8 do:

```
MR = maxRstat(Z, R, 3)
cluster(Z, t=0.8, criterion='monocrit',
monocrit=MR)
```

'maxclust_monocrit':
Forms a flat cluster from a non-singleton cluster node c when monocrit [i] $<=r$ for all cluster indices $i$ below and including $c$. $r$ is minimized such that no more than $t$ flat clusters are formed. monocrit must be monotonic. For example, to minimize the threshold $t$ on maximum inconsistency values so that no more than 3 flat clusters are formed, do:

```
MI = maxinconsts(Z, R)
cluster(Z, t=3, criterion='maxclust_monocrit',
monocrit=MI)
```

depth : int, optional
The maximum depth to perform the inconsistency calculation. It has no meaning for the other criteria. Default is 2 .
$\mathbf{R}$ : ndarray, optional
The inconsistency matrix to use for the 'inconsistent' criterion. This matrix is computed if not provided.
monocrit : ndarray, optional
An array of length n-1. monocrit[i] is the statistics upon which non-singleton i is thresholded. The monocrit vector must be monotonic, i.e. given a node c with index $i$, for all node indices $j$ corresponding to nodes below c , monocrit [i] >= monocrit[j].

## Returns

fcluster : ndarray
An array of length n . $\mathrm{T}[\mathrm{i}]$ is the flat cluster number to which original observation i belongs.
scipy.cluster.hierarchy.fclusterdata ( $X, \quad t, \quad$ criterion='inconsistent', metric='euclidean', depth $=2$, method $=$ 'single', $R=$ None $)$
Cluster observation data using a given metric.
Clusters the original observations in the $n$-by-m data matrix $X$ ( $n$ observations in $m$ dimensions), using the euclidean distance metric to calculate distances between original observations, performs hierarchical clustering using the single linkage algorithm, and forms flat clusters using the inconsistency method with $t$ as the cut-off threshold.

A one-dimensional array T of length n is returned. $\mathrm{T}[\mathrm{i}]$ is the index of the flat cluster to which the original observation i belongs.

## Parameters

$\mathbf{X}$ : ndarray
n by m data matrix with n observations in m dimensions.
$t$ : float
The threshold to apply when forming flat clusters.
criterion : str, optional
Specifies the criterion for forming flat clusters. Valid values are 'inconsistent' (default), 'distance', or 'maxclust' cluster formation algorithms. See fcluster for descriptions.
method : str, optional
The linkage method to use (single, complete, average, weighted, median centroid, ward). See linkage for more information. Default is "single".
metric : str, optional
The distance metric for calculating pairwise distances. See distance.pdist for descriptions and linkage to verify compatibility with the linkage method.
$\mathbf{t}$ : double, optional
The cut-off threshold for the cluster function or the maximum number of clusters (criterion='maxclust').
depth : int, optional
The maximum depth for the inconsistency calculation. See inconsistent for more information.
R : ndarray, optional
The inconsistency matrix. It will be computed if necessary if it is not passed.

## Returns

T: ndarray
A vector of length n . $\mathrm{T}[\mathrm{i}]$ is the flat cluster number to which original observation i belongs.

## Notes

This function is similar to the MATLAB function clusterdata.
scipy.cluster.hierarchy.leaders $(Z, T)$
$(\mathrm{L}, \mathrm{M})=\operatorname{leaders}(\mathrm{Z}, \mathrm{T}):$
Returns the root nodes in a hierarchical clustering corresponding to a cut defined by a flat cluster assignment vector $T$. See the fcluster function for more information on the format of $T$.

For each flat cluster $j$ of the $k$ flat clusters represented in the n -sized flat cluster assignment vector T , this function finds the lowest cluster node $i$ in the linkage tree Z such that:
-leaf descendents belong only to flat cluster $\mathbf{j}$ (i.e. $\mathrm{T}[\mathrm{p}]==\mathrm{j}$ for all $p$ in $S(i)$ where $S(i)$ is the set of leaf ids of leaf nodes descendent with cluster node $i$ )
-there does not exist a leaf that is not descendent with $i$ that also belongs to cluster $j$ (i.e. $\mathrm{T}[\mathrm{q}]!=j$ for all $q$ not in $S(i)$ ). If this condition is violated, T is not a valid cluster assignment vector, and an exception will be thrown.

## Parameters

$\mathbf{Z}$ : ndarray
The hierarchical clustering encoded as a matrix. See linkage for more information.

T: ndarray
The flat cluster assignment vector.

## Returns

A tuple (L, M) with :
L: ndarray
The leader linkage node id's stored as a k-element 1D array where $k$ is the number of flat clusters found in $T$.
$L[j]=i$ is the linkage cluster node id that is the leader of flat cluster with id M[j]. If i < n, i corresponds to an original observation, otherwise it corresponds to a non-singleton cluster.
For example: if $L[3]=2$ and $\mathrm{M}[3]=8$, the flat cluster with id 8 's leader is linkage node 2.

M : ndarray
The leader linkage node id's stored as a k-element 1D array where $k$ is the number of flat clusters found in T. This allows the set of flat cluster ids to be any arbitrary set of $k$ integers.

These are routines for agglomerative clustering.

```
linkage(y[, method, Performs hierarchical/agglomerative clustering on the condensed distance matrix y.
metric])
single(y) Performs single/min/nearest linkage on the condensed distance matrix y.
complete(y) Performs complete complete/max/farthest point linkage on the condensed distance
 matrix y.
average(y) Performs average/UPGMA linkage on the condensed distance matrix
weighted(y) Performs weighted/WPGMA linkage on the condensed distance matrix
centroid(y) Performs centroid/UPGMC linkage. See linkage for more
median(y) Performs median/WPGMC linkage. See linkage for more
ward(y) Performs Ward's linkage on a condensed or redundant distance
```

scipy.cluster.hierarchy.linkage ( $y$, method='single', metric='euclidean')

Performs hierarchical/agglomerative clustering on the condensed distance matrix y.
y must be a $\binom{n}{2}$ sized vector where n is the number of original observations paired in the distance matrix. The behavior of this function is very similar to the MATLAB linkage function.

A 4 by $(n-1)$ matrix $Z$ is returned. At the $i$-th iteration, clusters with indices Z[i, 0 ] and Z[i, 1] are combined to form cluster $n+i$. A cluster with an index less than $n$ corresponds to one of the $n$ original observations. The distance between clusters Z[i, 0] and Z[i, 1] is given by Z[i, 2]. The fourth value $Z[i, 3]$ represents the number of original observations in the newly formed cluster.

The following linkage methods are used to compute the distance $d(s, t)$ between two clusters $s$ and $t$. The algorithm begins with a forest of clusters that have yet to be used in the hierarchy being formed. When two clusters $s$ and $t$ from this forest are combined into a single cluster $u, s$ and $t$ are removed from the forest, and $u$ is added to the forest. When only one cluster remains in the forest, the algorithm stops, and this cluster becomes the root.

A distance matrix is maintained at each iteration. The $d[i, j]$ entry corresponds to the distance between cluster $i$ and $j$ in the original forest.
At each iteration, the algorithm must update the distance matrix to reflect the distance of the newly formed cluster u with the remaining clusters in the forest.
Suppose there are $|u|$ original observations $u[0], \ldots, u[|u|-1]$ in cluster $u$ and $|v|$ original objects $v[0], \ldots, v[|v|-1]$ in cluster $v$. Recall $s$ and $t$ are combined to form cluster $u$. Let $v$ be any remaining cluster in the forest that is not $u$.

The following are methods for calculating the distance between the newly formed cluster $u$ and each $v$.
-method='single' assigns

$$
d(u, v)=\min (\operatorname{dist}(u[i], v[j]))
$$

for all points $i$ in cluster $u$ and $j$ in cluster $v$. This is also known as the Nearest Point Algorithm.
-method='complete' assigns

$$
d(u, v)=\max (\operatorname{dist}(u[i], v[j]))
$$

for all points $i$ in cluster u and $j$ in cluster $v$. This is also known by the Farthest Point Algorithm or Voor Hees Algorithm.
-method='average' assigns

$$
d(u, v)=\sum_{i j} \frac{d(u[i], v[j])}{(|u| *|v|)}
$$

for all points $i$ and $j$ where $|u|$ and $|v|$ are the cardinalities of clusters $u$ and $v$, respectively. This is also called the UPGMA algorithm. This is called UPGMA.
-method='weighted' assigns

$$
d(u, v)=(\operatorname{dist}(s, v)+\operatorname{dist}(t, v)) / 2
$$

where cluster $u$ was formed with cluster $s$ and $t$ and $v$ is a remaining cluster in the forest. (also called WPGMA)
-method='centroid' assigns

$$
\operatorname{dist}(s, t)=\left\|c_{s}-c_{t}\right\|_{2}
$$

where $c_{s}$ and $c_{t}$ are the centroids of clusters $s$ and $t$, respectively. When two clusters $s$ and $t$ are combined into a new cluster $u$, the new centroid is computed over all the original objects in clusters $s$ and $t$. The distance then becomes the Euclidean distance between the centroid of $u$ and the centroid of a remaining cluster $v$ in the forest. This is also known as the UPGMC algorithm.
-method='median' assigns math: $d(s, t)$ like the centroid method. When two clusters $s$ and $t$ are combined into a new cluster $u$, the average of centroids s and t give the new centroid $u$. This is also known as the WPGMC algorithm.
-method='ward' uses the Ward variance minimization algorithm. The new entry $d(u, v)$ is computed as follows,

$$
d(u, v)=\sqrt{\frac{|v|+|s|}{T} d(v, s)^{2}+\frac{|v|+|t|}{T} d(v, t)^{2}+\frac{|v|}{T} d(s, t)^{2}}
$$

where $u$ is the newly joined cluster consisting of clusters $s$ and $t, v$ is an unused cluster in the forest, $T=|v|+|s|+|t|$, and $|*|$ is the cardinality of its argument. This is also known as the incremental algorithm.

Warning: When the minimum distance pair in the forest is chosen, there may be two or more pairs with the same minimum distance. This implementation may chose a different minimum than the MATLAB version.

## Parameters

$\mathbf{y}$ : ndarray
A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that pdist returns. Alternatively, a collection of $m$ observation vectors in $n$ dimensions may be passed as an $m$ by $n$ array.
method : str, optional
The linkage algorithm to use. See the Linkage Methods section below for full descriptions.
metric : str, optional
The distance metric to use. See the distance.pdist function for a list of valid distance metrics.

## Returns

Z : ndarray
The hierarchical clustering encoded as a linkage matrix.
scipy.cluster.hierarchy.single (y)
Performs single $/ \mathrm{min} /$ nearest linkage on the condensed distance matrix y. See linkage for more information on the return structure and algorithm.

## Parameters

$\mathbf{y}$ : ndarray
The upper triangular of the distance matrix. The result of pdist is returned in this form.

## Returns

$\mathbf{Z}$ : ndarray
The linkage matrix.

## See Also:

linkage
for advanced creation of hierarchical clusterings.
scipy.cluster.hierarchy.complete (y)
Performs complete complete/max/farthest point linkage on the condensed distance matrix y. See linkage for more information on the return structure and algorithm.

## Parameters

$\mathbf{y}$ : ndarray

The upper triangular of the distance matrix. The result of pdist is returned in this form.

## Returns

$\mathbf{Z}$ : ndarray
A linkage matrix containing the hierarchical clustering. See the linkage function documentation for more information on its structure.
scipy.cluster.hierarchy.average (y)
Performs average/UPGMA linkage on the condensed distance matrix y. See linkage for more information on the return structure and algorithm.

## Parameters

$\mathbf{y}$ : ndarray
The upper triangular of the distance matrix. The result of pdist is returned in this form.

## Returns

$\mathbf{Z}$ : ndarray
A linkage matrix containing the hierarchical clustering. See the linkage function documentation for more information on its structure.

## See Also:

linkage
for advanced creation of hierarchical clusterings.
scipy.cluster.hierarchy.weighted (y)
Performs weighted/WPGMA linkage on the condensed distance matrix y. See linkage for more information on the return structure and algorithm.

## Parameters

$\mathbf{y}$ : ndarray
The upper triangular of the distance matrix. The result of pdist is returned in this form.

## Returns

Z: ndarray
A linkage matrix containing the hierarchical clustering. See the linkage function documentation for more information on its structure.

## See Also:

## linkage

for advanced creation of hierarchical clusterings.
scipy.cluster.hierarchy.centroid (y)
Performs centroid/UPGMC linkage. See linkage for more information on the return structure and algorithm.
The following are common calling conventions:
$1 . Z=$ centroid $(\mathrm{y})$
Performs centroid/UPGMC linkage on the condensed distance matrix y. See linkage for more information on the return structure and algorithm.
$2 . Z=$ centroid $(X)$
Performs centroid/UPGMC linkage on the observation matrix X using Euclidean distance as the distance metric. See linkage for more information on the return structure and algorithm.

## Parameters

Q : ndarray
A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that pdist returns. Alternatively, a collection of $m$ observation vectors in $n$ dimensions may be passed as a $m$ by $n$ array.

## Returns <br> Z : ndarray

A linkage matrix containing the hierarchical clustering. See the linkage function documentation for more information on its structure.

## See Also:

linkage
for advanced creation of hierarchical clusterings.

```
scipy.cluster.hierarchy.median(y)
```

Performs median/WPGMC linkage. See linkage for more information on the return structure and algorithm.
The following are common calling conventions:
$1 . Z=\operatorname{median}(\mathrm{y})$
Performs median/WPGMC linkage on the condensed distance matrix y. See linkage for more information on the return structure and algorithm.

```
2.Z = median(X)
```

Performs median/WPGMC linkage on the observation matrix X using Euclidean distance as the distance metric. See linkage for more information on the return structure and algorithm.

## Parameters

Q : ndarray
A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that pdist returns. Alternatively, a collection of $m$ observation vectors in $n$ dimensions may be passed as a $m$ by $n$ array.

## Returns

 Z : ndarrayThe hierarchical clustering encoded as a linkage matrix.

## See Also:

## linkage

for advanced creation of hierarchical clusterings.

## scipy.cluster.hierarchy.ward (y)

Performs Ward's linkage on a condensed or redundant distance matrix. See linkage for more information on the return structure and algorithm.
The following are common calling conventions:
$1.2=$ ward $(y)$ Performs Ward's linkage on the condensed distance matrix $z$. See linkage for more information on the return structure and algorithm.
2.2 = ward (X) Performs Ward's linkage on the observation matrix X using Euclidean distance as the distance metric. See linkage for more information on the return structure and algorithm.

## Parameters

Q : ndarray
A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that pdist returns. Alternatively, a collection of $m$ observation vectors in $n$ dimensions may be passed as a m by n array.

## Returns

Z : ndarray
The hierarchical clustering encoded as a linkage matrix.

## See Also:

linkage
for advanced creation of hierarchical clusterings.
These routines compute statistics on hierarchies.

$$
\begin{array}{ll}
\hline \begin{array}{l}
\text { cophenet }(Z[, Y]) \\
\text { from_mlab_linkage(Z)Converts a linkage matrix generated by MATLAB(TM) to a new } \\
\text { inconsistent(Z[, }
\end{array} & \text { Calculates inconsistency statistics on a linkage. } \\
\text { d]) } & \begin{array}{l}
\text { Returns the maximum inconsistency coefficient for each non-singleton cluster and its } \\
\text { maxinconsts(Z, R) }
\end{array} \\
\text { maxdists(Z) } & \text { Returns the maximum distance between any cluster for each non-singleton cluster. } \\
\text { maxRstat }(Z, R, i) & \text { Returns the maximum statistic for each non-singleton cluster and its descendents. } \\
\text { to_mlab_linkage(Z) } & \text { Converts a linkage matrix Z generated by the linkage function }
\end{array}
$$

scipy.cluster.hierarchy. cophenet ( $Z, Y=$ None)
Calculates the cophenetic distances between each observation in the hierarchical clustering defined by the linkage $z$.

Suppose $p$ and $q$ are original observations in disjoint clusters $s$ and $t$, respectively and $s$ and $t$ are joined by a direct parent cluster $u$. The cophenetic distance between observations i and $j$ is simply the distance between clusters $s$ and $t$.

## Parameters

Z : ndarray
The hierarchical clustering encoded as an array (see linkage function).
$\mathbf{Y}$ : ndarray (optional)
Calculates the cophenetic correlation coefficient c of a hierarchical clustering defined by the linkage matrix z of a set of $n$ observations in $m$ dimensions. Y is the condensed distance matrix from which Z was generated.

## Returns

res: tuple
A tuple (c, $\{d\}$ ):

- c
[ndarray] The cophentic correlation distance (if y is passed).
- d
[ndarray] The cophenetic distance matrix in condensed form. The $i j$ th entry is the cophenetic distance between original observations $i$ and $j$.
scipy.cluster.hierarchy.from_mlab_linkage ( $Z$ )
Converts a linkage matrix generated by $\operatorname{MATLAB}(T M)$ to a new linkage matrix compatible with this module.
The conversion does two things:
-the indices are converted from $1 \ldots \mathrm{~N}$ to $0 \ldots(\mathrm{~N}-1)$ form, and
-a fourth column $\mathrm{Z}[:, 3]$ is added where $\mathrm{Z}[\mathrm{i}, 3]$ is represents the number of original observations (leaves) in the non-singleton cluster i .

This function is useful when loading in linkages from legacy data files generated by MATLAB.

## Parameters

Z : ndarray
A linkage matrix generated by MATLAB(TM).

## Returns

ZS : ndarray
A linkage matrix compatible with this library.
scipy.cluster.hierarchy.inconsistent ( $Z, d=2$ )
Calculates inconsistency statistics on a linkage.
Note: This function behaves similarly to the MATLAB(TM) inconsistent function.
Parameters
d : int
The number of links up to d levels below each non-singleton cluster.
Z : ndarray
The $(n-1)$ by 4 matrix encoding the linkage (hierarchical clustering). See linkage documentation for more information on its form.

## Returns

$\mathbf{R}$ : ndarray
A $(n-1)$ by 5 matrix where the $i$ 'th row contains the link statistics for the nonsingleton cluster i. The link statistics are computed over the link heights for links $d$ levels below the cluster i. $\mathrm{R}[i, 0]$ and $\mathrm{R}[i, 1]$ are the mean and standard deviation of the link heights, respectively; $R[i, 2]$ is the number of links included in the calculation; and $R[i, 3]$ is the inconsistency coefficient,

$$
\operatorname{rac} \mathrm{Z}[\mathrm{i}, 2]-\mathrm{R}[\mathrm{i}, 0] R[i, 1] .
$$

scipy.cluster.hierarchy.maxinconsts $(Z, R)$
Returns the maximum inconsistency coefficient for each non-singleton cluster and its descendents.

## Parameters

$\mathbf{Z}$ : ndarray
The hierarchical clustering encoded as a matrix. See linkage for more information.
$\mathbf{R}$ : ndarray
The inconsistency matrix.

## Returns

MI : ndarray
A monotonic ( $\mathrm{n}-1$ ) -sized numpy array of doubles.
scipy.cluster.hierarchy.maxdists ( $Z$ )
Returns the maximum distance between any cluster for each non-singleton cluster.

## Parameters

$\mathbf{Z}$ : ndarray
The hierarchical clustering encoded as a matrix. See linkage for more information.

## Returns

MD : ndarray
A ( $\mathrm{n}-1$ ) sized numpy array of doubles; MD [i] represents the maximum distance between any cluster (including singletons) below and including the node with index i. More specifically, $M D[i]=Z[Q(i)-n, 2] . \max ()$ where $Q(i)$ is the set of all node indices below and including node i .
scipy.cluster.hierarchy.maxRstat ( $Z, R, i$ )
Returns the maximum statistic for each non-singleton cluster and its descendents.

## Parameters

Z: ndarray
The hierarchical clustering encoded as a matrix. See linkage for more information.

R: ndarray
The inconsistency matrix.
$\mathbf{i}$ : int
The column of $R$ to use as the statistic.

## Returns

MR : ndarray
Calculates the maximum statistic for the i'th column of the inconsistency matrix $R$ for each non-singleton cluster node. $\operatorname{MR[j]}$ is the maximum over $R[Q(j)-n, i]$ where $Q(j)$ the set of all node ids corresponding to nodes below and including $j$.
scipy.cluster.hierarchy.to_mlab_linkage ( $Z$ )
Converts a linkage matrix Z generated by the linkage function of this module to a MATLAB(TM) compatible one. The return linkage matrix has the last column removed and the cluster indices are converted to $1 \ldots \mathrm{~N}$ indexing.

## Parameters

$\mathbf{Z}$ : ndarray
A linkage matrix generated by this library.

## Returns

$\mathbf{Z M}$ : ndarray
A linkage matrix compatible with MATLAB(TM)'s hierarchical clustering functions.

Routines for visualizing flat clusters.

| dendrogram(Z[, p, truncate_mode, ...]) | Plots the hiearchical clustering defined by the linkage Z as a |
| :---: | :---: |
| scipy.cluster.hierarchy.dend | ram $(Z, p=30$, truncate_mode $=$ None, color_threshold $=$ None get_leaves=True, orientation='top', <br> bels $=$ None, count_sort=False, distance_sort=False, show_leaf_counts=True, no_plot=False, no_labels=False, color_list=None, leaf_font_size $=$ None , leaf_rotation=None, leaf_label_func=None, no_leaves=False, show_contracted $=$ False, link_color_func=None) |

Plots the hiearchical clustering defined by the linkage Z as a dendrogram. The dendrogram illustrates how each cluster is composed by drawing a $U$-shaped link between a non-singleton cluster and its children. The height of the top of the U-link is the distance between its children clusters. It is also the cophenetic distance between original observations in the two children clusters. It is expected that the distances in $\mathrm{Z}[:, 2]$ be monotonic, otherwise crossings appear in the dendrogram.

## Parameters

$\mathbf{Z}$ : ndarray
The linkage matrix encoding the hierarchical clustering to render as a dendrogram. See the linkage function for more information on the format of Z .
p:int, optional
The p parameter for truncate_mode.
truncate_mode : str, optional
The dendrogram can be hard to read when the original observation matrix from which the linkage is derived is large. Truncation is used to condense the dendrogram. There are several modes:

- None/'none': no truncation is performed (Default)
- 'lastp': the last p non-singleton formed in the linkage
are the only non-leaf nodes in the linkage; they correspond to to rows $Z[n-p-2$ : end $]$ in $Z$. All other non-singleton clusters are contracted into leaf nodes.
- 'mlab': This corresponds to MATLAB(TM) behavior. (not
implemented yet)
- 'level'/'mtica': no more than $p$ levels of the
dendrogram tree are displayed. This corresponds to Mathematica(TM) behavior.
color_threshold : double, optional
For brevity, let $t$ be the color_threshold. Colors all the descendent links below a cluster node $k$ the same color if $k$ is the first node below the cut threshold $t$. All links connecting nodes with distances greater than or equal to the threshold are colored blue. If $t$ is less than or equal to zero, all nodes are colored blue.

If color_threshold is None or 'default', corresponding with MATLAB(TM) behavior, the threshold is set to $0.7 \star \max (\mathrm{Z}[:, 2])$.
get_leaves : bool, optional
Includes a list R [' leaves' ] $=\mathrm{H}$ in the result dictionary. For each $i, \mathrm{H}[\mathrm{i}]==j$, cluster node $j$ appears in the $i$ th position in the left-to-right traversal of the leaves, where $j<2 n-1$ and $i<n$.
orientation : str, optional
The direction to plot the dendrogram, which can be any of the following strings

- 'top': plots the root at the top, and plot descendent
links going downwards. (default).
- 'bottom': plots the root at the bottom, and plot descendent
links going upwards.
- 'left': plots the root at the left, and plot descendent
links going right.
- 'right': plots the root at the right, and plot descendent
links going left.
labels : ndarray, optional
By default labels is None so the index of the original observation is used to label the leaf nodes. Otherwise, this is an $n$-sized list (or tuple). The labels [i] value is the text to put under the $i$ th leaf node only if it corresponds to an original observation and not a non-singleton cluster.
count_sort : str or bool, optional
For each node n , the order (visually, from left-to-right) n's two descendent links are plotted is determined by this parameter, which can be any of the following values:
- False: nothing is done.
- 'ascending'/True: the child with the minimum number of
original objects in its cluster is plotted first.
- 'descendent': the child with the maximum number of original objects in its cluster is plotted first.

Note distance_sort and count_sort cannot both be True.
distance_sort : str or bool, optional
For each node n, the order (visually, from left-to-right) n's two descendent links are plotted is determined by this parameter, which can be any of the following values:

- False: nothing is done.
- 'ascending'/True: the child with the minimum distance
between its direct descendents is plotted first.
- 'descending': the child with the maximum distance
between its direct descendents is plotted first.

Note distance_sort and count_sort cannot both be True.
show_leaf_counts : bool, optional
When True, leaf nodes representing $k>1$ original observation are labeled with the number of observations they contain in parentheses.

## no_plot : bool, optional

When True, the final rendering is not performed. This is useful if only the data structures computed for the rendering are needed or if matplotlib is not available.
no_labels : bool, optional
When True, no labels appear next to the leaf nodes in the rendering of the dendrogram.
leaf_label_rotation : double, optional
Specifies the angle (in degrees) to rotate the leaf labels. When unspecified, the rotation based on the number of nodes in the dendrogram. (Default=0)
leaf_font_size : int, optional
Specifies the font size (in points) of the leaf labels. When unspecified, the size based on the number of nodes in the dendrogram.
leaf_label_func : lambda or function, optional
When leaf_label_func is a callable function, for each leaf with cluster index $k<$ $2 n-1$. The function is expected to return a string with the label for the leaf.

Indices $k<n$ correspond to original observations while indices $k \geq n$ correspond to non-singleton clusters.

For example, to label singletons with their node id and non-singletons with their id, count, and inconsistency coefficient, simply do:

```
First define the leaf label function.
def llf(id):
 if id < n:
 return str(id)
 else:
 return '[%d %d %1.2f]' % (id, count, R[n-id,3])
The text for the leaf nodes is going to be big so force
a rotation of 90 degrees.
dendrogram(Z, leaf_label_func=llf, leaf_rotation=90)
```

show_contracted : bool
When True the heights of non-singleton nodes contracted into a leaf node are plotted as crosses along the link connecting that leaf node. This really is only useful when truncation is used (see truncate_mode parameter).
link_color_func : lambda/function
When a callable function, link_color_function is called with each non-singleton id corresponding to each $U$-shaped link it will paint. The function is expected to return the color to paint the link, encoded as a matplotlib color string code.

For example:

```
dendrogram(Z, link_color_func=lambda k: colors[k])
```

colors the direct links below each untruncated non-singleton node k using colors[k].

## Returns

$\mathbf{R}$ : dict
A dictionary of data structures computed to render the dendrogram. Its has the following keys:

- 'icoords': a list of lists [I1, I2, ..., Ip] where

Ik is a list of 4 independent variable coordinates corresponding to the line that represents the k'th link painted.

- 'dcoords': a list of lists [I2, I2, ..., Ip] where

Ik is a list of 4 independent variable coordinates corresponding to the line that represents the k'th link painted.

- 'ivl': a list of labels corresponding to the leaf nodes.
- 'leaves': for each i, H [i] == j, cluster node
$j$ appears in the $i$ th position in the left-to-right traversal of the leaves, where $j<2 n-1$ and $i<n$. If $j$ is less than $n$, the $i$ th leaf node corresponds to an original observation. Otherwise, it corresponds to a non-singleton cluster.

These are data structures and routines for representing hierarchies as tree objects.

| ClusterNode(id[, left, <br> right, dist, count] $)$ | A tree node class for representing a cluster. |
| :--- | :--- |
| leaves_list(Z) | Returns a list of leaf node ids (corresponding to observation vector index) as they <br> appear in the tree from left to right. |
| to_tree(Z[, rd]) | Converts a hierarchical clustering encoded in the matrix Z (by |

class scipy.cluster.hierarchy.ClusterNode (id, left=None, right=None, dist=0, count=1)
A tree node class for representing a cluster.
Leaf nodes correspond to original observations, while non-leaf nodes correspond to non-singleton clusters.
The to_tree function converts a matrix returned by the linkage function into an easy-to-use tree representation.
See Also:
to_tree
for converting a linkage matrix Z into a tree object.

## Methods

```
 get_count
 get_id
 get_left
 get_right
 is_leaf
 pre_order
```

scipy.cluster.hierarchy.leaves_list ( $Z$ )

Returns a list of leaf node ids (corresponding to observation vector index) as they appear in the tree from left to right. Z is a linkage matrix.

## Parameters

Z : ndarray
The hierarchical clustering encoded as a matrix. See linkage for more information.

## Returns

L: ndarray
The list of leaf node ids.
scipy.cluster.hierarchy.to_tree ( $Z$, rd=False)
Converts a hierarchical clustering encoded in the matrix $z$ (by linkage) into an easy-to-use tree object. The reference r to the root ClusterNode object is returned.
Each ClusterNode object has a left, right, dist, id, and count attribute. The left and right attributes point to ClusterNode objects that were combined to generate the cluster. If both are None then the ClusterNode object is a leaf node, its count must be 1 , and its distance is meaningless but set to 0 .
Note: This function is provided for the convenience of the library user. ClusterNodes are not used as input to any of the functions in this library.

## Parameters

Z : ndarray
The linkage matrix in proper form (see the linkage function documentation).
rd : bool, optional
When False, a reference to the root ClusterNode object is returned. Otherwise, a tuple ( $\mathrm{r}, \mathrm{d}$ ) is returned. r is a reference to the root node while d is a dictionary mapping cluster ids to ClusterNode references. If a cluster id is less than n , then it corresponds to a singleton cluster (leaf node). See linkage for more information on the assignment of cluster ids to clusters.

## Returns

$$
\mathbf{L}: \text { list }
$$

The pre-order traversal.
These are predicates for checking the validity of linkage and inconsistency matrices as well as for checking isomorphism of two flat cluster assignments.

| is_valid_im(R[, warning, throw, name]) | Returns True if the inconsistency matrix passed is valid. |
| :--- | :--- |
| is_valid_linkage(Z[, warning, throw, | Checks the validity of a linkage matrix. |
| name]) | Determines if two different cluster assignments T1 and |
| is_isomorphic(T1, T2) | Returns True if the linkage passed is monotonic. The linkage |
| is_monotonic(Z) | Checks if a linkage matrix Z and condensed distance matrix <br> correspond(Z, Y) <br> num_obs_linkage(Z) |
|  | Returns the number of original observations of the linkage matrix <br> passed. |

scipy.cluster.hierarchy.is_valid_im ( $R$, warning=False, throw=False, name=None)
Returns True if the inconsistency matrix passed is valid.
It must be a $n$ by 4 numpy array of doubles. The standard deviations $\mathrm{R}[:, 1]$ must be nonnegative. The link counts $\mathrm{R}[:, 2]$ must be positive and no greater than $n-1$.

## Parameters

$\mathbf{R}$ : ndarray
The inconsistency matrix to check for validity.
warning : bool, optional
When True, issues a Python warning if the linkage matrix passed is invalid.
throw : bool, optional
When True, throws a Python exception if the linkage matrix passed is invalid.
name : str, optional
This string refers to the variable name of the invalid linkage matrix.

## Returns

b: bool
True if the inconsistency matrix is valid.
scipy.cluster.hierarchy.is_valid_linkage ( $Z$, warning=False, throw=False, name=None)
Checks the validity of a linkage matrix. A linkage matrix is valid if it is a two dimensional nd-array (type double) with $n$ rows and 4 columns. The first two columns must contain indices between 0 and $2 n-1$. For a given row i, $0 \leq \mathrm{Z}[\mathbf{i}, 0] \leq i+n-1$ and $0 \leq Z[i, 1] \leq i+n-1$ (i.e. a cluster cannot join another cluster unless the cluster being joined has been generated.)

Parameters
$\mathbf{Z}$ : array_like
Linkage matrix.
warning : bool, optional
When True, issues a Python warning if the linkage matrix passed is invalid.
throw : bool, optional
When True, throws a Python exception if the linkage matrix passed is invalid.
name : str, optional
This string refers to the variable name of the invalid linkage matrix.

## Returns

b: bool
True iff the inconsistency matrix is valid.
scipy.cluster.hierarchy.is_isomorphic (T1,T2)

Determines if two different cluster assignments T1 and T2 are equivalent.

## Parameters

T1 : ndarray
An assignment of singleton cluster ids to flat cluster ids.
T2 : ndarray
An assignment of singleton cluster ids to flat cluster ids.

## Returns

b: bool
Whether the flat cluster assignments T1 and T2 are equivalent.

```
scipy.cluster.hierarchy.is_monotonic(Z)
```

Returns True if the linkage passed is monotonic. The linkage is monotonic if for every cluster $s$ and $t$ joined, the distance between them is no less than the distance between any previously joined clusters.

## Parameters

$\mathbf{Z}$ : ndarray
The linkage matrix to check for monotonicity.

## Returns

b: bool
A boolean indicating whether the linkage is monotonic.

```
scipy.cluster.hierarchy.correspond (Z,Y)
```

Checks if a linkage matrix $Z$ and condensed distance matrix $Y$ could possibly correspond to one another.
They must have the same number of original observations for the check to succeed.
This function is useful as a sanity check in algorithms that make extensive use of linkage and distance matrices that must correspond to the same set of original observations.

## Parameters

$\mathbf{Z}$ : ndarray
The linkage matrix to check for correspondance.
Y: ndarray
The condensed distance matrix to check for correspondance.

## Returns

b: bool
A boolean indicating whether the linkage matrix and distance matrix could possibly correspond to one another.
scipy.cluster.hierarchy.num_obs_linkage $(Z)$
Returns the number of original observations of the linkage matrix passed.

## Parameters

$\mathbf{Z}$ : ndarray
The linkage matrix on which to perform the operation.

## Returns

n : int
The number of original observations in the linkage.

- MATLAB and MathWorks are registered trademarks of The MathWorks, Inc.
- Mathematica is a registered trademark of The Wolfram Research, Inc.


## References

## Copyright Notice

## Copyright (C) Damian Eads, 2007-2008. New BSD License.

```
class scipy.cluster.hierarchy.ClusterNode (id,left=None, right=None, dist=0, count=1)
```

    A tree node class for representing a cluster.
    Leaf nodes correspond to original observations, while non-leaf nodes correspond to non-singleton clusters.

The to_tree function converts a matrix returned by the linkage function into an easy-to-use tree representation.

## See Also:

```
to_tree
```

for converting a linkage matrix $Z$ into a tree object.

## Methods

```
get_count
get_id
get_left
get_right
is_leaf
pre_order
```

get_count ()
The number of leaf nodes (original observations) belonging to the cluster node nd. If the target node is a leaf, 1 is returned.

## Returns

c: int
The number of leaf nodes below the target node.
get_id()
The identifier of the target node.
For $0<=\mathrm{i}<\mathrm{n}, i$ corresponds to original observation i. For $\mathrm{n}<=\mathrm{i}<2 \mathrm{n}-1, i$ corresponds to non-singleton cluster formed at iteration $i-n$.

## Returns

id : int
The identifier of the target node.
get_left()
Return a reference to the left child tree object.

## Returns

left : ClusterNode
The left child of the target node. If the node is a leaf, None is returned.
get_right()
Returns a reference to the right child tree object.

## Returns

right : ClusterNode
The left child of the target node. If the node is a leaf, None is returned.
is_leaf()
Returns True if the target node is a leaf.

## Returns

leafness : bool
True if the target node is a leaf node.
pre_order (func=<function <lambda> at 0x4lfc758>)
Performs pre-order traversal without recursive function calls.

When a leaf node is first encountered, func is called with the leaf node as its argument, and its result is appended to the list.
For example, the statement:

```
ids = root.pre_order(lambda x: x.id)
```

returns a list of the node ids corresponding to the leaf nodes of the tree as they appear from left to right.

## Parameters

func : function
Applied to each leaf ClusterNode object in the pre-order traversal. Given the i'th leaf node in the pre-ordeR traversal n [i], the result of func(n[i]) is stored in L[i]. If not provided, the index of the original observation to which the node corresponds is used.

## Returns

$\mathbf{L}$ : list
The pre-order traversal.
scipy.cluster.hierarchy.average (y)
Performs average/UPGMA linkage on the condensed distance matrix y. See linkage for more information on the return structure and algorithm.

## Parameters

y : ndarray
The upper triangular of the distance matrix. The result of pdist is returned in this form.

## Returns

$\mathbf{Z}$ : ndarray
A linkage matrix containing the hierarchical clustering. See the linkage function documentation for more information on its structure.

## See Also:

linkage
for advanced creation of hierarchical clusterings.
scipy.cluster.hierarchy.centroid (y)
Performs centroid/UPGMC linkage. See linkage for more information on the return structure and algorithm.
The following are common calling conventions:
$1 . Z=$ centroid $(y)$
Performs centroid/UPGMC linkage on the condensed distance matrix y. See linkage for more information on the return structure and algorithm.

```
2.Z = centroid(X)
```

Performs centroid/UPGMC linkage on the observation matrix $X$ using Euclidean distance as the distance metric. See linkage for more information on the return structure and algorithm.

## Parameters

$\mathbf{Q}$ : ndarray

A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that pdist returns. Alternatively, a collection of $m$ observation vectors in $n$ dimensions may be passed as a m by $n$ array.

## Returns

$\mathbf{Z}$ : ndarray
A linkage matrix containing the hierarchical clustering. See the linkage function documentation for more information on its structure.

## See Also:

linkage
for advanced creation of hierarchical clusterings.
scipy.cluster.hierarchy.complete (y)
Performs complete complete/max/farthest point linkage on the condensed distance matrix y. See linkage for more information on the return structure and algorithm.

## Parameters

$\mathbf{y}$ : ndarray
The upper triangular of the distance matrix. The result of pdist is returned in this form.

## Returns

Z: ndarray
A linkage matrix containing the hierarchical clustering. See the linkage function documentation for more information on its structure.
scipy.cluster.hierarchy. cophenet ( $Z, Y=$ None)
Calculates the cophenetic distances between each observation in the hierarchical clustering defined by the linkage $Z$.

Suppose $p$ and $q$ are original observations in disjoint clusters $s$ and $t$, respectively and $s$ and $t$ are joined by a direct parent cluster $u$. The cophenetic distance between observations $i$ and $j$ is simply the distance between clusters $s$ and $t$.

## Parameters

$\mathbf{Z}$ : ndarray
The hierarchical clustering encoded as an array (see linkage function).
$\mathbf{Y}$ : ndarray (optional)
Calculates the cophenetic correlation coefficient c of a hierarchical clustering defined by the linkage matrix $Z$ of a set of $n$ observations in $m$ dimensions. Y is the condensed distance matrix from which Z was generated.

## Returns

res: tuple
A tuple (c, $\{d\}$ ):

- c
[ndarray] The cophentic correlation distance (if y is passed).
- d
[ndarray] The cophenetic distance matrix in condensed form. The $i j$ th entry is the cophenetic distance between original observations $i$ and $j$.
scipy.cluster.hierarchy.correspond ( $Z, Y$ )
Checks if a linkage matrix Z and condensed distance matrix Y could possibly correspond to one another.
They must have the same number of original observations for the check to succeed.
This function is useful as a sanity check in algorithms that make extensive use of linkage and distance matrices that must correspond to the same set of original observations.


## Parameters

Z: ndarray
The linkage matrix to check for correspondance.
Y : ndarray
The condensed distance matrix to check for correspondance.

## Returns

b: bool
A boolean indicating whether the linkage matrix and distance matrix could possibly correspond to one another.
scipy.cluster.hierarchy.dendrogram $(Z, p=30$, truncate_mode=None, color_threshold=None, get_leaves=True, orientation='top', labels=None, count_sort=False, distance_sort=False, show_leaf_counts=True, no_plot=False, no_labels=False, color_list=None, leaf_font_size=None, leaf_rotation=None, leaf_label_func=None, no_leaves =False, show_contracted $=$ False, link_color_func=None)
Plots the hiearchical clustering defined by the linkage Z as a dendrogram. The dendrogram illustrates how each cluster is composed by drawing a U-shaped link between a non-singleton cluster and its children. The height of the top of the U-link is the distance between its children clusters. It is also the cophenetic distance between original observations in the two children clusters. It is expected that the distances in $\mathrm{Z}[:, 2]$ be monotonic, otherwise crossings appear in the dendrogram.

## Parameters

$\mathbf{Z}$ : ndarray
The linkage matrix encoding the hierarchical clustering to render as a dendrogram. See the linkage function for more information on the format of $Z$.
p:int, optional
The $p$ parameter for truncate_mode.
truncate_mode : str, optional
The dendrogram can be hard to read when the original observation matrix from which the linkage is derived is large. Truncation is used to condense the dendrogram. There are several modes:

- None/'none': no truncation is performed (Default)
- 'lastp': the last p non-singleton formed in the linkage
are the only non-leaf nodes in the linkage; they correspond to to rows $Z[n-p-2$ : end $]$ in $Z$. All other non-singleton clusters are contracted into leaf nodes.
- 'mlab': This corresponds to MATLAB(TM) behavior. (not
implemented yet)
- 'level'/'mtica': no more than $p$ levels of the
dendrogram tree are displayed. This corresponds to Mathematica(TM) behavior.
color_threshold : double, optional
For brevity, let $t$ be the color_threshold. Colors all the descendent links below a cluster node $k$ the same color if $k$ is the first node below the cut threshold $t$. All links connecting nodes with distances greater than or equal to the threshold are colored blue. If $t$ is less than or equal to zero, all nodes are colored blue. If color_threshold is None or 'default', corresponding with MATLAB(TM) behavior, the threshold is set to $0.7 * \max (\mathrm{Z}[:, 2])$.


## get_leaves : bool, optional

Includes a list R [' leaves' ] =H in the result dictionary. For each $i, \mathrm{H}$ [i] == j, cluster node $j$ appears in the $i$ th position in the left-to-right traversal of the leaves, where $j<2 n-1$ and $i<n$.
orientation : str, optional
The direction to plot the dendrogram, which can be any of the following strings

- 'top': plots the root at the top, and plot descendent
links going downwards. (default).
- 'bottom': plots the root at the bottom, and plot descendent
links going upwards.
- 'left': plots the root at the left, and plot descendent
links going right.
- 'right': plots the root at the right, and plot descendent
links going left.
labels : ndarray, optional
By default labels is None so the index of the original observation is used to label the leaf nodes. Otherwise, this is an $n$-sized list (or tuple). The labels [i] value is the text to put under the $i$ th leaf node only if it corresponds to an original observation and not a non-singleton cluster.
count_sort : str or bool, optional
For each node n, the order (visually, from left-to-right) n's two descendent links are plotted is determined by this parameter, which can be any of the following values:
- False: nothing is done.
- 'ascending'/True: the child with the minimum number of original objects in its cluster is plotted first.
- 'descendent': the child with the maximum number of original objects in its cluster is plotted first.
Note distance_sort and count_sort cannot both be True.
distance_sort : str or bool, optional
For each node n , the order (visually, from left-to-right) n's two descendent links are plotted is determined by this parameter, which can be any of the following values:
- False: nothing is done.
- 'ascending'/True: the child with the minimum distance
between its direct descendents is plotted first.
- 'descending': the child with the maximum distance
between its direct descendents is plotted first.
Note distance_sort and count_sort cannot both be True.
show_leaf_counts : bool, optional
When True, leaf nodes representing $k>1$ original observation are labeled with the number of observations they contain in parentheses.
no_plot : bool, optional
When True, the final rendering is not performed. This is useful if only the data structures computed for the rendering are needed or if matplotlib is not available.
no_labels : bool, optional
When True, no labels appear next to the leaf nodes in the rendering of the dendrogram.
leaf_label_rotation : double, optional
Specifies the angle (in degrees) to rotate the leaf labels. When unspecified, the rotation based on the number of nodes in the dendrogram. (Default=0)
leaf_font_size : int, optional
Specifies the font size (in points) of the leaf labels. When unspecified, the size based on the number of nodes in the dendrogram.
leaf_label_func : lambda or function, optional
When leaf_label_func is a callable function, for each leaf with cluster index $k<$ $2 n-1$. The function is expected to return a string with the label for the leaf.
Indices $k<n$ correspond to original observations while indices $k \geq n$ correspond to non-singleton clusters.

For example, to label singletons with their node id and non-singletons with their id, count, and inconsistency coefficient, simply do:

```
First define the leaf label function.
def llf(id):
 if id < n:
 return str(id)
 else:
 return '[%d %d %1.2f]' % (id, count, R[n-id,3])
```

```
The text for the leaf nodes is going to be kig so force
a rotation of }90\mathrm{ degrees.
dendrogram(Z, leaf_label_func=llf, leaf_rotation=90)
```

show_contracted : bool
When True the heights of non-singleton nodes contracted into a leaf node are plotted as crosses along the link connecting that leaf node. This really is only useful when truncation is used (see truncate_mode parameter).
link_color_func : lambda/function
When a callable function, link_color_function is called with each non-singleton id corresponding to each $U$-shaped link it will paint. The function is expected to return the color to paint the link, encoded as a matplotlib color string code.
For example:

```
dendrogram(Z, link_color_func=lambda k: colors[k])
```

colors the direct links below each untruncated non-singleton node k using colors[k].

## Returns

R : dict
A dictionary of data structures computed to render the dendrogram. Its has the following keys:

- 'icoords’: a list of lists [I1, I2, ..., Ip] where

Ik is a list of 4 independent variable coordinates corresponding to the line that represents the k'th link painted.

- 'dcoords': a list of lists [I2, I2, ..., Ip] where

Ik is a list of 4 independent variable coordinates corresponding to the line that represents the k'th link painted.

- 'ivl': a list of labels corresponding to the leaf nodes.
- 'leaves': for each i, H[i] == j, cluster node
$j$ appears in the $i$ th position in the left-to-right traversal of the leaves, where $j<2 n-1$ and $i<n$. If $j$ is less than $n$, the $i$ th leaf node corresponds to an original observation. Otherwise, it corresponds to a non-singleton cluster.

```
scipy.cluster.hierarchy.fcluster (Z, t, criterion='inconsistent', depth=2, R=None, mon-
 ocrit=None)
```

Forms flat clusters from the hierarchical clustering defined by the linkage matrix Z .

## Parameters

$\mathbf{Z}$ : ndarray
The hierarchical clustering encoded with the matrix returned by the linkage function.
t : float
The threshold to apply when forming flat clusters.
criterion : str, optional
The criterion to use in forming flat clusters. This can be any of the following values:

## 'inconsistent':

If a cluster node and all its descendants have an inconsistent value less than or equal to $t$ then all its leaf descendants belong to the same flat cluster. When no non-singleton cluster meets this criterion, every node is assigned to its own cluster. (Default)

## 'distance':

Forms flat clusters so that the original observations in each flat cluster have no greater a cophenetic distance than $t$.

## 'maxclust':

Finds a minimum threshold $r$ so that the cophenetic distance between any two original observations in the same flat cluster is no more than $r$ and no more than $t$ flat clusters are formed.

## 'monocrit':

Forms a flat cluster from a cluster node c with index i when monocrit[j] $<=t$.

For example, to threshold on the maximum mean distance as computed in the inconsistency matrix R with a threshold of 0.8 do:

```
MR = maxRstat(Z, R, 3)
cluster(Z, t=0.8, criterion='monocrit',
monocrit=MR)
```

'maxclust_monocrit':
Forms a flat cluster from a non-singleton cluster node $c$ when monocrit[i] <=rfor all cluster indices i below and including c. r is minimized such that no more than $t$ flat clusters are formed. monocrit must be monotonic. For example, to minimize the threshold $t$ on maximum inconsistency values so that no more than 3 flat clusters are formed, do:

```
MI = maxinconsts(Z, R)
cluster(Z, t=3, criterion='maxclust_monocrit',
monocrit=MI)
```

depth : int, optional
The maximum depth to perform the inconsistency calculation. It has no meaning for the other criteria. Default is 2 .
$\mathbf{R}$ : ndarray, optional
The inconsistency matrix to use for the 'inconsistent' criterion. This matrix is computed if not provided.
monocrit : ndarray, optional
An array of length $n-1$. monocrit [i] is the statistics upon which non-singleton $i$ is thresholded. The monocrit vector must be monotonic, i.e. given a node c with index $i$, for all node indices $j$ corresponding to nodes below $c$, monocrit[i] >= monocrit[j].

## Returns

fcluster : ndarray
An array of length n . $\mathrm{T}[\mathrm{i}]$ is the flat cluster number to which original observation i belongs.

```
scipy.cluster.hierarchy.fclusterdata(X, t, criterion='inconsistent', metric='euclidean',
 depth \(=2\), method='single', \(R=\) None \()\)
```

Cluster observation data using a given metric.
Clusters the original observations in the n-by-m data matrix $X$ ( $n$ observations in $m$ dimensions), using the euclidean distance metric to calculate distances between original observations, performs hierarchical clustering using the single linkage algorithm, and forms flat clusters using the inconsistency method with $t$ as the cut-off threshold.

A one-dimensional array T of length n is returned. $\mathrm{T}[\mathrm{i}]$ is the index of the flat cluster to which the original observation i belongs.

## Parameters

X : ndarray
n by m data matrix with n observations in m dimensions.
t : float
The threshold to apply when forming flat clusters.
criterion : str, optional
Specifies the criterion for forming flat clusters. Valid values are 'inconsistent' (default), 'distance', or 'maxclust' cluster formation algorithms. See fcluster for descriptions.
method : str, optional
The linkage method to use (single, complete, average, weighted, median centroid, ward). See linkage for more information. Default is "single".
metric : str, optional
The distance metric for calculating pairwise distances. See distance.pdist for descriptions and linkage to verify compatibility with the linkage method.
t: double, optional
The cut-off threshold for the cluster function or the maximum number of clusters (criterion='maxclust').
depth : int, optional
The maximum depth for the inconsistency calculation. See inconsistent for more information.

R: ndarray, optional
The inconsistency matrix. It will be computed if necessary if it is not passed.

## Returns

T: ndarray
A vector of length n . $\mathrm{T}[\mathrm{i}]$ is the flat cluster number to which original observation i belongs.

## Notes

This function is similar to the MATLAB function clusterdata.
scipy.cluster.hierarchy.from_mlab_linkage $(Z)$
Converts a linkage matrix generated by $\operatorname{MATLAB}(T M)$ to a new linkage matrix compatible with this module.
The conversion does two things:
-the indices are converted from $1 \ldots \mathrm{~N}$ to $0 \ldots(\mathrm{~N}-1)$ form, and
-a fourth column $\mathrm{Z}[:, 3]$ is added where $\mathrm{Z}[\mathrm{i}, 3]$ is represents the number of original observations (leaves) in the non-singleton cluster i .
This function is useful when loading in linkages from legacy data files generated by MATLAB.

## Parameters

$\mathbf{Z}$ : ndarray
A linkage matrix generated by MATLAB(TM).

## Returns

ZS : ndarray
A linkage matrix compatible with this library.
scipy.cluster.hierarchy.inconsistent ( $Z, d=2$ )
Calculates inconsistency statistics on a linkage.
Note: This function behaves similarly to the MATLAB(TM) inconsistent function.

## Parameters

d : int
The number of links up to $d$ levels below each non-singleton cluster.
Z : ndarray
The $(n-1)$ by 4 matrix encoding the linkage (hierarchical clustering). See linkage documentation for more information on its form.

## Returns

$\mathbf{R}$ : ndarray
A $(n-1)$ by 5 matrix where the $i$ 'th row contains the link statistics for the nonsingleton cluster i. The link statistics are computed over the link heights for links $d$ levels below the cluster i. $\mathrm{R}[i, 0]$ and $\mathrm{R}[i, 1]$ are the mean and standard deviation of the link heights, respectively; $R[i, 2]$ is the number of links included in the calculation; and $R[i, 3]$ is the inconsistency coefficient,

$$
\operatorname{rac} \mathrm{Z}[\mathrm{i}, 2]-\mathrm{R}[\mathrm{i}, 0] R[i, 1] .
$$

scipy.cluster.hierarchy.is_isomorphic (T1, T2)

Determines if two different cluster assignments T1 and T2 are equivalent.

## Parameters

T1 : ndarray
An assignment of singleton cluster ids to flat cluster ids.
T2 : ndarray
An assignment of singleton cluster ids to flat cluster ids.

## Returns

b: bool
Whether the flat cluster assignments T1 and T2 are equivalent.

```
scipy.cluster.hierarchy.is_monotonic(Z)
```

Returns True if the linkage passed is monotonic. The linkage is monotonic if for every cluster $s$ and $t$ joined, the distance between them is no less than the distance between any previously joined clusters.

## Parameters

$\mathbf{Z}$ : ndarray
The linkage matrix to check for monotonicity.

## Returns

b: bool
A boolean indicating whether the linkage is monotonic.
scipy.cluster.hierarchy.is_valid_im ( $R$, warning=False, throw=False, name=None)
Returns True if the inconsistency matrix passed is valid.
It must be a $n$ by 4 numpy array of doubles. The standard deviations $\mathrm{R}[:, 1]$ must be nonnegative. The link counts $\mathrm{R}[:, 2]$ must be positive and no greater than $n-1$.

## Parameters

$\mathbf{R}$ : ndarray
The inconsistency matrix to check for validity.
warning : bool, optional
When True, issues a Python warning if the linkage matrix passed is invalid.
throw : bool, optional
When True, throws a Python exception if the linkage matrix passed is invalid.
name : str, optional
This string refers to the variable name of the invalid linkage matrix.

## Returns

b: bool
True if the inconsistency matrix is valid.
scipy.cluster.hierarchy.is_valid_linkage ( $Z$, warning $=$ False, throw $=$ False, name=None )
Checks the validity of a linkage matrix. A linkage matrix is valid if it is a two dimensional nd-array (type double) with $n$ rows and 4 columns. The first two columns must contain indices between 0 and $2 n-1$. For a given row i, $0 \leq \mathrm{Z}[\mathrm{i}, 0] \leq i+n-1$ and $0 \leq Z[i, 1] \leq i+n-1$ (i.e. a cluster cannot join another cluster unless the cluster being joined has been generated.)

## Parameters

Z : array_like
Linkage matrix.
warning : bool, optional
When True, issues a Python warning if the linkage matrix passed is invalid.
throw : bool, optional
When True, throws a Python exception if the linkage matrix passed is invalid.
name : str, optional
This string refers to the variable name of the invalid linkage matrix.

## Returns

b: bool
True iff the inconsistency matrix is valid.

```
scipy.cluster.hierarchy.leaders(Z,T)
```

    \((\mathrm{L}, \mathrm{M})=\) leaders \((\mathrm{Z}, \mathrm{T})\) :
    Returns the root nodes in a hierarchical clustering corresponding to a cut defined by a flat cluster assignment vector $T$. See the fcluster function for more information on the format of $T$.

For each flat cluster $j$ of the $k$ flat clusters represented in the n -sized flat cluster assignment vector T , this function finds the lowest cluster node $i$ in the linkage tree Z such that:
-leaf descendents belong only to flat cluster j (i.e. $\mathrm{T}[\mathrm{p}]==\mathrm{j}$ for all $p$ in $S(i)$ where $S(i)$ is the set of leaf ids of leaf nodes descendent with cluster node $i$ )
$\bullet$ there does not exist a leaf that is not descendent with $i$ that also belongs to cluster $j$ (i.e. $\mathrm{T}[\mathrm{q}]!=j$ for all $q$ not in $S(i)$ ). If this condition is violated, T is not a valid cluster assignment vector, and an exception will be thrown.

## Parameters

$\mathbf{Z}$ : ndarray
The hierarchical clustering encoded as a matrix. See linkage for more information.

T: ndarray
The flat cluster assignment vector.

## Returns

A tuple (L, M) with :
$\mathbf{L}$ : ndarray
The leader linkage node id's stored as a k-element 1D array where $k$ is the number of flat clusters found in $T$.
$L[j]=i$ is the linkage cluster node id that is the leader of flat cluster with id M[j]. If $i<n$, $i$ corresponds to an original observation, otherwise it corresponds to a non-singleton cluster.

For example: if L[3]=2 and $\mathrm{M}[3]=8$, the flat cluster with id 8 's leader is linkage node 2.
M : ndarray
The leader linkage node id's stored as a k-element 1D array where $k$ is the number of flat clusters found in $T$. This allows the set of flat cluster ids to be any arbitrary set of $k$ integers.
scipy.cluster.hierarchy.leaves_list ( $Z$ )
Returns a list of leaf node ids (corresponding to observation vector index) as they appear in the tree from left to right. Z is a linkage matrix.

## Parameters

Z: ndarray
The hierarchical clustering encoded as a matrix. See linkage for more information.

## Returns

L: ndarray
The list of leaf node ids.
scipy.cluster.hierarchy.linkage ( $y$, method='single', metric='euclidean')
Performs hierarchical/agglomerative clustering on the condensed distance matrix y.
y must be a $\binom{n}{2}$ sized vector where n is the number of original observations paired in the distance matrix. The behavior of this function is very similar to the MATLAB linkage function.

A 4 by $(n-1)$ matrix $Z$ is returned. At the $i$-th iteration, clusters with indices $Z[i, 0]$ and $Z[i, 1]$ are combined to form cluster $n+i$. A cluster with an index less than $n$ corresponds to one of the $n$ original observations. The distance between clusters Z[i, 0] and Z[i, 1] is given by Z[i, 2]. The fourth value $Z[i, 3]$ represents the number of original observations in the newly formed cluster.

The following linkage methods are used to compute the distance $d(s, t)$ between two clusters $s$ and $t$. The algorithm begins with a forest of clusters that have yet to be used in the hierarchy being formed. When two clusters $s$ and $t$ from this forest are combined into a single cluster $u, s$ and $t$ are removed from the forest, and $u$ is added to the forest. When only one cluster remains in the forest, the algorithm stops, and this cluster becomes the root.

A distance matrix is maintained at each iteration. The $\mathrm{d}[i, j]$ entry corresponds to the distance between cluster $i$ and $j$ in the original forest.

At each iteration, the algorithm must update the distance matrix to reflect the distance of the newly formed cluster u with the remaining clusters in the forest.

Suppose there are $|u|$ original observations $u[0], \ldots, u[|u|-1]$ in cluster $u$ and $|v|$ original objects $v[0], \ldots, v[|v|-1]$ in cluster $v$. Recall $s$ and $t$ are combined to form cluster $u$. Let $v$ be any remaining cluster in the forest that is not $u$.

The following are methods for calculating the distance between the newly formed cluster $u$ and each $v$.
-method='single’ assigns

$$
d(u, v)=\min (\operatorname{dist}(u[i], v[j]))
$$

for all points $i$ in cluster $u$ and $j$ in cluster $v$. This is also known as the Nearest Point Algorithm. -method='complete' assigns

$$
d(u, v)=\max (\operatorname{dist}(u[i], v[j]))
$$

for all points $i$ in cluster u and $j$ in cluster $v$. This is also known by the Farthest Point Algorithm or Voor Hees Algorithm.
-method='average' assigns

$$
d(u, v)=\sum_{i j} \frac{d(u[i], v[j])}{(|u| *|v|)}
$$

for all points $i$ and $j$ where $|u|$ and $|v|$ are the cardinalities of clusters $u$ and $v$, respectively. This is also called the UPGMA algorithm. This is called UPGMA.
-method='weighted' assigns

$$
d(u, v)=(\operatorname{dist}(s, v)+\operatorname{dist}(t, v)) / 2
$$

where cluster u was formed with cluster s and t and v is a remaining cluster in the forest. (also called WPGMA)
-method='centroid' assigns

$$
\operatorname{dist}(s, t)=\left\|c_{s}-c_{t}\right\|_{2}
$$

where $c_{s}$ and $c_{t}$ are the centroids of clusters $s$ and $t$, respectively. When two clusters $s$ and $t$ are combined into a new cluster $u$, the new centroid is computed over all the original objects in clusters $s$ and $t$. The distance then becomes the Euclidean distance between the centroid of $u$ and the centroid of a remaining cluster $v$ in the forest. This is also known as the UPGMC algorithm.
-method='median' assigns math: $d(s, t)$ like the centroid method. When two clusters $s$ and $t$ are combined into a new cluster $u$, the average of centroids s and give the new centroid $u$. This is also known as the WPGMC algorithm.
-method='ward' uses the Ward variance minimization algorithm. The new entry $d(u, v)$ is computed as follows,

$$
d(u, v)=\sqrt{\frac{|v|+|s|}{T} d(v, s)^{2}+\frac{|v|+|t|}{T} d(v, t)^{2}+\frac{|v|}{T} d(s, t)^{2}}
$$

where $u$ is the newly joined cluster consisting of clusters $s$ and $t, v$ is an unused cluster in the forest, $T=|v|+|s|+|t|$, and $|*|$ is the cardinality of its argument. This is also known as the incremental algorithm.

Warning: When the minimum distance pair in the forest is chosen, there may be two or more pairs with the same minimum distance. This implementation may chose a different minimum than the MATLAB version.

## Parameters

$\mathbf{y}$ : ndarray
A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that pdist returns. Alternatively, a collection of $m$ observation vectors in $n$ dimensions may be passed as an $m$ by $n$ array.
method : str, optional
The linkage algorithm to use. See the Linkage Methods section below for full descriptions.
metric : str, optional
The distance metric to use. See the distance. pdist function for a list of valid distance metrics.

## Returns

$\mathbf{Z}$ : ndarray
The hierarchical clustering encoded as a linkage matrix.

## scipy.cluster.hierarchy.maxRstat ( $Z, R, i$ )

Returns the maximum statistic for each non-singleton cluster and its descendents.

## Parameters

$\mathbf{Z}$ : ndarray
The hierarchical clustering encoded as a matrix. See linkage for more information.
$\mathbf{R}$ : ndarray
The inconsistency matrix.
i : int
The column of R to use as the statistic.

## Returns

MR : ndarray
Calculates the maximum statistic for the i'th column of the inconsistency matrix $R$ for each non-singleton cluster node. $\operatorname{MR}[j]$ is the maximum over $R[Q(j)-n, i]$ where $Q(j)$ the set of all node ids corresponding to nodes below and including $j$.

```
scipy.cluster.hierarchy.maxdists(Z)
```

Returns the maximum distance between any cluster for each non-singleton cluster.

## Parameters

$\mathbf{Z}$ : ndarray
The hierarchical clustering encoded as a matrix. See linkage for more information.

## Returns

MD : ndarray
A ( $n-1$ ) sized numpy array of doubles; MD [i] represents the maximum distance between any cluster (including singletons) below and including the node with index i. More specifically, $M D[i]=Z[Q(i)-n, 2] . \max ()$ where $Q(i)$ is the set of all node indices below and including node $i$.
scipy.cluster.hierarchy.maxinconsts $(Z, R)$
Returns the maximum inconsistency coefficient for each non-singleton cluster and its descendents.

## Parameters

$\mathbf{Z}$ : ndarray
The hierarchical clustering encoded as a matrix. See linkage for more information.

R : ndarray
The inconsistency matrix.

## Returns

MI : ndarray
A monotonic ( $\mathrm{n}-1$ ) -sized numpy array of doubles.
scipy.cluster.hierarchy.median (y)
Performs median/WPGMC linkage. See linkage for more information on the return structure and algorithm.

The following are common calling conventions:

## $1 . z=\operatorname{median}(\mathrm{y})$

Performs median/WPGMC linkage on the condensed distance matrix y. See linkage for more information on the return structure and algorithm.

```
2.Z = median(X)
```

Performs median/WPGMC linkage on the observation matrix X using Euclidean distance as the distance metric. See linkage for more information on the return structure and algorithm.

## Parameters

Q : ndarray
A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that pdist returns. Alternatively, a collection of $m$ observation vectors in $n$ dimensions may be passed as a $m$ by $n$ array.

## Returns Z : ndarray

The hierarchical clustering encoded as a linkage matrix.

## See Also:

linkage
for advanced creation of hierarchical clusterings.
scipy.cluster.hierarchy.num_obs_linkage ( $Z$ )
Returns the number of original observations of the linkage matrix passed.

## Parameters

Z : ndarray
The linkage matrix on which to perform the operation.

## Returns

$\mathbf{n}$ : int
The number of original observations in the linkage.
scipy.cluster.hierarchy.set_link_color_palette (palette)
Changes the list of matplotlib color codes to use when coloring links with the dendrogram color_threshold feature.

## Parameters

palette : A list of matplotlib color codes. The order of
the color codes is the order in which the colors are cycled through when color thresholding in the dendrogram.
scipy.cluster.hierarchy.single (y)
Performs single/min/nearest linkage on the condensed distance matrix y. See linkage for more information on the return structure and algorithm.

## Parameters

$\mathbf{y}$ : ndarray
The upper triangular of the distance matrix. The result of pdist is returned in this form.

## Returns

Z : ndarray
The linkage matrix.
See Also:
linkage
for advanced creation of hierarchical clusterings.
scipy.cluster.hierarchy.to_mlab_linkage ( $Z$ )
Converts a linkage matrix $z$ generated by the linkage function of this module to a MATLAB(TM) compatible one. The return linkage matrix has the last column removed and the cluster indices are converted to $1 . . \mathrm{N}$ indexing.

## Parameters

$\mathbf{Z}$ : ndarray
A linkage matrix generated by this library.

## Returns

ZM : ndarray
A linkage matrix compatible with MATLAB(TM)'s hierarchical clustering functions.
scipy.cluster.hierarchy.to_tree (Z, rd=False)
Converts a hierarchical clustering encoded in the matrix z (by linkage) into an easy-to-use tree object. The reference r to the root ClusterNode object is returned.
Each ClusterNode object has a left, right, dist, id, and count attribute. The left and right attributes point to ClusterNode objects that were combined to generate the cluster. If both are None then the ClusterNode object is a leaf node, its count must be 1 , and its distance is meaningless but set to 0 .

Note: This function is provided for the convenience of the library user. ClusterNodes are not used as input to any of the functions in this library.

## Parameters

Z : ndarray
The linkage matrix in proper form (see the linkage function documentation).
rd : bool, optional
When False, a reference to the root ClusterNode object is returned. Otherwise, a tuple ( $\mathrm{r}, \mathrm{d}$ ) is returned. r is a reference to the root node while d is a dictionary mapping cluster ids to ClusterNode references. If a cluster id is less than n , then it corresponds to a singleton cluster (leaf node). See linkage for more information on the assignment of cluster ids to clusters.

## Returns

L : list
The pre-order traversal.
scipy.cluster.hierarchy.ward (y)
Performs Ward's linkage on a condensed or redundant distance matrix. See linkage for more information on the return structure and algorithm.
The following are common calling conventions:
$1 . z^{=}$ward (y) Performs Ward's linkage on the condensed distance matrix z. See linkage for more information on the return structure and algorithm.
2.2 = ward ( X ) Performs Ward's linkage on the observation matrix X using Euclidean distance as the distance metric. See linkage for more information on the return structure and algorithm.

## Parameters

Q : ndarray
A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that
pdist returns. Alternatively, a collection of $m$ observation vectors in $n$ dimensions may be passed as a $m$ by $n$ array.

## Returns

$\mathbf{Z}$ : ndarray
The hierarchical clustering encoded as a linkage matrix.

## See Also:

linkage
for advanced creation of hierarchical clusterings.

```
scipy.cluster.hierarchy.weighted(y)
```

Performs weighted/WPGMA linkage on the condensed distance matrix y. See linkage for more information on the return structure and algorithm.

## Parameters

$\mathbf{y}$ : ndarray
The upper triangular of the distance matrix. The result of pdist is returned in this form.

## Returns

 Z : ndarrayA linkage matrix containing the hierarchical clustering. See the linkage function documentation for more information on its structure.

## See Also:

## linkage

for advanced creation of hierarchical clusterings.

### 3.1.2 K-means clustering and vector quantization (scipy.cluster.vq)

## K-means Clustering and Vector Quantization Module

Provides routines for k-means clustering, generating code books from k-means models, and quantizing vectors by comparing them with centroids in a code book.
The k-means algorithm takes as input the number of clusters to generate, k , and a set of observation vectors to cluster. It returns a set of centroids, one for each of the $k$ clusters. An observation vector is classified with the cluster number or centroid index of the centroid closest to it.

A vector $v$ belongs to cluster $i$ if it is closer to centroid $i$ than any other centroids. If $v$ belongs to $i$, we say centroid $i$ is the dominating centroid of $v$. The k-means algorithm tries to minimize distortion, which is defined as the sum of the squared distances between each observation vector and its dominating centroid. Each step of the k-means algorithm refines the choices of centroids to reduce distortion. The change in distortion is used as a stopping criterion: when the change is lower than a threshold, the k-means algorithm is not making sufficient progress and terminates. One can also define a maximum number of iterations.

Since vector quantization is a natural application for k-means, information theory terminology is often used. The centroid index or cluster index is also referred to as a "code" and the table mapping codes to centroids and vice versa is often referred as a "code book". The result of k-means, a set of centroids, can be used to quantize vectors. Quantization aims to find an encoding of vectors that reduces the expected distortion.

All routines expect obs to be a M by N array where the rows are the observation vectors. The codebook is a k by N array where the $i$ 'th row is the centroid of code word $i$. The observation vectors and centroids have the same feature dimension.

As an example, suppose we wish to compress a 24-bit color image (each pixel is represented by one byte for red, one for blue, and one for green) before sending it over the web. By using a smaller 8-bit encoding, we can reduce the amount of data by two thirds. Ideally, the colors for each of the 256 possible 8 -bit encoding values should be chosen to minimize distortion of the color. Running k -means with $\mathrm{k}=256$ generates a code book of 256 codes, which fills up all possible 8 -bit sequences. Instead of sending a 3-byte value for each pixel, the 8 -bit centroid index (or code word) of the dominating centroid is transmitted. The code book is also sent over the wire so each 8 -bit code can be translated back to a 24 -bit pixel value representation. If the image of interest was of an ocean, we would expect many 24-bit blues to be represented by 8 -bit codes. If it was an image of a human face, more flesh tone colors would be represented in the code book.

## Functions

## whiten :

Normalize a group of observations so each feature has unit variance.
$v q:$
Calculate code book membership of a set of observation vectors.

## kmeans :

Clusters a set of observation vectors. Learns centroids with the k-means algorithm, trying to minimize distortion. A code book is generated that can be used to quantize vectors.

## kmeans2 :

A different implementation of k-means with more methods for initializing centroids. Uses maximum number of iterations as opposed to a distortion threshold as its stopping criterion.
scipy.cluster.vq. whiten (obs)
Normalize a group of observations on a per feature basis.
Before running k-means, it is beneficial to rescale each feature dimension of the observation set with whitening. Each feature is divided by its standard deviation across all observations to give it unit variance.

## Parameters

obs : ndarray
Each row of the array is an observation. The columns are the features seen during each observation.

$$
\begin{aligned}
& \text { obs }=\begin{array}{llll}
\# & f 0 & f 1 & f 2 \\
{\left[\begin{array}{lll}
{[ } & 1 ., & 1 ., \\
1 .], & \# 00
\end{array}\right.}
\end{array} \\
& \text { [ 2., 2., 2.], \#o1 } \\
& \text { [ 3., 3., 3.], \#o2 } \\
& \text { [ 4., 4., 4.]]) \#o3 }
\end{aligned}
$$

XXX perhaps should have an axis variable here.

## Returns

result : ndarray
Contains the values in obs scaled by the standard devation of each column.

## Examples

```
>>> from numpy import array
>>> from scipy.cluster.vq import whiten
>>> features = array([[1.9,2.3,1.7],
.. [1.5,2.5,2.2],
.. [0.8,0.6,1.7,]])
>>> whiten(features)
array([[3.41250074, 2.20300046, 5.88897275],
 [2.69407953, 2.39456571, 7.62102355],
 [1.43684242, 0.57469577, 5.88897275]])
```

scipy.cluster.vq.vq(obs, code_book)

Vector Quantization: assign codes from a code book to observations.
Assigns a code from a code book to each observation. Each observation vector in the M by N obs array is compared with the centroids in the code book and assigned the code of the closest centroid.
The features in obs should have unit variance, which can be acheived by passing them through the whiten function. The code book can be created with the k-means algorithm or a different encoding algorithm.

## Parameters

obs : ndarray
Each row of the NxM array is an observation. The columns are the "features" seen during each observation. The features must be whitened first using the whiten function or something equivalent.
code_book : ndarray
The code book is usually generated using the k-means algorithm. Each row of the array holds a different code, and the columns are the features of the code.

|  | \# | f0 | f1 | f2 | f3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| code_book = | [ [ | 1., | 2., | $3 .$, | 4.], | \#c0 |
|  | [ | 1., | 2., | $3 .$, | 4.], | \#c1 |
|  | [ | 1., | 2., | 3., | 4.]]) | \#c2 |

## Returns

code : ndarray
A length N array holding the code book index for each observation.
dist : ndarray
The distortion (distance) between the observation and its nearest code.

## Notes

This currently forces 32-bit math precision for speed. Anyone know of a situation where this undermines the accuracy of the algorithm?

## Examples

```
>>> from numpy import array
>>> from scipy.cluster.vq import vq
>>> code_book = array([[1.,1.,1.],
... [2.,2.,2.]])
>>> features = array([[1.9,2.3,1.7],
... [1.5,2.5,2.2],
... [0.8,0.6,1.7]])
>>> vq(features,code_book)
(array([1, 1, 0],'i'), array([0.43588989, 0.73484692, 0.83066239]))
```

scipy.cluster.vq. kmeans (obs, $k \_$_or_guess, iter $=20$, thresh $=1.0000000000000001 e-05$ )
Performs k-means on a set of observation vectors forming k clusters.
The k-means algorithm adjusts the centroids until sufficient progress cannot be made, i.e. the change in distortion since the last iteration is less than some threshold. This yields a code book mapping centroids to codes and vice versa.

Distortion is defined as the sum of the squared differences between the observations and the corresponding centroid.

## Parameters

obs : ndarray
Each row of the M by N array is an observation vector. The columns are the features seen during each observation. The features must be whitened first with the whiten function.
k_or_guess : int or ndarray
The number of centroids to generate. A code is assigned to each centroid, which is also the row index of the centroid in the code_book matrix generated.

The initial k centroids are chosen by randomly selecting observations from the observation matrix. Alternatively, passing a k by N array specifies the initial k centroids.
iter : int, optional
The number of times to run k-means, returning the codebook with the lowest distortion. This argument is ignored if initial centroids are specified with an array for the $k$ _or_guess parameter. This parameter does not represent the number of iterations of the $k$-means algorithm.
thresh : float, optional
Terminates the k-means algorithm if the change in distortion since the last k-means iteration is less than or equal to thresh.

## Returns

codebook : ndarray
A $k$ by $N$ array of $k$ centroids. The $i$ 'th centroid codebook[i] is represented with the code i. The centroids and codes generated represent the lowest distortion seen, not necessarily the globally minimal distortion.
distortion : float
The distortion between the observations passed and the centroids generated.

## See Also:

kmeans2
a different implementation of k-means clustering with more methods for generating initial centroids but without using a distortion change threshold as a stopping criterion.
whiten
must be called prior to passing an observation matrix to kmeans.

## Examples

```
>>> from numpy import array
```

>>> from scipy.cluster.vq import vq, kmeans, whiten
>>> features = array([[1.9.2.3],
... [ 1.5,2.5],

```
 ... [0.8,0.6],
 .. [0.4,1.8],
 ... [0.1,0.1],
 .. [0.2,1.8],
 \cdots [2.0,0.5],
 ... [0.3,1.5],
 ... [1.0,1.0]])
>>> whitened = whiten(features)
>>> book = array((whitened[0],whitened[2]))
>>> kmeans(whitened,book)
(array([[2.3110306, 2.86287398],
 [0.93218041, 1.24398691]]), 0.85684700941625547)
>>> from numpy import random
>>> random.seed((1000,2000))
>>> codes = 3
>>> kmeans(whitened,codes)
(array([[2.3110306, 2.86287398],
 [1.32544402, 0.65607529],
 [0.40782893, 2.02786907]]), 0.5196582527686241)
```

scipy.cluster.vq.kmeans2 (data, k, iter=10, thresh=1.0000000000000001e-05, minit='random',
missing = 'warn')

## Classify a set of observations into $k$ clusters using the k-means

 algorithm.The algorithm attempts to minimize the Euclidian distance between observations and centroids. Several initialization methods are included.

## Parameters

data : ndarray
A $M$ by $N$ array of $M$ observations in $N$ dimensions or a length $M$ array of $M$ onedimensional observations.
$\mathbf{k}$ : int or ndarray
The number of clusters to form as well as the number of centroids to generate. If minit initialization string is 'matrix', or if a ndarray is given instead, it is interpreted as initial cluster to use instead.
iter : int
Number of iterations of the k-means algrithm to run. Note that this differs in meaning from the iters parameter to the kmeans function.
thresh : float
(not used yet).
minit : string
Method for initialization. Available methods are 'random', 'points', 'uniform', and 'matrix':
'random': generate k centroids from a Gaussian with mean and variance estimated from the data.
'points': choose k observations (rows) at random from data for the initial centroids.
'uniform': generate k observations from the data from a uniform distribution defined by the data set (unsupported).
'matrix': interpret the k parameter as a k by M (or length k array for one-dimensional data) array of initial centroids.

## Returns

centroid : ndarray
Ak by N array of centroids found at the last iteration of k -means.
label : ndarray
label[i] is the code or index of the centroid the i 'th observation is closest to.

### 3.1.3 Vector Quantization / Kmeans

Clustering algorithms are useful in information theory, target detection, communications, compression, and other areas. The $v q$ module only supports vector quantization and the k-means algorithms. Development of self-organizing maps (SOM) and other approaches is underway.

### 3.1.4 Hierarchical Clustering

The hierarchy module provides functions for hierarchical and agglomerative clustering. Its features include generating hierarchical clusters from distance matrices, computing distance matrices from observation vectors, calculating statistics on clusters, cutting linkages to generate flat clusters, and visualizing clusters with dendrograms.

### 3.2 Constants (scipy. constants)

Physical and mathematical constants and units.

### 3.2.1 Mathematical constants

| pi | Pi |
| :--- | :--- |
| golden | Golden ratio |

### 3.2.2 Physical constants

| c | speed of light in vacuum |
| :--- | :--- |
| mu_0 | the magnetic constant $\mu_{0}$ |
| epsilon_0 | the electric constant (vacuum permittivity), $\epsilon_{0}$ |
| h | the Planck constant $h$ |
| hbar | $\hbar=h /(2 \pi)$ |
| G | Newtonian constant of gravitation |
| g | standard acceleration of gravity |
| e | elementary charge |
| R | molar gas constant |
| alpha | fine-structure constant |
| N_A | Avogadro constant |
| k | Boltzmann constant |
| sigma | Stefan-Boltzmann constant $\sigma$ |
| Wien | Wien displacement law constant |
| Rydberg | Rydberg constant |
| m_e | electron mass |
| m_p | proton mass |
| m_n | neutron mass |

### 3.2.3 Constants database

In addition to the above variables containing physical constants, scipy. constants also contains a database of additional physical constants.

```
value(key) Value in physical_constants indexed by key
unit(key) Unit in physical_constants indexed by key
precision(key) Relative precision in physical_constants indexed by key
find([sub, disp]) Return list of codata.physical_constant keys containing a given string
scipy.constants.value (key)
Value in physical_constants indexed by key
Parameters
key : Python string or unicode
Key in dictionary physical_constants
```


## Returns

```
value : float
Value in physical_constants corresponding to key
```


## See Also:

## codata

Contains the description of physical_constants, which, as a dictionary literal object, does not itself possess a docstring.

Examples

```
>>> from scipy.constants import codata
>>> codata.value('elementary charge')
 1.602176487e-019
```

```
scipy.constants.unit (key)
```

Unit in physical_constants indexed by key

## Parameters

key : Python string or unicode
Key in dictionary physical_constants

## Returns

unit : Python string
Unit in physical_constants corresponding to key

## See Also:

codata
Contains the description of physical_constants, which, as a dictionary literal object, does not itself possess a docstring.

## Examples

```
 >>> from scipy.constants import codata
 >>> codata.unit(u'proton mass')
 'kg'
scipy.constants.precision (key)
Relative precision in physical_constants indexed by key
```


## Parameters

key : Python string or unicode
Key in dictionary physical_constants

## Returns

prec : float
Relative precision in physical_constants corresponding to key

## See Also:

## codata

Contains the description of physical_constants, which, as a dictionary literal object, does not itself possess a docstring.

## Examples

>>> from scipy.constants import codata
>>> codata.precision(u'proton mass')
4.96226989798e-08
scipy.constants.find (sub=None, disp=False)
Return list of codata.physical_constant keys containing a given string

## Parameters

sub : str, unicode
Sub-string to search keys for. By default, return all keys.
disp : bool
If True, print the keys that are found, and return None. Otherwise, return the list of keys without printing anything.

## Returns

keys : None or list
If disp is False, the list of keys is returned. Otherwise, None is returned.

## See Also:

## codata

Contains the description of physical_constants, which, as a dictionary literal object, does not itself possess a docstring.

## scipy.constants.physical_constants

Dictionary of physical constants, of the format physical_constants[name] = (value, unit, uncertainty).

Available constants:

```
alpha particle mass
alpha particle mass energy equivalent
alpha particle mass energy equivalent in MeV
alpha particle mass in u
alpha particle molar mass
alpha particle-electron mass ratio
alpha particle-proton mass ratio
Angstrom star
atomic mass constant
atomic mass constant energy equivalent
atomic mass constant energy equivalent in MeV
atomic mass unit-electron volt relationship
atomic mass unit-hartree relationship
atomic mass unit-hertz relationship
atomic mass unit-inverse meter relationship
atomic mass unit-joule relationship
atomic mass unit-kelvin relationship
atomic mass unit-kilogram relationship
atomic unit of 1st hyperpolarizablity
atomic unit of 2nd hyperpolarizablity
atomic unit of action
atomic unit of charge
atomic unit of charge density
atomic unit of current
atomic unit of electric dipole moment
atomic unit of electric field
atomic unit of electric field gradient
atomic unit of electric polarizablity
atomic unit of electric potential
atomic unit of electric quadrupole moment
atomic unit of energy
atomic unit of force
atomic unit of length
atomic unit of magnetic dipole moment
atomic unit of magnetic flux density
atomic unit of magnetizability
atomic unit of mass
atomic unit of momentum
```

Table 3.1 - continued from previous page

```
atomic unit of permittivity
atomic unit of time
atomic unit of velocity
Avogadro constant
Bohr magneton
Bohr magneton in eV/T
Bohr magneton in Hz/T
Bohr magneton in inverse meters per tesla
Bohr magneton in K/T
Bohr radius
Boltzmann constant
Boltzmann constant in eV/K
Boltzmann constant in Hz/K
Boltzmann constant in inverse meters per kelvin
characteristic impedance of vacuum
classical electron radius
Compton wavelength
Compton wavelength over 2 pi
conductance quantum
conventional value of Josephson constant
conventional value of von Klitzing constant
Cu x unit
deuteron magnetic moment
deuteron magnetic moment to Bohr magneton ratio
deuteron magnetic moment to nuclear magneton ratio
deuteron mass
deuteron mass energy equivalent
deuteron mass energy equivalent in MeV
deuteron mass in u
deuteron molar mass
deuteron rms charge radius
deuteron-electron magnetic moment ratio
deuteron-electron mass ratio
deuteron-neutron magnetic moment ratio
deuteron-proton magnetic moment ratio
deuteron-proton mass ratio
electric constant
electron charge to mass quotient
electron g factor
electron gyromagnetic ratio
electron gyromagnetic ratio over 2 pi
electron magnetic moment
electron magnetic moment anomaly
electron magnetic moment to Bohr magneton ratio
electron magnetic moment to nuclear magneton ratio
electron mass
electron mass energy equivalent
electron mass energy equivalent in MeV
electron mass in u
electron molar mass
electron to alpha particle mass ratio
electron to shielded helion magnetic moment ratio
```

Continued on next page

Table 3.1 - continued from previous page

```
electron to shielded proton magnetic moment ratio
electron volt
electron volt-atomic mass unit relationship
electron volt-hartree relationship
electron volt-hertz relationship
electron volt-inverse meter relationship
electron volt-joule relationship
electron volt-kelvin relationship
electron volt-kilogram relationship
electron-deuteron magnetic moment ratio
electron-deuteron mass ratio
electron-muon magnetic moment ratio
electron-muon mass ratio
electron-neutron magnetic moment ratio
electron-neutron mass ratio
electron-proton magnetic moment ratio
electron-proton mass ratio
electron-tau mass ratio
elementary charge
elementary charge over h
Faraday constant
Faraday constant for conventional electric current
Fermi coupling constant
fine-structure constant
first radiation constant
first radiation constant for spectral radiance
Hartree energy
Hartree energy in eV
hartree-atomic mass unit relationship
hartree-electron volt relationship
hartree-hertz relationship
hartree-inverse meter relationship
hartree-joule relationship
hartree-kelvin relationship
hartree-kilogram relationship
helion mass
helion mass energy equivalent
helion mass energy equivalent in MeV
helion mass in u
helion molar mass
helion-electron mass ratio
helion-proton mass ratio
hertz-atomic mass unit relationship
hertz-electron volt relationship
hertz-hartree relationship
hertz-inverse meter relationship
hertz-joule relationship
hertz-kelvin relationship
hertz-kilogram relationship
inverse fine-structure constant
inverse meter-atomic mass unit relationship
inverse meter-electron volt relationship
```

Table 3.1 - continued from previous page

```
inverse meter-hartree relationship
inverse meter-hertz relationship
inverse meter-joule relationship
inverse meter-kelvin relationship
inverse meter-kilogram relationship
inverse of conductance quantum
Josephson constant
joule-atomic mass unit relationship
joule-electron volt relationship
joule-hartree relationship
joule-hertz relationship
joule-inverse meter relationship
joule-kelvin relationship
joule-kilogram relationship
kelvin-atomic mass unit relationship
kelvin-electron volt relationship
kelvin-hartree relationship
kelvin-hertz relationship
kelvin-inverse meter relationship
kelvin-joule relationship
kelvin-kilogram relationship
kilogram-atomic mass unit relationship
kilogram-electron volt relationship
kilogram-hartree relationship
kilogram-hertz relationship
kilogram-inverse meter relationship
kilogram-joule relationship
kilogram-kelvin relationship
lattice parameter of silicon
Loschmidt constant (273.15 K, 101.325 kPa)
magnetic constant
magnetic flux quantum
Mo x unit
molar gas constant
molar mass constant
molar mass of carbon-12
molar Planck constant
molar Planck constant times c
molar volume of ideal gas (273.15 K, 100 kPa)
molar volume of ideal gas (273.15 K, 101.325 kPa)
molar volume of silicon
muon Compton wavelength
muon Compton wavelength over 2 pi
muon g factor
muon magnetic moment
muon magnetic moment anomaly
muon magnetic moment to Bohr magneton ratio
muon magnetic moment to nuclear magneton ratio
muon mass
muon mass energy equivalent
muon mass energy equivalent in MeV
muon mass in u
```

Continued on next page

Table 3.1 - continued from previous page

```
muon molar mass
muon-electron mass ratio
muon-neutron mass ratio
muon-proton magnetic moment ratio
muon-proton mass ratio
muon-tau mass ratio
natural unit of action
natural unit of action in eV s
natural unit of energy
natural unit of energy in MeV
natural unit of length
natural unit of mass
natural unit of momentum
natural unit of momentum in MeV/c
natural unit of time
natural unit of velocity
neutron Compton wavelength
neutron Compton wavelength over 2 pi
neutron g factor
neutron gyromagnetic ratio
neutron gyromagnetic ratio over 2 pi
neutron magnetic moment
neutron magnetic moment to Bohr magneton ratio
neutron magnetic moment to nuclear magneton ratio
neutron mass
neutron mass energy equivalent
neutron mass energy equivalent in MeV
neutron mass in u
neutron molar mass
neutron to shielded proton magnetic moment ratio
neutron-electron magnetic moment ratio
neutron-electron mass ratio
neutron-muon mass ratio
neutron-proton magnetic moment ratio
neutron-proton mass ratio
neutron-tau mass ratio
Newtonian constant of gravitation
Newtonian constant of gravitation over h-bar c
nuclear magneton
nuclear magneton in eV/T
nuclear magneton in inverse meters per tesla
nuclear magneton in K/T
nuclear magneton in MHz/T
Planck constant
Planck constant in eV s
Planck constant over 2 pi
Planck constant over 2 pi in eV s
Planck constant over 2 pi times c in MeV fm
Planck length
Planck mass
Planck temperature
Planck time
```

Table 3.1 - continued from previous page

```
proton charge to mass quotient
proton Compton wavelength
proton Compton wavelength over 2 pi
proton g factor
proton gyromagnetic ratio
proton gyromagnetic ratio over 2 pi
proton magnetic moment
proton magnetic moment to Bohr magneton ratio
proton magnetic moment to nuclear magneton ratio
proton magnetic shielding correction
proton mass
proton mass energy equivalent
proton mass energy equivalent in MeV
proton mass in u
proton molar mass
proton rms charge radius
proton-electron mass ratio
proton-muon mass ratio
proton-neutron magnetic moment ratio
proton-neutron mass ratio
proton-tau mass ratio
quantum of circulation
quantum of circulation times 2
Rydberg constant
Rydberg constant times c in Hz
Rydberg constant times hc in eV
Rydberg constant times hc in J
Sackur-Tetrode constant (1 K, 100 kPa)
Sackur-Tetrode constant (1 K, 101.325 kPa)
second radiation constant
shielded helion gyromagnetic ratio
shielded helion gyromagnetic ratio over 2 pi
shielded helion magnetic moment
shielded helion magnetic moment to Bohr magneton ratio
shielded helion magnetic moment to nuclear magneton ratio
shielded helion to proton magnetic moment ratio
shielded helion to shielded proton magnetic moment ratio
shielded proton gyromagnetic ratio
shielded proton gyromagnetic ratio over 2 pi
shielded proton magnetic moment
shielded proton magnetic moment to Bohr magneton ratio
shielded proton magnetic moment to nuclear magneton ratio
speed of light in vacuum
standard acceleration of gravity
standard atmosphere
Stefan-Boltzmann constant
tau Compton wavelength
tau Compton wavelength over 2 pi
tau mass
tau mass energy equivalent
tau mass energy equivalent in MeV
tau mass in u
```

Table 3.1 - continued from previous page

```
tau molar mass
tau-electron mass ratio
tau-muon mass ratio
tau-neutron mass ratio
tau-proton mass ratio
Thomson cross section
unified atomic mass unit
von Klitzing constant
weak mixing angle
Wien displacement law constant
{220} lattice spacing of silicon
```


### 3.2.4 Unit prefixes

SI

| yotta | $10^{24}$ |
| :--- | :--- |
| zetta | $10^{21}$ |
| exa | $10^{18}$ |
| peta | $10^{15}$ |
| tera | $10^{12}$ |
| giga | $10^{9}$ |
| mega | $10^{6}$ |
| kilo | $10^{3}$ |
| hecto | $10^{2}$ |
| deka | $10^{1}$ |
| deci | $10^{-1}$ |
| centi | $10^{-2}$ |
| milli | $10^{-3}$ |
| micro | $10^{-6}$ |
| nano | $10^{-9}$ |
| pico | $10^{-12}$ |
| femto | $10^{-15}$ |
| atto | $10^{-18}$ |
| zepto | $10^{-21}$ |

Binary

| kibi | $2^{10}$ |
| :---: | :---: |
| mebi | $2^{20}$ |
| gibi | $2^{30}$ |
| tebi | $2^{40}$ |
| pebi | $2^{50}$ |
| exbi | $2^{60}$ |
| zebi | $2^{70}$ |
| yobi | $2^{80}$ |

### 3.2.5 Units

## Weight

| gram | $10^{-3} \mathrm{~kg}$ |
| :--- | :--- |
| metric_ton | $10^{3} \mathrm{~kg}$ |
| grain | one grain in kg |
| lb | one pound (avoirdupous) in kg |
| oz | one ounce in kg |
| stone | one stone in kg |
| grain | one grain in kg |
| long_ton | one long ton in kg |
| short_ton | one short ton in kg |
| troy_ounce | one Troy ounce in kg |
| troy_pound | one Troy pound in kg |
| carat | one carat in kg |
| m_u | atomic mass constant (in kg ) |

## Angle

| degree | degree in radians |
| :--- | :--- |
| arcmin | arc minute in radians |
| arcsec | arc second in radians |

## Time

| minute | one minute in seconds |
| :--- | :--- |
| hour | one hour in seconds |
| day | one day in seconds |
| week | one week in seconds |
| year | one year (365 days) in seconds |
| Julian_year | one Julian year (365.25 days) in seconds |

## Length

| inch | one inch in meters <br> foot <br> one foot in meters <br> yard <br> mile <br> mil |
| :--- | :--- |
| one yard in meters |  |
| pt | one mile in meters |
| survey_foot | one mil in meters <br> one point in meters <br> one survey foot in meters <br> survey_mile <br> nautical_mile |
| one survey mile in meters |  |
| one nautical mile in meters |  |
| fermi | one Fermi in meters |
| angstrom | one Ångström in meters |
| micron | one micron in meters |
| au | one astronomical unit in meters |
| light_year | one light year in meters |
| parsec | one parsec in meters |

## Pressure

| atm | standard atmosphere in pascals |
| :--- | :--- |
| bar | one bar in pascals |
| torr | one torr ( mmHg ) in pascals |
| psi | one psi in pascals |

## Area

| hectare <br> acre | one hectare in square meters <br> one acre in square meters |
| :--- | :--- |

## Volume

| liter | one liter in cubic meters |
| :--- | :--- |
| gallon | one gallon (US) in cubic meters |
| gallon_imp | one gallon (UK) in cubic meters |
| fluid_ounce | one fluid ounce (US) in cubic meters |
| fluid_ounce_imp | one fluid ounce (UK) in cubic meters |
| bbl | one barrel in cubic meters |

## Speed

| kmh | kilometers per hour in meters per second |
| :--- | :--- |
| mph | miles per hour in meters per second |
| mach | one Mach (approx., at $15^{\circ} \mathrm{C}, 1 \mathrm{~atm}$ ) in meters per second |
| knot | one knot in meters per second |

## Temperature

| zero_Celsius |
| :--- | :--- |
| degree_Fahrenheit |$\quad$| zero of Celsius scale in Kelvin |
| :--- |
| one Fahrenheit (only differences) in Kelvins |

C2K(C) Convert Celsius to Kelvin
K2C(K) Convert Kelvin to Celsius
F2C(F) Convert Fahrenheit to Celsius
C2F(C) Convert Celsius to Fahrenheit
F2K(F) Convert Fahrenheit to Kelvin
K2F(K) Convert Kelvin to Fahrenheit
scipy. constants. C2K ( $C$ )
Convert Celsius to Kelvin
Parameters
C: array_like
Celsius temperature(s) to be converted.

## Returns

$\mathbf{K}$ : float or array of floats
Equivalent Kelvin temperature(s).

## Notes

Computes $\mathrm{K}=\mathrm{C}+$ zero_Celsius where zero_Celsius $=273.15$, i.e., (the absolute value of ) temperature "absolute zero" as measured in Celsius.

## Examples

```
>>> from scipy.constants.constants import C2K
```

>>> C2K(np.array ([-40, 40.0]))
array([ 233.15, 313.15])
scipy.constants. K2C (K)

Convert Kelvin to Celsius

## Parameters

K : array_like
Kelvin temperature(s) to be converted.

## Returns

C : float or array of floats
Equivalent Celsius temperature(s).

## Notes

Computes $C=K-z e r o \_C e l s i u s$ where zero_Celsius $=273.15$, i.e., (the absolute value of) temperature "absolute zero" as measured in Celsius.

## Examples

```
>>> from scipy.constants.constants import K2C
>>> K2C(np.array([233.15, 313.15]))
array([-40., 40.])
scipy.constants.F2C(F)
Convert Fahrenheit to Celsius
```


## Parameters

F : array_like
Fahrenheit temperature(s) to be converted.

## Returns

C : float or array of floats
Equivalent Celsius temperature(s).

## Notes

Computes $C=(F-32) / 1.8$.

## Examples

```
>>> from scipy.constants.constants import F2C
>>> F2C(np.array([-40, 40.0]))
array([-40. , 4.44444444])
scipy.constants.C2F(C)
Convert Celsius to Fahrenheit
```


## Parameters

C : array_like

Celsius temperature(s) to be converted.

## Returns

F : float or array of floats
Equivalent Fahrenheit temperature(s).

## Notes

Computes $\mathrm{F}=1.8 * \mathrm{C}+32$.

## Examples

```
>>> from scipy.constants.constants import C2F
>>> C2F(np.array([-40, 40.0]))
array([-40., 104.])
scipy.constants. \(\mathbf{F} \mathbf{2 K}(F)\)
Convert Fahrenheit to Kelvin
```


## Parameters

F : array_like
Fahrenheit temperature(s) to be converted.

## Returns

K : float or array of floats
Equivalent Kelvin temperature(s).

## Notes

Computes $\mathrm{K}=(\mathrm{F}-32) / 1.8+$ zero_Celsius where zero_Celsius $=273.15$, i.e., (the absolute value of) temperature "absolute zero" as measured in Celsius.

## Examples

```
>>> from scipy.constants.constants import F2K
>>> F2K(np.array([-40, 104]))
array([233.15, 313.15])
```

scipy.constants.K2F (K)
Convert Kelvin to Fahrenheit

## Parameters

K : array_like
Kelvin temperature(s) to be converted.

## Returns

$\mathbf{F}$ : float or array of floats
Equivalent Fahrenheit temperature(s).

## Notes

Computes $\mathrm{F}=1.8 *(\mathrm{~K}-\mathrm{zero}$ Celsius $)+32$ where zero_Celsius $=273.15$, i.e., (the absolute value of) temperature "absolute zero" as measured in Celsius.

Examples

```
>>> from scipy.constants.constants import K2F
>>> K2F(np.array([233.15, 313.15]))
array([-40., 104.])
```


## Energy

| eV | one electron volt in Joules |
| :--- | :--- |
| calorie | one calorie (thermochemical) in Joules |
| calorie_IT | one calorie (International Steam Table calorie, 1956) in Joules |
| erg | one erg in Joules |
| Btu | one British thermal unit (International Steam Table) in Joules |
| Btu_th | one British thermal unit (thermochemical) in Joules |
| ton_TNT | one ton of TNT in Joules |

## Power

hp $\quad$ one horsepower in watts

## Force

| dyn | one dyne in newtons |
| :--- | :--- |
| lbf | one pound force in newtons |
| kgf | one kilogram force in newtons |

## Optics

| lambda2nu(lambda_) | Convert wavelength to optical frequency |
| :--- | :--- |
| nu2lambda(nu) | Convert optical frequency to wavelength. |

scipy. constants.lambda2nu (lambda_)
Convert wavelength to optical frequency

## Parameters

lambda : array_like
Wavelength(s) to be converted.

## Returns

nu : float or array of floats
Equivalent optical frequency.

## Notes

Computes $n u=c / l a m b d a$ where $\mathrm{c}=299792458.0$, i.e., the (vacuum) speed of light in meters/second.

## Examples

```
>>> from scipy.constants.constants import lambda2nu
>>> lambda2nu(np.array((1, speed_of_light)))
array([2.99792458e+08, 1.00000000e+00])
scipy.constants.nu2lambda (nu)
Convert optical frequency to wavelength.
```


## Parameters

nu: array_like
Optical frequency to be converted.

## Returns

lambda : float or array of floats
Equivalent wavelength(s).

## Notes

Computes lambda $=\mathrm{c} / \mathrm{nu}$ where $\mathrm{c}=299792458.0$, i.e., the (vacuum) speed of light in meters/second.

## Examples

>>> from scipy.constants.constants import nu2lambda
>>> nu2lambda(np.array((1, speed_of_light)))
array ([2.99792458e+08, $1.00000000 \mathrm{e}+00])$

### 3.3 Fourier transforms (scipy.fftpack)

### 3.3.1 Fast Fourier transforms

| $\mathrm{fft}(\mathrm{x}[, \mathrm{n}$, axis, overwrite_x]) | Return discrete Fourier transform of arbitrary type sequence x. |
| :---: | :---: |
| ifft(x[, n, axis, overwrite_x]) | Return discrete inverse Fourier transform of real or complex sequence. |
| $\mathrm{fftn}(\mathrm{x}[$, shape, axes, overwrite_x]) | $\mathrm{fftn}(\mathrm{x}$, shape=None, axes=None, overwrite_x=0) -> y |
| ifftn(x[, shape, axes, overwrite_x]) | Return inverse multi-dimensional discrete Fourier transform of |
| fft2(x[, shape, axes, overwrite_x]) | 2-D discrete Fourier transform. |
| ifft2(x[, shape, axes, overwrite_x]) | 2-D discrete inverse Fourier transform of real or complex sequence. |
| rfft (x[, n, axis, overwrite_x]) | Discrete Fourier transform of a real sequence. |
| irfft(x[, n, axis, overwrite_x]) | $\operatorname{irfft}(\mathrm{x}, \mathrm{n}=$ None, axis=-1, overwrite_x=0) $->\mathrm{y}$ |
| $\operatorname{dct}(x[$, type, $n$, axis, norm, overwrite_x]) | Return the Discrete Cosine Transform of arbitrary type sequence x . |
| idct(x[, type, n, axis, norm, overwrite_x]) | Return the Inverse Discrete Cosine Transform of an arbitrary type sequence. |
| scipy.fftpack.fft ( $x, n=$ None, axis=-1, overwrite_ $x=0$ ) |  |
| Return discrete Fourier transform of arbitrary type sequence $x$. |  |
| Parameters |  |
| $\mathbf{x}$ : array-like |  |
| array to fourier transform. |  |
| $\mathbf{n}$ : int, optional |  |
| Length of the Fourier transform. If $n<x$.shape[axis], $x$ is truncated. If $\mathrm{n}>\mathrm{x}$.shape[axis], x is zero-padded. (Default $\mathrm{n}=\mathrm{x}$.shape[axis]). |  |
| axis : int, optional |  |
| Axis along which the fft's are computed. (default=-1) |  |
| overwrite_x : bool, optional |  |
| If True the conten | $x$ can be destroyed. (default=False) |

## Returns

$\mathbf{z}$ : complex ndarray
with the elements:
$[\mathrm{y}(0), \mathrm{y}(1), . ., \mathrm{y}(\mathrm{n} / 2-1), \mathrm{y}(-\mathrm{n} / 2), \ldots, \mathrm{y}(-1)]$ if n is even $[\mathrm{y}(0), \mathrm{y}(1), \ldots, \mathrm{y}((\mathrm{n}-1) / 2), \mathrm{y}(-(\mathrm{n}-$ $1) / 2), \ldots, y(-1)]$ if $n$ is odd
where
$y(j)=\operatorname{sum}[k=0 . . n-1] x[k] * \exp (-s q r t(-1) * j * k * 2 * p i / n), j=0 . . n-1$
Note that $y(-j)=y(n-j)$.conjugate () .

## See Also:

```
ifft
```

    Inverse FFT
    rfft

FFT of a real sequence

## Notes

The packing of the result is "standard": If $\mathrm{A}=\mathrm{fft}(\mathrm{a}, \mathrm{n})$, then $\mathrm{A}[0]$ contains the zero-frequency term, $\mathrm{A}[1: \mathrm{n} / 2+1]$ contains the positive-frequency terms, and $\mathrm{A}[\mathrm{n} / 2+1:]$ contains the negative-frequency terms, in order of decreasingly negative frequency. So for an 8 -point transform, the frequencies of the result are $[0,1,2,3,4,-3,-2$, $-1]$.

This is most efficient for $n$ a power of two.

## Examples

```
 >>> x = np.arange(5)
 >>> np.all(np.abs(x-fft(ifft(x))<1.e-15) #within numerical accuracy.
 True
scipy.fftpack.ifft(}x,n=None, axis=-1, overwrite_x=0
```

Return discrete inverse Fourier transform of real or complex sequence.
The returned complex array contains $\mathrm{y}(0), \mathrm{y}(1), \ldots, \mathrm{y}(\mathrm{n}-1)$ where
$y(j)=(x * \exp (2 * p i * \operatorname{sqrt}(-1) * j * n p . \operatorname{arange}(n) / n)) . m e a n()$.

## Parameters

$\mathbf{x}$ : array_like
Transformed data to invert.
$\mathbf{n}$ : int, optional
Length of the inverse Fourier transform. If $\mathrm{n}<\mathrm{x}$. shape [axis], $x$ is truncated. If $\mathrm{n}>\mathrm{x}$.shape[axis], $x$ is zero-padded. The default results in $\mathrm{n}=$ x.shape[axis].
axis : int, optional
Axis along which the ifft's are computed; the default is over the last axis (i.e., axis=-1).
overwrite_x : bool, optional
If True the contents of $x$ can be destroyed; the default is False.
scipy.fftpack.fftn $(x$, shape $=$ None, axes $=$ None, overwrite_ $x=0)$
$\mathrm{fftn}(\mathrm{x}$, shape= None, axes=None, overwrite_x=0) $->\mathrm{y}$
Return multi-dimensional discrete Fourier transform of arbitrary type sequence x.
The returned array contains

```
y[j_1,..,j_d] = sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
 x[k_1,..,k_d] * prod[i=1..d] exp(-sqrt(-1)*2*pi/n_i * j_i * k_i)
```

where $\mathrm{d}=$ len(x.shape) and $\mathrm{n}=\mathrm{x}$.shape. Note that $\mathrm{y}\left[\ldots,-\mathrm{j}_{-} \mathrm{i}, \ldots\right]=\mathrm{y}\left[\ldots, \mathrm{n}_{-} \mathrm{i}-\mathrm{j}_{-} \mathrm{i}, \ldots\right]$.conjugate( $)$.
Optional input:

## shape

Defines the shape of the Fourier transform. If shape is not specified then shape $=\operatorname{take}(x . \operatorname{shape}, \operatorname{axes}, a x i s=0)$. If shape $[i]>x$.shape $[i]$ then the $i$-th dimension is padded with zeros. If shape[i]<x.shape[i], then the i-th dimension is truncated to desired length shape[i].
axes
The transform is applied along the given axes of the input array (or the newly constructed array if shape argument was used).

## overwrite_x

If set to true, the contents of $x$ can be destroyed.
Notes:
$\mathrm{y}==\mathrm{fftn}(\mathrm{ifftn}(\mathrm{y}))$ within numerical accuracy.
scipy.fftpack.ifftn ( $x$, shape $=$ None, axes $=$ None, overwrite_ $x=0$ )
Return inverse multi-dimensional discrete Fourier transform of arbitrary type sequence x.
The returned array contains:

```
y[j_1,..,j_d] = 1/p * sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
 x[k_1,..,k_d] * prod[i=1..d] exp(sqrt(-1)*2*pi/n_i * j_i * k_i)
```

where $d=\operatorname{len}(x$. shape $), n=x . s h a p e$, and $p=\operatorname{prod}[i=1 . . d] n \_i$.
For description of parameters see fftn.

## See Also:

fftn
for detailed information.

```
scipy.fftpack.fft2 (x, shape=None, axes=(-2, -1), overwrite_x=0)
```

2-D discrete Fourier transform.
Return the two-dimensional discrete Fourier transform of the 2-D argument $x$.
See Also:
fftn
for detailed information.
scipy.fftpack.ifft2 $(x$, shape $=$ None, axes $=(-2,-1)$, overwrite_ $x=0)$
2-D discrete inverse Fourier transform of real or complex sequence.
Return inverse two-dimensional discrete Fourier transform of arbitrary type sequence x .
See ifft for more information.

## See Also:

fft2, ifft
scipy.fftpack.rfft ( $x, n=$ None, axis=- 1 , overwrite_ $x=0$ )
Discrete Fourier transform of a real sequence.
The returned real arrays contains:

```
[y(0),Re(y(1)),Im(y(1)),\ldots,Re(y(n/2))] if n is even
[y(0),Re(y(1)),Im(y(1)),\ldots,Re(y(n/2)),Im(y(n/2))] if n is odd
```

where

```
y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k*2*pi/n)
j = 0..n-1
```

Note that $y(-j)==y(n-j)$. conjugate().

## Parameters

$\mathbf{x}$ : array_like, real-valued
The data to tranform.
$\mathbf{n}$ : int, optional
Defines the length of the Fourier transform. If $n$ is not specified (the default) then $\mathrm{n}=\mathrm{x}$.shape[axis]. If $\mathrm{n}<\mathrm{x}$.shape[axis], $x$ is truncated, if $\mathrm{n}>$ x .shape[axis], $x$ is zero-padded.
axis : int, optional
The axis along which the transform is applied. The default is the last axis.
overwrite_x : bool, optional
If set to true, the contents of $x$ can be overwritten. Default is False.

## See Also:

fft, irfft, scipy.fftpack.basic
Notes
Within numerical accuracy, $y==r f f t(i r f f t(y))$.
scipy.fftpack.irfft ( $x, n=$ None, axis=-1, overwrite_ $x=0$ )
$\operatorname{irfft}(\mathrm{x}, \mathrm{n}=$ None, axis=-1, overwrite_x=0) $->\mathrm{y}$
Return inverse discrete Fourier transform of real sequence $x$. The contents of $x$ is interpreted as the output of rfft(..) function.

## The returned real array contains

$$
[\mathrm{y}(0), \mathrm{y}(1), \ldots, \mathrm{y}(\mathrm{n}-1)]
$$

where for $\mathbf{n}$ is even

$$
y(j)=1 / n(\operatorname{sum}[k=1 . . n / 2-1](x[2 * k-1]+\operatorname{sqrt}(-1) * x[2 * k])
$$

- $\exp \left(\operatorname{sqrt}(-1) * j * k^{*} 2^{*} \mathrm{pi} / \mathrm{n}\right)$
- c.c. $\left.+\mathrm{x}[0]+(-1)^{* *}(\mathrm{j}) \mathrm{x}[\mathrm{n}-1]\right)$
and for $\mathbf{n}$ is odd

```
y(j)=1/n(sum[k=1..(n-1)/2] (x[2*k-1]+sqrt(-1)*x[2*k])
```

- $\exp \left(\operatorname{sqrt}(-1) * j * k^{*} 2 * \mathrm{pi} / \mathrm{n}\right)$
- c.c. $+x[0])$
c.c. denotes complex conjugate of preceeding expression.

Optional input: see rfft.__doc__
scipy.fftpack.dct ( $x$, type $=2$, $n=$ None, axis $=-1$, norm $=$ None, overwrite_ $x=0$ )
Return the Discrete Cosine Transform of arbitrary type sequence x .
Parameters
$\mathbf{x}$ : array_like
The input array.
type: $\{1,2,3\}$, optional
Type of the DCT (see Notes). Default type is 2.
n : int, optional
Length of the transform.
axis : int, optional
Axis over which to compute the transform.
norm : \{None, 'ortho' \}, optional
Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
If True the contents of $x$ can be destroyed. (default=False)

## Returns

$\mathbf{y}$ : ndarray of real
The transformed input array.

## See Also:

## idct

## Notes

For a single dimension array $x$, $\operatorname{dct}(x$, norm=' ortho') is equal to MATLAB dct ( $x$ ).
There are theoretically 8 types of the DCT, only the first 3 types are implemented in scipy. 'The' DCT generally refers to DCT type 2, and 'the' Inverse DCT generally refers to DCT type 3.
There are several definitions of the DCT-I; we use the following (for norm=None):

$$
y[k]=x[0]+(-1) * * k x[N-1]+2 * \underset{n=1}{N-2} x[n] * \cos (p i * k * n /(N-1))
$$

Only None is supported as normalization mode for DCT-I. Note also that the DCT-I is only supported for input size > 1

There are several definitions of the DCT-II; we use the following (for norm=None):

$$
y[k]=2 * \operatorname{sum}_{n=0}^{N-1} x[n] * \cos (p i * k *(2 n+1) /(2 * N)), 0<=k<N
$$

If norm $=$ ' ortho', $y[k]$ is multiplied by a scaling factor $f$ :

```
f = sqrt(1/(4*N)) if k = 0,
f = sqrt(1/(2*N)) otherwise.
```

Which makes the corresponding matrix of coefficients orthonormal $\left(\mathrm{OO}^{\prime}=I d\right)$.
There are several definitions, we use the following (for norm=None):

$$
y[k]=x[0]+2 * \operatorname{sum}_{n=1} x[n] * \cos (p i *(k+0.5) * n / N), 0<=k<N
$$

or, for norm=' ortho' and $0<=\mathrm{k}<\mathrm{N}$ :

$$
y[k]=x[0] / \operatorname{sqrt}(N)+\operatorname{sqrt}(1 / N) * \operatorname{sum}_{n=1}^{N-1} x[n] * \cos (p i *(k+0.5) * n / N)
$$

The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up to a factor $2 N$. The orthonormalized DCT-III is exactly the inverse of the orthonormalized DCT-II.

## References

http://en.wikipedia.org/wiki/Discrete_cosine_transform
'A Fast Cosine Transform in One and Two Dimensions', by J. Makhoul, IEEE Transactions on acoustics, speech and signal processing vol. 28(1), pp. 27-34, http://dx.doi.org/10.1109/TASSP.1980.1163351 (1980).
scipy.fftpack.idct ( $x$, type $=2, n=$ None, axis $=-1$, norm $=$ None, overwrite_ $x=0$ )
Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.

## Parameters

$\mathbf{x}$ : array_like
The input array.
type : $\{1,2,3\}$, optional
Type of the DCT (see Notes). Default type is 2.
n : int, optional
Length of the transform.
axis : int, optional
Axis over which to compute the transform.
norm : \{None, 'ortho' \}, optional
Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
If True the contents of $x$ can be destroyed. (default=False)

## Returns

$\mathbf{y}$ : ndarray of real
The transformed input array.

## See Also:

det

## Notes

For a single dimension array $x$, idct ( x , norm=' ortho') is equal to matlab idct ( x ).
'The' IDCT is the IDCT of type 2, which is the same as DCT of type 3.
IDCT of type 1 is the DCT of type 1 , IDCT of type 2 is the DCT of type 3 , and IDCT of type 3 is the DCT of type 2 . For the definition of these types, see $d c t$.

### 3.3.2 Differential and pseudo-differential operators

```
diff(x[, order, period,_cache]) diff(x, order=1, period=2*pi) -> y
tilbert(x,h[, period,_cache]) tilbert(x,h, period=2*pi) -> y
itilbert(x, h[, period,_cache]) itilbert(x, h, period=2*pi) -> y
hilbert(x[, _cache]) hilbert(x) -> y
ihilbert(x) ihilbert(x) -> y
cs_diff(x, a, b[, period,_cache]) cs_diff(x, a, b, period=2*pi) -> y
sc_diff(x, a, b[, period,_cache]) Return (a,b)-sinh/cosh pseudo-derivative of a periodic sequence }x\mathrm{ .
ss_diff(x, a, b[, period,_cache]) ss_diff(x, a, b, period=2*pi) -> y
cc_diff(x, a, b[, period,_cache]) cc_diff(x, a, b, period=2*pi) -> y
shift(x, a[, period,_cache]) shift(x, a, period=2*pi) -> y
scipy.fftpack.diff(x,order=1, period=None,_cache={})
 diff(x, order=1, period=2*pi) -> y
Return k-th derivative (or integral) of a periodic sequence x .
If \(x_{-} j\) and \(y_{_} j\) are Fourier coefficients of periodic functions \(x\) and \(y\), respectively, then \(y_{-} j=\operatorname{pow}\left(s q r t(-1) * j^{*} 2 *\right.\) pi/period, order \() * x_{_} j y_{-} 0=0\) if order is not 0.
```


## Optional input:

order
The order of differentiation. Default order is 1 . If order is negative, then integration is carried out under the assumption that $\mathrm{x} \_0==0$.
period
The assumed period of the sequence. Default is $2 *$ pi.
Notes:

## If $\operatorname{sum}(x, a x i s=0)=0$ then

$\operatorname{diff}(\operatorname{diff}(\mathrm{x}, \mathrm{k}),-\mathrm{k})==\mathrm{x}$ (within numerical accuracy)
For odd order and even len( x ), the Nyquist mode is taken zero.

```
scipy.fftpack.tilbert (x,h,period=None,_cache={})
 tilbert(x, h, period=2*pi) -> y
```

Return h-Tilbert transform of a periodic sequence x .
If $x_{-} j$ and $y_{\_} j$ are Fourier coefficients of periodic functions $x$ and $y$, respectively, then

$$
y_{-} j=\operatorname{sqrt}(-1) * \operatorname{coth}(j * h * 2 * \text { pi/period }) * x_{\_} j y_{-} 0=0
$$

## Input:

h
Defines the parameter of the Tilbert transform.
period
The assumed period of the sequence. Default period is $2 * \mathrm{pi}$.
Notes:

If $\operatorname{sum}(x, a x i s=0)==0$ and $n=\operatorname{len}(x)$ is odd then tilbert(itilbert $(x))=x$

If 2 * $\mathbf{p} \boldsymbol{i} \mathbf{h} /$ period is approximately 10 or larger then numerically tilbert == hilbert
(theoretically oo-Tilbert $==$ Hilbert). For even len(x), the Nyquist mode of $x$ is taken zero.
scipy.fftpack.itilbert (x,h, period=None,_cache=\{\})
itilbert( $\mathrm{x}, \mathrm{h}$, period= $2 *$ pi) $->\mathrm{y}$
Return inverse h-Tilbert transform of a periodic sequence $x$.
If $x_{-} j$ and $y_{-} j$ are Fourier coefficients of periodic functions $x$ and $y$, respectively, then $y_{-} \_=-s q r t(-1) * \tanh \left(j * h^{*} 2 * p i / p e r i o d\right) * x \_j y \_0=0$
Optional input: see tilbert.__doc $\qquad$
scipy.fftpack.hilbert ( $x$, _cache=\{\})
hilbert(x) -> y
Return Hilbert transform of a periodic sequence x .
If $x_{\_} \mathfrak{j}$ and $y_{\_} \mathfrak{j}$ are Fourier coefficients of periodic functions $x$ and $y$, respectively, then

$$
y_{-} \mathrm{j}=\operatorname{sqrt}(-1) * \operatorname{sign}(\mathrm{j}) * x_{-} \mathrm{j} y_{-} 0=0
$$

Notes:

## If $\operatorname{sum}(x, a x i s=0)==0$ then

$$
\operatorname{hilbert}(\operatorname{ihilbert}(\mathrm{x}))==\mathrm{x}
$$

For even len( x ), the Nyquist mode of x is taken zero.

```
scipy.fftpack.ihilbert(x)
```

ihilbert(x) -> y
Return inverse Hilbert transform of a periodic sequence $x$.
If $x_{\_} j$ and $y_{\_} j$ are Fourier coefficients of periodic functions $x$ and $y$, respectively, then $y_{-} j=-s q r t(-1) * \operatorname{sign}(j) * x_{-} j y_{-} 0=0$
scipy.fftpack.cs_diff( $x, a, b$, period $=$ None, _cache $=\{ \})$
cs_diff(x, a, b, period=2*pi) $->$ y
Return ( $\mathrm{a}, \mathrm{b}$ )-cosh/sinh pseudo-derivative of a periodic sequence x .
If $x_{-} j$ and $y_{\_} j$ are Fourier coefficients of periodic functions $x$ and $y$, respectively, then

$$
y_{-} \mathrm{j}=-\operatorname{sqrt}(-1) * \cosh (\mathrm{j} * \mathrm{a} * 2 * \mathrm{pi} / \text { period }) / \sinh \left(\mathrm{j} * \mathrm{~b}^{*} * 2 * \mathrm{pi} / \text { period }\right) * \mathrm{x}_{-} \mathrm{j} \mathrm{y}_{-} 0=0
$$

## Input:

a,b
Defines the parameters of the cosh/sinh pseudo-differential operator.
period
The period of the sequence. Default period is $2 *$ pi.
Notes:
For even len $(x)$, the Nyquist mode of $x$ is taken zero.
scipy.fftpack.sc_diff $\left(x, a, b\right.$, period $=$ None, $\_$cache $\left.=\{ \}\right)$
Return ( $\mathrm{a}, \mathrm{b}$ )-sinh/cosh pseudo-derivative of a periodic sequence x .
If $x_{-} j$ and $y_{-} j$ are Fourier coefficients of periodic functions $x$ and $y$, respectively, then:

```
y_j = sqrt(-1)*sinh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j
Y_0 = 0
```


## Parameters

$\mathbf{x}$ : array_like
Input array.
$\mathbf{a , b}$ : float
Defines the parameters of the sinh/cosh pseudo-differential operator.
period : float, optional
The period of the sequence $x$. Default is $2 *$ pi.

## Notes

sc_diff(cs_diff $(x, a, b), b, a)==x$ For even len $(x)$, the Nyquist mode of $x$ is taken as zero.

```
scipy.fftpack.ss_diff(x,a,b,period=None,_cache={})
```

ss_diff(x, a, b, period=2*pi) -> y
Return ( $\mathrm{a}, \mathrm{b}$ )-sinh/sinh pseudo-derivative of a periodic sequence x .
If $x_{-} j$ and $y_{\_} j$ are Fourier coefficients of periodic functions $x$ and $y$, respectively, then
$y_{\_} \mathrm{j}=\sinh \left(\mathrm{j} * \mathrm{a}^{*} 2 * \mathrm{pi} /\right.$ period $) / \sinh \left(\mathrm{j} * \mathrm{~b}^{*} 2 * \mathrm{pi} /\right.$ period $) * \mathrm{x}_{\mathrm{j}} \mathrm{j} \mathrm{y}_{-} 0=\mathrm{a} / \mathrm{b} * \mathrm{x}_{-} 0$

## Input:

a,b
Defines the parameters of the sinh/sinh pseudo-differential operator.
period
The period of the sequence $x$. Default is $2 *$ pi.

Notes:
ss_diff(ss_diff( $x, a, b), b, a)==x$
scipy.fftpack.cc_diff( $x, a, b$, period $=$ None, _cache $=\{ \})$
cc_diff( $\mathrm{x}, \mathrm{a}, \mathrm{b}$, period $=2 * \mathrm{pi})->\mathrm{y}$
Return ( $a, b$ )-cosh/cosh pseudo-derivative of a periodic sequence $x$.
If $x_{-} j$ and $y_{-} j$ are Fourier coefficients of periodic functions $x$ and $y$, respectively, then

$$
\mathrm{y}_{-} \mathrm{j}=\cosh (\mathrm{j} * \mathrm{a} * 2 * \mathrm{pi} / \text { period }) / \cosh (\mathrm{j} * \mathrm{~b} * 2 * \mathrm{pi} / \text { period }) * \mathrm{x}_{-} \mathrm{j}
$$

Input:
a,b
Defines the parameters of the sinh/sinh pseudo-differential operator.

## Optional input:

## period

The period of the sequence $x$. Default is $2 *$ pi.
Notes:
cc_diff(cc_diff(x,a,b),b,a) == x
scipy.fftpack.shift ( $x$, a, period=None, _cache $=\{ \}$ )
$\operatorname{shift}\left(\mathrm{x}, \mathrm{a}\right.$, period= $\left.2^{*} \mathrm{pi}\right)->\mathrm{y}$
Shift periodic sequence $x$ by a: $y(u)=x(u+a)$.
If $x_{-} j$ and $y_{-} j$ are Fourier coefficients of periodic functions $x$ and $y$, respectively, then

$$
\mathrm{y}_{-} \mathrm{j}=\exp \left(\mathrm{j} * \mathrm{a}^{*} 2 * \mathrm{pi} / \text { period } * \operatorname{sqrt}(-1)\right) * \mathrm{x}_{-} \mathrm{f}
$$

## Optional input:

period
The period of the sequences x and y . Default period is $2 *$ pi.

### 3.3.3 Helper functions

```
fftshift(x[,axes]) Shift the zero-frequency component to the center of the spectrum.
ifftshift(x[,axes]) The inverse of fftshift.
fftfreq(n[,d]) Return the Discrete Fourier Transform sample frequencies.
rfftfreq(n[,d]) DFT sample frequencies (for usage with rfft, irfft).
scipy.fftpack.fftshift(x, axes=None)
Shift the zero-frequency component to the center of the spectrum.
```

This function swaps half-spaces for all axes listed (defaults to all). Note that y [ 0 ] is the Nyquist component only if len ( $x$ ) is even.

## Parameters

$\mathbf{x}$ : array_like
Input array.
axes : int or shape tuple, optional

Axes over which to shift. Default is None, which shifts all axes.

## Returns

$\mathbf{y}$ : ndarray
The shifted array.

## See Also:

```
ifftshift
```

The inverse of fftshift.

## Examples

```
>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([0., 1., 2., 3., 4., -5., -4., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
```

Shift the zero-frequency component only along the second axis:

```
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[0., 1., 2.],
 [3., 4., -4.],
 [-3., -2., -1.]])
>>> np.fft.fftshift(freqs, axes=(1,))
array([[2., 0., 1.],
 [-4., 3., 4.],
 [-1., -3., -2.]])
```

scipy.fftpack.ifftshift ( $x$, axes=None)

The inverse of fftshift.

## Parameters

$\mathbf{x}$ : array_like
Input array.
axes : int or shape tuple, optional
Axes over which to calculate. Defaults to None, which shifts all axes.

## Returns

$$
\mathbf{y}: \text { ndarray }
$$

The shifted array.

## See Also:

## fftshift

Shift zero-frequency component to the center of the spectrum.

## Examples

```
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[0., 1., 2.],
 [3., 4., -4.],
 [-3., -2., -1.]])
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
```

```
array([[0., 1., 2.],
 [3., 4., -4.],
 [-3., -2., -1.]])
```

scipy.fftpack.fftfreq ( $n, d=1.0$ )

Return the Discrete Fourier Transform sample frequencies.
The returned float array contains the frequency bins in cycles/unit (with zero at the start) given a window length $n$ and a sample spacing $d$ :

```
f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd
```


## Parameters

$\mathbf{n}$ : int
Window length.
d : scalar
Sample spacing.

## Returns

out : ndarray
The array of length $n$, containing the sample frequencies.

## Examples

```
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft(signal)
>>> n = signal.size
>>> timestep = 0.1
>>> freq = np.fft.fftfreq(n, d=timestep)
>>> freq
array([0. , 1.25, 2.5 , 3.75, -5. , -3.75, -2.5 , -1.25])
```

scipy.fftpack.rfftfreq ( $n, d=1.0$ )

DFT sample frequencies (for usage with rfft, irfft).
The returned float array contains the frequency bins in cycles/unit (with zero at the start) given a window length n and a sample spacing d:
$\mathrm{f}=[0,1,1,2,2, \ldots, n / 2-1, n / 2-1, n / 2] /\left(d^{*} n\right)$ if $n$ is even $f=[0,1,1,2,2, \ldots, n / 2-1, n / 2-1, n / 2, n / 2] /\left(d^{*} n\right)$ if $n$ is odd

### 3.3.4 Convolutions (scipy.fftpack. convolve)

| convolve | convolve - Function signature: |
| :--- | :--- |
| convolve_z | convolve_z - Function signature: |
| init_convolution_kernel | init_convolution_kernel - Function signature: |
| destroy_convolve_cache | destroy_convolve_cache - Function signature: |
| scipy.fftpack.convolve.convolve |  |

## convolve - Function signature:

$y=$ convolve(x,omega,[swap_real_imag,overwrite_x])

## Required arguments:

$x$ : input rank-1 array(' $d$ ') with bounds (n) omega : input rank-1 array(' ${ }^{\prime}$ ') with bounds ( $n$ )
Optional arguments:
overwrite_x $:=0$ input int swap_real_imag := 0 input int
Return objects:
y : rank-1 array(' d ') with bounds ( n ) and x storage
scipy.fftpack.convolve.convolve_z
convolve_z-Function signature:
$\mathrm{y}=$ convolve_z(x,omega_real,omega_imag,[overwrite_x])

## Required arguments:

x : input rank-1 array('d') with bounds (n) omega_real : input rank-1 array('d') with bounds (n) omega_imag : input rank-1 array('d') with bounds (n)

Optional arguments:
overwrite_x := 0 input int

## Return objects:

y : rank-1 array( ${ }^{\prime} \mathrm{d}$ ') with bounds ( n ) and x storage

```
scipy.fftpack.convolve.init_convolution_kernel
```

init_convolution_kernel - Function signature:
omega $=$ init_convolution_kernel(n,kernel_func,[dd,zero_nyquist,kernel_func_extra_args])

## Required arguments:

n : input int kernel_func : call-back function
Optional arguments:
$\mathrm{d}:=0$ input int kernel_func_extra_args := () input tuple zero_nyquist := $\mathrm{d} \% 2$ input int

## Return objects:

omega : rank-1 array('d') with bounds (n)
Call-back functions:
def kernel_func(k): return kernel_func Required arguments:

$$
\mathrm{k} \text { : input int }
$$

## Return objects:

kernel_func : float
scipy.fftpack.convolve.destroy_convolve_cache
destroy_convolve_cache - Function signature: destroy_convolve_cache()

### 3.3.5 Other (scipy.fftpack._fftpack)

| drfft | drfft - Function signature: |
| :--- | :--- |
| zfft | zfft - Function signature: |
| zrfft | zrfft - Function signature: |
| zfftnd | zfftnd - Function signature: |
| destroy_drfft_cache | destroy_drfft_cache - Function signature: |
| destroy_zfft_cache | destroy_zfft_cache - Function signature: |
| destroy_zfftnd_cache | destroy_zfftnd_cache - Function signature: |

```
scipy.fftpack._fftpack.drfft
```

drfft - Function signature:
$\mathrm{y}=\operatorname{drfft}(\mathrm{x},[\mathrm{n}$,direction,normalize,overwrite_x])

## Required arguments:

$x$ : input rank-1 array(' $d$ ') with bounds (*)
Optional arguments:
overwrite_x $:=0$ input int $n:=\operatorname{size}(x)$ input int direction $:=1$ input int normalize $:=($ direction $<0)$ input int

## Return objects:

y : rank-1 array('d’) with bounds (*) and x storage

```
scipy.fftpack._fftpack.zfft
```


## zfft - Function signature:

$y=\operatorname{zfft}(x,[n$, direction,normalize,overwrite_x] $)$

## Required arguments:

x : input rank-1 array('D') with bounds (*)
Optional arguments:
overwrite_x $:=0$ input int $\mathrm{n}:=\operatorname{size}(\mathrm{x})$ input int direction $:=1$ input int normalize $:=($ direction<0) input int
Return objects:
y : rank-1 array('D') with bounds (*) and x storage

```
scipy.fftpack._fftpack.zrfft
```

zrfft - Function signature:
$\mathrm{y}=\operatorname{zrfft}(\mathrm{x},[\mathrm{n}$,direction,normalize,overwrite_x])

## Required arguments:

x : input rank-1 array('D') with bounds (*)
Optional arguments:
overwrite_x $:=1$ input int $\mathrm{n}:=\operatorname{size}(\mathrm{x})$ input int direction $:=1$ input int normalize $:=($ direction<0) input int
Return objects:
y : rank-1 array('D') with bounds $\left(^{*}\right)$ and x storage
scipy.fftpack._fftpack.zfftnd
zfftnd - Function signature:
$\mathrm{y}=\operatorname{zfftnd}(\mathrm{x},[\mathrm{s}$, direction,normalize,overwrite_x]$)$

## Required arguments:

x : input rank-1 array('D') with bounds (*)
Optional arguments:
overwrite_x $:=0$ input int $\mathrm{s}:=$ old_shape( $\mathrm{x}, \mathrm{j}++$ ) input rank-1 array(' $\mathfrak{i}$ ') with bounds (r) direction $:=1$ input
int normalize $:=($ direction $<0)$ input int

## Return objects:

y : rank-1 array('D') with bounds (*) and x storage
scipy.fftpack._fftpack.destroy_drfft_cache
destroy_drfft_cache - Function signature: destroy_drfft_cache()

```
scipy.fftpack._fftpack.destroy_zfft_cache
 destroy_zfft_cache - Function signature: destroy_zfft_cache()
scipy.fftpack._fftpack.destroy_zfftnd_cache
 destroy_zfftnd_cache - Function signature: destroy_zfftnd_cache()
```


### 3.4 Integration and ODEs (scipy.integrate)

### 3.4.1 Integrating functions, given function object

| quad(func, a, b[, args, | Compute a definite integral. |
| :---: | :---: |
| dblquad(func, a, b, gfun, hfun[, args, ...]) | Compute a double integral. |
| tplquad(func, a, b, gfun, hfun, qfun, rfun) | Compute a triple (definite) integral. |
| fixed_quad(func, a, b[, args, n]) | Compute a definite integral using fixed-order Gaussian quadrature. |
| quadrature(func, a, b[, args, tol, rtol, ...]) | Compute a definite integral using fixed-tolerance Gaussian quadrature. |
| romberg(function, $\mathrm{a}, \mathrm{b}[$, args, tol, rtol, ...]) | Romberg integration of a callable function or method. |
| $\begin{array}{r} \text { ipy.integrate. quad (func, } \quad a, \quad b, \\ \text { epsrel }=1.4899 \\ \text { wvar }=\text { None }, w \end{array}$ | $\begin{aligned} & g s=(), \quad \text { full_output }=0, \quad \text { epsabs }=1.4899999999999999 e-08, \\ & 999999999 e-08, \quad \text { limit }=50, \quad \text { points }=\text { None, } \quad \text { weight }=\text { None, } \\ & s=\text { None, } \text { maxp } 1=50, \text { limlst }=50) \end{aligned}$ |

Compute a definite integral.
Integrate func from $a$ to $b$ (possibly infinite interval) using a technique from the Fortran library QUADPACK.
If func takes many arguments, it is integrated along the axis corresponding to the first argument. Use the keyword argument args to pass the other arguments.
Run scipy.integrate.quad_explain() for more information on the more esoteric inputs and outputs.

## Parameters

func : function
A Python function or method to integrate.
a: float
Lower limit of integration (use -scipy.integrate.Inf for -infinity).
b : float
Upper limit of integration (use scipy.integrate.Inf for +infinity).
args : tuple, optional
extra arguments to pass to func
full_output : int
Non-zero to return a dictionary of integration information. If non-zero, warning messages are also suppressed and the message is appended to the output tuple.

## Returns

$\mathbf{y}$ : float
The integral of func from $a$ to $b$.
abserr : float
an estimate of the absolute error in the result.
infodict : dict
a dictionary containing additional information. Run scipy.integrate.quad_explain() for more information.
message : :
a convergence message.
explain : :
appended only with 'cos' or 'sin' weighting and infinite integration limits, it contains an explanation of the codes in infodict['ierlst']

## Other Parameters

epsabs: :
absolute error tolerance.
epsrel : :
relative error tolerance.
limit : :
an upper bound on the number of subintervals used in the adaptive algorithm.
points: :
a sequence of break points in the bounded integration interval where local difficulties of the integrand may occur (e.g., singularities, discontinuities). The sequence does not have to be sorted.
weight : :
string indicating weighting function.
wvar : :
variables for use with weighting functions.
limlst : :
Upper bound on the number of cylces ( $>=3$ ) for use with a sinusoidal weighting and an infinite end-point.
wopts : :
Optional input for reusing Chebyshev moments.
$\operatorname{maxp} 1:$ :
An upper bound on the number of Chebyshev moments.

## See Also:

```
dblquad, tplquad
```

fixed_quad
fixed-order Gaussian quadrature
quadrature
adaptive Gaussian quadrature
odeint, ode, simps, trapz, romb
scipy.special
for coefficients and roots of orthogonal polynomials

## Examples

Calculate $\int_{0}^{4} x^{2} d x$ and compare with an analytic result

```
>>> from scipy import integrate
>>> x2 = lambda x: x**2
>>> integrate.quad(x,0.,4.)
(21.333333333333332, 2.3684757858670003e-13)
>> print 4.**3/3
21.3333333333
```

Calculate $\int_{0}^{\infty} e^{-x} d x$

```
>>> invexp = lambda x: exp(-x)
>>> integrate.quad(invexp,0,inf)
(0.999999999999999989, 5.8426061711142159e-11)
>>> f = lambda x,a : a*x
>>> y, err = integrate.quad(f, 0, 1, args=(1,))
>>> y
0.5
>>> y, err = integrate.quad(f, 0, 1, args=(3,))
>>> y
1.5
```

scipy.integrate.dblquad(func, a, b, gfun, hfun, args=(), epsabs=1.4899999999999999e-08,
epsrel $=1.4899999999999999 e-08$ )

Compute a double integral.
Return the double (definite) integral of func $(\mathrm{y}, \mathrm{x})$ from $\mathrm{x}=\mathrm{a} . . \mathrm{b}$ and $\mathrm{y}=\mathrm{gfun}(\mathrm{x}) . . \mathrm{hfun}(\mathrm{x})$.

## Parameters

func : callable
A Python function or method of at least two variables: y must be the first argument and $x$ the second argument.
$(\mathbf{a}, \mathrm{b})$ : tuple
The limits of integration in x : $\mathrm{a}<\mathrm{b}$
gfun : callable
The lower boundary curve in y which is a function taking a single floating point argument ( x ) and returning a floating point result: a lambda function can be useful here.
hfun : callable
The upper boundary curve in y (same requirements as $g f u n$ ).
args : sequence, optional
Extra arguments to pass to func2d.
epsabs : float, optional
Absolute tolerance passed directly to the inner 1-D quadrature integration. Default is $1.49 \mathrm{e}-8$.
epsrel : float
Relative tolerance of the inner 1-D integrals. Default is $1.49 \mathrm{e}-8$.

## Returns

$\mathbf{y}$ : float
The resultant integral.
abserr : float
An estimate of the error.

```
See Also:
quad
 single integral
tplquad
 triple integral
fixed_quad
 fixed-order Gaussian quadrature
quadrature
 adaptive Gaussian quadrature
```

odeint, ode, simps, trapz, romb
scipy.special
for coefficients and roots of orthogonal polynomials
scipy.integrate.tplquad (func, $a, b, g f u n, h f u n, q f u n, r f u n, \operatorname{args=()}$, epsabs=1.4899999999999999e-
08, epsrel $=1.4899999999999999$ e-08)

Compute a triple (definite) integral.
Return the triple integral of func( $\mathrm{z}, \mathrm{y}, \mathrm{x}$ ) from $\mathrm{x}=\mathrm{a} . . \mathrm{b}, \mathrm{y}=\mathrm{gfun}(\mathrm{x}) . . \mathrm{hfun}(\mathrm{x})$, and $\mathrm{z}=\mathrm{qfun}(\mathrm{x}, \mathrm{y}) . . \mathrm{rfun}(\mathrm{x}, \mathrm{y})$
Parameters
func : function
A Python function or method of at least three variables in the order $(z, y, x)$.
$(\mathbf{a}, \mathbf{b}):$ tuple
The limits of integration in $\mathrm{x}: \mathrm{a}<\mathrm{b}$
gfun : function
The lower boundary curve in $y$ which is a function taking a single floating point argument ( x ) and returning a floating point result: a lambda function can be useful here.
hfun : function
The upper boundary curve in y (same requirements as gfun).
qfun : function
The lower boundary surface in z . It must be a function that takes two floats in the order ( $\mathrm{x}, \mathrm{y}$ ) and returns a float.
rfun : function
The upper boundary surface in z . (Same requirements as qfun.)
args: Arguments
Extra arguments to pass to func3d.
epsabs : float, optional

Absolute tolerance passed directly to the innermost 1-D quadrature integration. Default is $1.49 \mathrm{e}-8$.
epsrel : float, optional
Relative tolerance of the innermost 1-D integrals. Default is $1.49 \mathrm{e}-8$.

## Returns

$\mathbf{y}$ : float
The resultant integral.
abserr : float
An estimate of the error.
See Also:
quad
Adaptive quadrature using QUADPACK
quadrature
Adaptive Gaussian quadrature
fixed_quad
Fixed-order Gaussian quadrature
dblquad
Double integrals
romb
Integrators for sampled data
trapz
Integrators for sampled data
simps
Integrators for sampled data
ode
ODE integrators
odeint
ODE integrators
scipy.special
For coefficients and roots of orthogonal polynomials
scipy.integrate.fixed_quad (func, $a, b, \arg s=(), n=5)$
Compute a definite integral using fixed-order Gaussian quadrature.
Integrate func from a to b using Gaussian quadrature of order n .
Parameters
func : callable
A Python function or method to integrate (must accept vector inputs).
a: float
Lower limit of integration.
b : float
Upper limit of integration.
args : tuple, optional
Extra arguments to pass to function, if any.
$\mathbf{n}$ : int, optional
Order of quadrature integration. Default is 5 .

## Returns

val : float
Gaussian quadrature approximation to the integral

## See Also:

quad
adaptive quadrature using QUADPACK
dblquad, tplquad
romberg
adaptive Romberg quadrature
quadrature
adaptive Gaussian quadrature
romb, simps, trapz
cumtrapz
cumulative integration for sampled data
ode, odeint
scipy.integrate.quadrature (func, $\quad a, \quad b, \quad \operatorname{args}=(), \quad$ tol=1.4899999999999999e-08, rtol $=1.4899999999999999$ e-08, maxiter $=50$, vec_func=True)
Compute a definite integral using fixed-tolerance Gaussian quadrature.
Integrate func from a to b using Gaussian quadrature with absolute tolerance tol.

## Parameters

func: function
A Python function or method to integrate.
a: float
Lower limit of integration.
b : float
Upper limit of integration.
args : tuple, optional
Extra arguments to pass to function.
tol, rol : float, optional
Iteration stops when error between last two iterates is less than tol OR the relative change is less than rtol.
maxiter : int, optional
Maximum number of iterations.
vec_func : bool, optional

True or False if func handles arrays as arguments (is a "vector" function). Default is True.

## Returns

val : float
Gaussian quadrature approximation (within tolerance) to integral.
err : float
Difference between last two estimates of the integral.

## See Also:

romberg
adaptive Romberg quadrature
fixed_quad
fixed-order Gaussian quadrature
quad
adaptive quadrature using QUADPACK
dblquad
double integrals
tplquad
triple integrals
romb
integrator for sampled data
simps
integrator for sampled data
trapz
integrator for sampled data
cumtrapz
cumulative integration for sampled data
ode
ODE integrator
odeint
ODE integrator
scipy.integrate.romberg (function, $a, b$, args=(), tol=1.48e-08, rtol=1.48e-08, show=False, divmax $=10$, vec_func=False)
Romberg integration of a callable function or method.
Returns the integral of function (a function of one variable) over the interval ( $a, b$ ).
If show is 1 , the triangular array of the intermediate results will be printed. If vec_func is True (default is False), then function is assumed to support vector arguments.

## Parameters

function : callable
Function to be integrated.
a : float
Lower limit of integration.
b: float
Upper limit of integration.

## Returns

results : float
Result of the integration.

## Other Parameters

args : tuple, optional
Extra arguments to pass to function. Each element of args will be passed as a single argument to func. Default is to pass no extra arguments.
tol, rtol : float, optional
The desired absolute and relative tolerances. Defaults are 1.48e-8.
show : bool, optional
Whether to print the results. Default is False.
divmax : int, optional
Maximum order of extrapolation. Default is 10 .
vec_func : bool, optional
Whether func handles arrays as arguments (i.e whether it is a "vector" function). Default is False.

See Also:
fixed_quad
Fixed-order Gaussian quadrature.
quad
Adaptive quadrature using QUADPACK.

```
dblquad, tplquad, romb, simps, trapz
```

cumtrapz

Cumulative integration for sampled data.

```
ode,odeint
```


## References

[R1]

## Examples

Integrate a gaussian from 0 to 1 and compare to the error function.

```
>>> from scipy.special import erf
>>> gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2)
>>> result = romberg(gaussian, 0, 1, show=True)
Romberg integration of <function vfunc at 0x101eceaa0> from [0, 1]
Steps StepSize Results
 1 1.000000 0.385872
 20.500000 0.412631 0.421551
 4 0.250000 0.419184 0.421368 0.421356
 8 0.125000 0.420810 0.421352 0.421350 0.421350
```

| 16 | 0.062500 | 0.421215 | 0.421350 | 0.421350 | 0.421350 | 0.421350 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 32 | 0.031250 | 0.421317 | 0.421350 | 0.421350 | 0.421350 | 0.421350 | 0.421350 |

The final result is 0.421350396475 after 33 function evaluations.

```
>>> print 2*result,erf(1)
0.84270079295 0.84270079295
```


### 3.4.2 Integrating functions, given fixed samples

```
trapz(y[, x, dx, axis]) Integrate along the given axis using the composite trapezoidal rule.
cumtrapz(y[, x, dx, Cumulatively integrate y(x) using samples along the given axis and the composite
axis]) trapezoidal rule.
simps(y[, x, dx, axis, Integrate y(x) using samples along the given axis and the composite
even])
romb(y[, dx, axis, Romberg integration using samples of a function.
show])
scipy.integrate.trapz (}y,x=None,dx=1.0, axis=-1
 Integrate along the given axis using the composite trapezoidal rule.
Integrate \(y(x)\) along given axis.
```


## Parameters

$\mathbf{y}$ : array_like
Input array to integrate.
$\mathbf{x}$ : array_like, optional
If $x$ is None, then spacing between all $y$ elements is $d x$.
dx : scalar, optional
If $x$ is None, spacing given by $d x$ is assumed. Default is 1 .
axis : int, optional
Specify the axis.

## Returns

out : float
Definite integral as approximated by trapezoidal rule.

## See Also:

sum, cumsum

## Notes

Image [R3] illustrates trapezoidal rule - $y$-axis locations of points will be taken from $y$ array, by default $x$-axis distances between points will be 1.0, alternatively they can be provided with $x$ array or with $d x$ scalar. Return value will be equal to combined area under the red lines.

## References

[R2], [R3]

## Examples

```
>>> np.trapz([1,2,3])
4.0
>>> np.trapz([1,2,3], x=[4,6,8])
8.0
>>> np.trapz([1,2,3], dx=2)
8.0
>>> a = np.arange(6).reshape (2, 3)
>>> a
array([[0, 1, 2],
 [3, 4, 5]])
>>> np.trapz(a, axis=0)
array([1.5, 2.5, 3.5])
>>> np.trapz(a, axis=1)
array([2., 8.])
```

scipy.integrate.cumtrapz ( $y, x=$ None, $d x=1.0$, axis $=-1$ )

Cumulatively integrate $\mathrm{y}(\mathrm{x})$ using samples along the given axis and the composite trapezoidal rule. If x is None, spacing given by $d x$ is assumed.

## Parameters

$\mathbf{y}$ : array
$\mathbf{x}$ : array, optional
dx : int, optional
axis : int, optional
Specifies the axis to cumulate:

- $-1->X$ axis
- $0 \rightarrow \mathrm{Z}$ axis
- 1 -> Y axis

See Also:

## quad

adaptive quadrature using QUADPACK
romberg
adaptive Romberg quadrature
quadrature
adaptive Gaussian quadrature
fixed_quad
fixed-order Gaussian quadrature
dblquad
double integrals
tplquad
triple integrals
romb
integrators for sampled data
trapz
integrators for sampled data

```
cumtrapz
 cumulative integration for sampled data
ode
 ODE integrators
odeint
ODE integrators
```

scipy.integrate.simps ( $y, x=$ None, $d x=1$, axis=-1, even='avg')
Integrate $\mathrm{y}(\mathrm{x})$ using samples along the given axis and the composite Simpson's rule. If x is None, spacing of dx
is assumed.

If there are an even number of samples, N , then there are an odd number of intervals ( $\mathrm{N}-1$ ), but Simpson's rule requires an even number of intervals. The parameter 'even' controls how this is handled.

## Parameters

$\mathbf{y}$ : array_like
Array to be integrated.
$\mathbf{x}$ : array_like, optional
If given, the points at which $y$ is sampled.
dx : int, optional
Spacing of integration points along axis of $y$. Only used when $x$ is None. Default is 1.
axis : int, optional
Axis along which to integrate. Default is the last axis.
even : \{ 'avg', 'first', 'str' \}, optional
'avg'
[Average two results:1) use the first $\mathrm{N}-2$ intervals with] a trapezoidal rule on the last interval and 2) use the last $\mathrm{N}-2$ intervals with a trapezoidal rule on the first interval.
'first'
[Use Simpson's rule for the first N-2 intervals with] a trapezoidal rule on the last interval.

## 'last'

[Use Simpson's rule for the last N-2 intervals with a] trapezoidal rule on the first interval.

## See Also:

quad
adaptive quadrature using QUADPACK
romberg
adaptive Romberg quadrature
quadrature
adaptive Gaussian quadrature
fixed_quad
fixed-order Gaussian quadrature

```
dblquad
 double integrals
tplquad
 triple integrals
romb
 integrators for sampled data
trapz
 integrators for sampled data
cumtrapz
 cumulative integration for sampled data
ode
 ODE integrators
odeint
 ODE integrators
```


## Notes

For an odd number of samples that are equally spaced the result is exact if the function is a polynomial of order 3 or less. If the samples are not equally spaced, then the result is exact only if the function is a polynomial of order 2 or less.
scipy.integrate. romb ( $y, d x=1.0$, axis=-1, show=False)
Romberg integration using samples of a function.

## Parameters

$\mathbf{y}$ : array_like
A vector of $2 \star * k+1$ equally-spaced samples of a function.
$\mathbf{d x}$ : array_like, optional
The sample spacing. Default is 1 .
axis : array_like?, optional
The axis along which to integrate. Default is -1 (last axis).
show : bool, optional
When y is a single 1-D array, then if this argument is True print the table showing
Richardson extrapolation from the samples. Default is False.

## Returns

ret : array_like?
The integrated result for each axis.

## See Also:

quad, romberg, quadrature, fixed_quad, dblquad, tplquad, simps, trapz, cumtrapz, ode, odeint

## See Also:

scipy.special for orthogonal polynomials (special) for Gaussian quadrature roots and weights for other weighting factors and regions.

### 3.4.3 Integrators of ODE systems

> odeint(func, y0, t[, args, Dfun, col_deriv, ...]) Integrate a system of ordinary differential equations. ode(f[, jac ]) A generic interface class to numeric integrators.
> scipy.integrate.odeint (func, y0, $t$, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, $m u=N o n e, \quad$ rtol=None, atol=None, tcrit=None, $h 0=0.0, \quad$ max=0.0, hmin=0.0, ixpr=0, mxstep $=0$, mxhnil=0, $m x o r d n=12$, mxords $=5$, printmessg=0)

Integrate a system of ordinary differential equations.
Solve a system of ordinary differential equations using lsoda from the FORTRAN library odepack.
Solves the initial value problem for stiff or non-stiff systems of first order ode-s:

```
dy/dt = func(y,t0,...)
```

where y can be a vector.

## Parameters

func : callable $(\mathrm{y}, \mathrm{t} 0, \ldots)$
Computes the derivative of y at t 0 .
$\mathbf{y 0}$ : array
Initial condition on y (can be a vector).
t : array
A sequence of time points for which to solve for $y$. The initial value point should be the first element of this sequence.
args : tuple
Extra arguments to pass to function.
Dfun : callable(y, t0, ...)
Gradient (Jacobian) of func.
col_deriv : boolean
True if Dfun defines derivatives down columns (faster), otherwise Dfun should define derivatives across rows.
full_output : boolean
True if to return a dictionary of optional outputs as the second output
printmessg : boolean
Whether to print the convergence message

## Returns

$\mathbf{y}$ : array, shape $(\operatorname{len}(\mathrm{t}), \operatorname{len}(\mathrm{y} 0))$
Array containing the value of $y$ for each desired time in $t$, with the initial value $y 0$ in the first row.
infodict : dict, only returned if full_output == True
Dictionary containing additional output information
$\left.\left.\begin{array}{|l|l|}\hline \text { key } & \text { meaning } \\ \hline \begin{array}{l}\text { 'hu' } \\ \text { 'tcur' }\end{array} & \begin{array}{l}\text { vector of step sizes successfully used for each time step. } \\ \text { vector with the value of t reached for each time step. (will always be at } \\ \text { least as large as the input times). } \\ \text { vector of tolerance scale factors, greater than 1.0, computed when a } \\ \text { request for too much accuracy was detected. } \\ \text { value of t at the time of the last method switch (given for each time step) }\end{array} \\ \text { 'tsw' } \\ \text { 'nst' } \\ \text { cumulative number of time steps } \\ \text { cumulative number of function evaluations for each time step } \\ \text { 'nje' } \\ \text { cumulative number of jacobian evaluations for each time step }\end{array}\right] \begin{array}{l}\text { 'nqu' vector of method orders for each successful step. } \\ \text { 'imxer, } \\ \text { index of the component of largest magnitude in the weighted local error } \\ \text { vector (e / ewt) on an error return, -1 otherwise. }\end{array}\right\}$

## Other Parameters

$\mathbf{m l}, \mathbf{m u}$ : integer
If either of these are not-None or non-negative, then the Jacobian is assumed to be banded. These give the number of lower and upper non-zero diagonals in this banded matrix. For the banded case, Dfun should return a matrix whose columns contain the non-zero bands (starting with the lowest diagonal). Thus, the return matrix from Dfun should have shape $\operatorname{len}(\mathrm{y} 0) *(\mathrm{ml}+\mathrm{mu}+1)$ when ml $>=0$ or $\mathrm{mu}>=0$
rtol, atol : float
The input parameters rtol and atol determine the error control performed by the solver. The solver will control the vector, e, of estimated local errors in y, according to an inequality of the form max-norm of (e / ewt) <= 1, where ewt is a vector of positive error weights computed as: ewt = rtol * abs(y) + atol rtol and atol can be either vectors the same length as y or scalars. Defaults to $1.49012 \mathrm{e}-8$.
tcrit : array
Vector of critical points (e.g. singularities) where integration care should be taken.
h0 : float, (0: solver-determined)
The step size to be attempted on the first step.
hmax : float, (0: solver-determined)
The maximum absolute step size allowed.
hmin : float, (0: solver-determined)
The minimum absolute step size allowed.
ixpr : boolean
Whether to generate extra printing at method switches.
mxstep : integer, ( 0 : solver-determined)
Maximum number of (internally defined) steps allowed for each integration point in t.
mxhnil : integer, (0: solver-determined)
Maximum number of messages printed.
mxordn : integer, ( 0 : solver-determined)
Maximum order to be allowed for the nonstiff (Adams) method.
mxords : integer, (0: solver-determined)
Maximum order to be allowed for the stiff (BDF) method.

```
See Also:
ode
 a more object-oriented integrator based on VODE
quad
 for finding the area under a curve
```

class scipy.integrate.ode (f,jac=None)
A generic interface class to numeric integrators.

## See Also:

```
odeint
```

an integrator with a simpler interface based on lsoda from ODEPACK
quad
for finding the area under a curve

## Examples

A problem to integrate and the corresponding jacobian:

```
>>> from scipy import eye
>>> from scipy.integrate import ode
>>>
>>> y0, t0 = [1.0j, 2.0], 0
>>>
>>> def f(t, y, arg1):
>>> return [1j*arg1*y[0] + y[1], -arg1*y[1]**2]
>>> def jac(t, y, arg1):
>>> return [[1j*arg1, 1], [0, -arg1*2*y[1]]]
```

The integration:

```
>>> r = ode(f, jac).set_integrator('zvode', method='bdf', with_jacobian=True)
>>> r.set_initial_value(y0, t0).set_f_params(2.0).set_jac_params(2.0)
>>> t1 = 10
>>> dt = 1
>>> while r.successful() and r.t < t1:
>>> r.integrate(r.t+dt)
>>> print r.t, r.y
```

```
Methods
integrate
set_f_params
set_initial_value
set_integrator
set_jac_params
successful
```


### 3.5 Interpolation (scipy.interpolate)

### 3.5.1 Univariate interpolation

```
interp1d(x, y[, kind, axis, copy, ...])
BarycentricInterpolator(xi[, yi])
KroghInterpolator(xi, yi)
PiecewisePolynomial(xi, yi[, orders,
direction])
barycentric_interpolate(xi, yi, x)
krogh_interpolate(xi, yi, x[, der])
piecewise_polynomial_interpolate(xi,
yi, x)
```

Interpolate a 1-D function.
The interpolating polynomial for a set of points
The interpolating polynomial for a set of points
Piecewise polynomial curve specified by points and derivatives
Convenience function for polynomial interpolation Convenience function for polynomial interpolation. Convenience function for piecewise polynomial interpolation
class scipy.interpolate.interp1d(x,y,kind='linear', axis=-1, copy=True, bounds_error=True, fill_value=np.nan)
Interpolate a 1-D function.
$x$ and $y$ are arrays of values used to approximate some function $\mathrm{f}: \mathrm{y}=\mathrm{f}(\mathrm{x})$. This class returns a function whose call method uses interpolation to find the value of new points.

## Parameters

$\mathbf{x}$ : array_like
A 1-D array of monotonically increasing real values.
$\mathbf{y}$ : array_like
A N-D array of real values. The length of $y$ along the interpolation axis must be equal to the length of $x$.
kind : str or int, optional
Specifies the kind of interpolation as a string ('linear','nearest', 'zero', 'slinear', 'quadratic, 'cubic') or as an integer specifying the order of the spline interpolator to use. Default is 'linear'.
axis : int, optional
Specifies the axis of $y$ along which to interpolate. Interpolation defaults to the last axis of $y$.
copy : bool, optional
If True, the class makes internal copies of x and y . If False, references to $x$ and $y$ are used. The default is to copy.
bounds_error : bool, optional

If True, an error is thrown any time interpolation is attempted on a value outside of the range of $x$ (where extrapolation is necessary). If False, out of bounds values are assigned fill_value. By default, an error is raised.
fill_value : float, optional
If provided, then this value will be used to fill in for requested points outside of the data range. If not provided, then the default is NaN .

## See Also:

UnivariateSpline
A more recent wrapper of the FITPACK routines.
splrep, splev, interp2d

## Examples

```
>>> import scipy.interpolate
>>> x = np.arange(0, 10)
>>> y = np.exp(-x/3.0)
>>> f = sp.interpolate.interpld(x, y)
>>> xnew = np.arange (0, 9, 0.1)
>>> ynew = f(xnew) # use interpolation function returned by 'interpld'
>>> plt.plot(x, y, 'o', xnew, ynew, '-')
```

class scipy.interpolate.BarycentricInterpolator ( $x i, y i=N o n e$ )
The interpolating polynomial for a set of points
Constructs a polynomial that passes through a given set of points. Allows evaluation of the polynomial, efficient changing of the y values to be interpolated, and updating by adding more x values. For reasons of numerical stability, this function does not compute the coefficients of the polynomial.
This class uses a "barycentric interpolation" method that treats the problem as a special case of rational function interpolation. This algorithm is quite stable, numerically, but even in a world of exact computation, unless the $x$ coordinates are chosen very carefully - Chebyshev zeros (e.g. $\cos (i * p i / n)$ ) are a good choice - polynomial interpolation itself is a very ill-conditioned process due to the Runge phenomenon.
Based on Berrut and Trefethen 2004, "Barycentric Lagrange Interpolation".

## Methods

add_xi
set_yi
class scipy.interpolate.KroghInterpolator (xi, yi)
The interpolating polynomial for a set of points
Constructs a polynomial that passes through a given set of points, optionally with specified derivatives at those points. Allows evaluation of the polynomial and all its derivatives. For reasons of numerical stability, this function does not compute the coefficients of the polynomial, although they can be obtained by evaluating all the derivatives.

Be aware that the algorithms implemented here are not necessarily the most numerically stable known. Moreover, even in a world of exact computation, unless the $x$ coordinates are chosen very carefully - Chebyshev zeros (e.g. $\left.\cos \left(\mathrm{i}^{*} \mathrm{pi} / \mathrm{n}\right)\right)$ are a good choice - polynomial interpolation itself is a very ill-conditioned process due to the Runge phenomenon. In general, even with well-chosen $x$ values, degrees higher than about thirty cause problems with numerical instability in this code.

Based on [R4].

## Parameters

xi : array-like, length N
Known x-coordinates
yi : array-like, N by R
Known y-coordinates, interpreted as vectors of length $R$, or scalars if $R=1$. When an xi occurs two or more times in a row, the corresponding yi's represent derivative values.

## References

[R4]

## Methods

derivative
derivatives
class scipy.interpolate.PiecewisePolynomial (xi, yi, orders=None, direction=None)
Piecewise polynomial curve specified by points and derivatives
This class represents a curve that is a piecewise polynomial. It passes through a list of points and has specified derivatives at each point. The degree of the polynomial may very from segment to segment, as may the number of derivatives available. The degree should not exceed about thirty.

Appending points to the end of the curve is efficient.

## Methods

```
 append
```

derivative
derivatives
extend
scipy.interpolate.barycentric_interpolate ( $x i, y i, x$ )
Convenience function for polynomial interpolation
Constructs a polynomial that passes through a given set of points, then evaluates the polynomial. For reasons of numerical stability, this function does not compute the coefficients of the polynomial.
This function uses a "barycentric interpolation" method that treats the problem as a special case of rational function interpolation. This algorithm is quite stable, numerically, but even in a world of exact computation, unless the x coordinates are chosen very carefully - Chebyshev zeros (e.g. $\cos \left(\mathrm{i}^{*} \mathrm{pi} / \mathrm{n}\right)$ ) are a good choice polynomial interpolation itself is a very ill-conditioned process due to the Runge phenomenon.

Based on Berrut and Trefethen 2004, "Barycentric Lagrange Interpolation".

## Parameters

$\mathbf{x i}$ : array_like of length N
The x coordinates of the points the polynomial should pass through
yi : array_like $N$ by $R$
The y coordinates of the points the polynomial should pass through; if $\mathrm{R}>1$ the polynomial is vector-valued.
$\mathbf{x}$ : scalar or array_like of length M

## Returns

$\mathbf{y}$ : scalar or array_like of length $R$ or length M or M by R

The shape of y depends on the shape of x and whether the interpolator is vectorvalued or scalar-valued.

## Notes

Construction of the interpolation weights is a relatively slow process. If you want to call this many times with the same xi (but possibly varying yi or x ) you should use the class BarycentricInterpolator. This is what this function uses internally.
scipy.interpolate.krogh_interpolate (xi, yi, $x$, der=0)
Convenience function for polynomial interpolation.
Constructs a polynomial that passes through a given set of points, optionally with specified derivatives at those points. Evaluates the polynomial or some of its derivatives. For reasons of numerical stability, this function does not compute the coefficients of the polynomial, although they can be obtained by evaluating all the derivatives.
Be aware that the algorithms implemented here are not necessarily the most numerically stable known. Moreover, even in a world of exact computation, unless the $x$ coordinates are chosen very carefully - Chebyshev zeros (e.g. $\left.\cos \left(i^{*} \mathrm{pi} / \mathrm{n}\right)\right)$ are a good choice - polynomial interpolation itself is a very ill-conditioned process due to the Runge phenomenon. In general, even with well-chosen x values, degrees higher than about thirty cause problems with numerical instability in this code.

Based on Krogh 1970, "Efficient Algorithms for Polynomial Interpolation and Numerical Differentiation"
The polynomial passes through all the pairs (xi,yi). One may additionally specify a number of derivatives at each point xi; this is done by repeating the value xi and specifying the derivatives as successive yi values.

## Parameters

$\mathbf{x i}$ : array_like, length $N$
known x-coordinates
yi : array_like, N by R
known y-coordinates, interpreted as vectors of length $R$, or scalars if $R=1$
$\mathbf{x}$ : scalar or array_like of length N
Point or points at which to evaluate the derivatives
der : integer or list
How many derivatives to extract; None for all potentially nonzero derivatives (that is a number equal to the number of points), or a list of derivatives to extract. This number includes the function value as 0th derivative.

## Returns

d : ndarray
If the interpolator's values are R-dimensional then the returned array will be the number of derivatives by N by R . If x is a scalar, the middle dimension will be dropped; if the yi are scalars then the last dimension will be dropped.

## Notes

Construction of the interpolating polynomial is a relatively expensive process. If you want to evaluate it repeatedly consider using the class KroghInterpolator (which is what this function uses).
scipy.interpolate.piecewise_polynomial_interpolate ( $x i$, yi, $x$, orders $=$ None, der $=0$ )
Convenience function for piecewise polynomial interpolation

```
Parameters
xi : array_like
```

A sorted list of x -coordinates, of length N .
$\mathbf{y i}$ : list of lists
$y i[i]$ is the list of derivatives known at xi[i]. Of length $N$.
$\mathbf{x}$ : scalar or array_like
Of length M.
orders : int or list of ints
a list of polynomial orders, or a single universal order
der : int
Which single derivative to extract.

## Returns

y : scalar or array_like
The result, of length $R$ or length $M$ or $M$ by $R$,

## Notes

If orders is None, or orders[i] is None, then the degree of the polynomial segment is exactly the degree required to match all i available derivatives at both endpoints. If orders[i] is not None, then some derivatives will be ignored. The code will try to use an equal number of derivatives from each end; if the total number of derivatives needed is odd, it will prefer the rightmost endpoint. If not enough derivatives are available, an exception is raised.
Construction of these piecewise polynomials can be an expensive process; if you repeatedly evaluate the same polynomial, consider using the class PiecewisePolynomial (which is what this function does).

### 3.5.2 Multivariate interpolation

Unstructured data:

| griddata(points, values, xi[, method, <br> ...]) | Interpolate unstructured N-dimensional data. |
| :--- | :--- |
| LinearNDInterpolator(points, |  |
| values) <br> NearestNDInterpolator(points, <br> values) | Piecewise linear interpolant in N dimensions. |
| CloughTocher2DInterpolator(points, Piecewise cubic, C1 smooth, curvature-minimizing interpolant in |  |
| values[, tol]) | Nearest-neighbour interpolation in N dimensions. |
| Rbf(*args) | 2D. |
|  | A class for radial basis function approximation/interpolation of |
| interp2d(x, y, z[, kind, copy, ...]) | n-dimensional scattered data. |

scipy.interpolate.griddata (points, values, xi, method='linear', fill_value=nan)
Interpolate unstructured N -dimensional data. New in version 0.9.
Parameters
points : ndarray of floats, shape (npoints, ndims)
Data point coordinates. Can either be a ndarray of size (npoints, ndim), or a tuple of ndim arrays.

For interpolation of 1-D data, the points must be sorted in ascending order.
values : ndarray of float or complex, shape (npoints, ...)
Data values.
$\mathbf{x i}$ : ndarray of float, shape (..., ndim)
Points where to interpolate data at.
method : \{'linear', 'nearest', 'cubic' \}
Method of interpolation. One of

- nearest: return the value at the data point closest to the point of interpolation. See NearestNDInterpolator for more details.
- linear: tesselate the input point set to n-dimensional simplices, and interpolate linearly on each simplex. See LinearNDInterpolator for more details.
- cubic (1-D): return the value detemined from a cubic spline.
- cubic (2-D): return the value determined from a piecewise cubic, continuously differentiable (C1), and approximately curvature-minimizing polynomial surface. See CloughTocher2DInterpolator for more details.
fill_value : float, optional
Value used to fill in for requested points outside of the convex hull of the input points. If not provided, then the default is nan. This option has no effect for the 'nearest' method.


## Examples

Suppose we want to interpolate the 2-D function

```
>>> def func(x, y):
>>> return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2
```

on a grid in $[0,1] x[0,1]$

```
>>> grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j]
```

but we only know its values at 1000 data points:

```
>>> points = np.random.rand(1000, 2)
>>> values = func(points[:,0], points[:,1])
```

This can be done with griddata - below we try out all of the interpolation methods:

```
>>> from scipy.interpolate import griddata
>>> grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest')
>>> grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear')
>>> grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic')
```

One can see that the exact result is reproduced by all of the methods to some degree, but for this smooth function the piecewise cubic interpolant gives the best results:

```
>>> import matplotlib.pyplot as plt
>>> plt.subplot(221)
>>> plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower')
>>> plt.plot(points[:,0], points[:,1], 'k.' , ms=1)
>>> plt.title('Original')
>>> plt.subplot(222)
>>> plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Nearest')
>>> plt.subplot(223)
>>> plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Linear')
```

```
>>> plt.subplot(224)
>>> plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Cubic')
>>> plt.gcf().set_size_inches(6, 6)
>>> plt.show()
```


class scipy.interpolate. LinearNDInterpolator (points, values)
Piecewise linear interpolant in N dimensions. New in version 0.9.

## Parameters

points : ndarray of floats, shape (npoints, ndims)
Data point coordinates.
values : ndarray of float or complex, shape (npoints, ...)
Data values.
fill_value : float, optional

Value used to fill in for requested points outside of the convex hull of the input points. If not provided, then the default is nan.

## Notes

The interpolant is constructed by triangulating the input data with Qhull [Qhull], and on each triangle performing linear barycentric interpolation.

## References

[Qhull]
class scipy.interpolate.NearestNDInterpolator (points, values)
Nearest-neighbour interpolation in N dimensions. New in version 0.9.

## Parameters

points : ndarray of floats, shape (npoints, ndims)
Data point coordinates.
values : ndarray of float or complex, shape (npoints, ...)
Data values.

## Notes

Uses scipy.spatial.cKDTree
class scipy.interpolate.CloughTocher2DInterpolator (points, values, tol=le-6)
Piecewise cubic, C1 smooth, curvature-minimizing interpolant in 2D. New in version 0.9.

## Parameters

points : ndarray of floats, shape (npoints, ndims)
Data point coordinates.
values : ndarray of float or complex, shape (npoints, ...)
Data values.
fill_value : float, optional
Value used to fill in for requested points outside of the convex hull of the input points.
If not provided, then the default is nan.
tol : float, optional
Absolute/relative tolerance for gradient estimation.
maxiter : int, optional
Maximum number of iterations in gradient estimation.

## Notes

The interpolant is constructed by triangulating the input data with Qhull [Qhull], and constructing a piecewise cubic interpolating Bezier polynomial on each triangle, using a Clough-Tocher scheme [CT]. The interpolant is guaranteed to be continuously differentiable.

The gradients of the interpolant are chosen so that the curvature of the interpolating surface is approximatively minimized. The gradients necessary for this are estimated using the global algorithm described in [Nielson83,Renka84]_.

## References

[Qhull], [CT], [Nielson83], [Renka84]
class scipy.interpolate. Rbf (*args)
A class for radial basis function approximation/interpolation of $n$-dimensional scattered data.

## Parameters

*args : arrays
$\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots, \mathrm{d}$, where $\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots$ are the coordinates of the nodes and d is the array of values at the nodes
function : str or callable, optional
The radial basis function, based on the radius, r, given by the norm (defult is Euclidean distance); the default is 'multiquadric':

```
'multiquadric': sqrt((r/self.epsilon)**2 + 1)
'inverse': 1.0/sqrt((r/self.epsilon)**2 + 1)
'gaussian': exp(-(r/self.epsilon)**2)
'linear': r
'cubic': r**3
'quintic': r**5
'thin_plate': r**2 * log(r)
```

If callable, then it must take 2 arguments (self, r). The epsilon parameter will be available as self.epsilon. Other keyword arguments passed in will be available as well.
epsilon : float, optional
Adjustable constant for gaussian or multiquadrics functions - defaults to approximate average distance between nodes (which is a good start).
smooth : float, optional
Values greater than zero increase the smoothness of the approximation. 0 is for interpolation (default), the function will always go through the nodal points in this case.
norm : callable, optional
A function that returns the 'distance' between two points, with inputs as arrays of positions ( $\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots$ ), and an output as an array of distance. E.g, the default:

```
def euclidean_norm(x1, x2):
 return sqrt(((x1 - x2)**2).sum(axis=0))
```

which is called with $\mathrm{x} 1=\mathrm{x} 1$ [ndims,newaxis,:] and $\mathrm{x} 2=\mathrm{x} 2$ [ndims,,,newaxis] such that the result is a matrix of the distances from each point in x 1 to each point in x 2 .

## Examples

```
>>> rbfi = Rbf(x, y, z, d) # radial basis function interpolator instance
```

>>> di = rbfi(xi, yi, zi) \# interpolated values
class scipy.interpolate.interp2d(x, y, $z, \quad$ kind='linear', copy=True, bounds_error=False, fill_value $=$ nan)
Interpolate over a 2-D grid.
$x, y$ and $z$ are arrays of values used to approximate some function $\mathrm{f}: \mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$. This class returns a function whose call method uses spline interpolation to find the value of new points.

## Parameters

$\mathbf{x}, \mathbf{y}$ : 1-D ndarrays
Arrays defining the data point coordinates.
If the points lie on a regular grid, $x$ can specify the column coordinates and $y$ the row coordinates, for example:

$$
\text { >>> } x=[0,1,2] ; y=[0,3] ; z=[[1,2,3],[4,5,6]]
$$

Otherwise, x and y must specify the full coordinates for each point, for example:

$$
\text { >>> } x=[0,1,2,0,1,2] ; y=[0,0,0,3,3,3] ; z=[1,2,3,4,5,6]
$$

If $x$ and $y$ are multi-dimensional, they are flattened before use.
z: 1-D ndarray
The values of the function to interpolate at the data points. If $z$ is a multi-dimensional array, it is flattened before use.
kind : \{ 'linear', 'cubic', 'quintic' \}, optional
The kind of spline interpolation to use. Default is 'linear'.
copy : bool, optional
If True, then data is copied, otherwise only a reference is held.
bounds_error : bool, optional
If True, when interpolated values are requested outside of the domain of the input data, an error is raised. If False, then fill_value is used.
fill_value : number, optional
If provided, the value to use for points outside of the interpolation domain. Defaults to NaN .

## See Also:

bisplrep, bisplev
BivariateSpline
a more recent wrapper of the FITPACK routines
interpld

## Notes

The minimum number of data points required along the interpolation axis is $(k+1) * * 2$, with $k=1$ for linear, $\mathrm{k}=3$ for cubic and $\mathrm{k}=5$ for quintic interpolation.

The interpolator is constructed by bisplrep, with a smoothing factor of 0 . If more control over smoothing is needed, bisplrep should be used directly.

## Examples

Construct a 2-D grid and interpolate on it:

```
>>> x = np.arange(-5.01, 5.01, 0.25)
>>> y = np.arange(-5.01, 5.01, 0.25)
>>> xx, yy = np.meshgrid(x, y)
>>> z = np.sin(xx**2+yy**2)
>>> f = sp.interpolate.interp2d(x, y, z, kind='cubic')
```

Now use the obtained interpolation function and plot the result:

```
>>> xnew = np.arange(-5.01, 5.01, 1e-2)
>>> ynew = np.arange(-5.01, 5.01, 1e-2)
>>> znew = f(xnew, ynew)
>>> plt.plot(x, z[:, 0], 'ro-', xnew, znew[:, 0], 'b-')
```


## Methods

$\qquad$
For data on a grid:
RectBivariateSpline(x, y, z, None, None[, ...]) Bivariate spline approximation over a rectangular mesh.

## See Also:

```
scipy.ndimage.map_coordinates
```


### 3.5.3 1-D Splines

| UnivariateSpline(x, y[, w, bbox, k, s]) | One-dimensional smoothing spline fit to a given set of <br> data points. |
| :--- | :--- |
| InterpolatedUnivariateSpline(x, y[,w, | One-dimensional interpolating spline for a given set of <br> data points. |
| bbox, k]) | One-dimensional spline with explicit internal knots. |
| LSQUnivariateSpline(x, y, t[,w, bbox, k]) | Ond |

class scipy.interpolate.UnivariateSpline ( $x, y, w=$ None, bbox $=[$, None, None $], k=3, s=$ None)
One-dimensional smoothing spline fit to a given set of data points.
Fits a spline $\mathrm{y}=\mathrm{s}(\mathrm{x})$ of degree $k$ to the provided $x, y$ data. $s$ specifies the number of knots by specifying a smoothing condition.

## Parameters

$\mathbf{x}$ : array_like
1-D array of independent input data. Must be increasing.
$\mathbf{y}$ : array_like
1-D array of dependent input data, of the same length as $x$.
$\mathbf{w}$ : array_like, optional
Weights for spline fitting. Must be positive. If None (default), weights are all equal.
bbox : array_like, optional
2-sequence specifying the boundary of the approximation interval. If None (default), bbox=[x[0], $x[-1]]$.
k : int, optional
Degree of the smoothing spline. Must be $<=5$.
$\mathbf{s}$ : float or None, optional

Positive smoothing factor used to choose the number of knots. Number of knots will be increased until the smoothing condition is satisfied:

```
sum((w[i]*(y[i]-s(x[i])))**2,axis=0)<= s
```

If None (default), $s=l e n(w)$ which should be a good value if $1 / w[i]$ is an estimate of the standard deviation of $y[i]$. If 0 , spline will interpolate through all data points.

## See Also:

## InterpolatedUnivariateSpline

Subclass with smoothing forced to 0

## LSQUnivariateSpline

Subclass in which knots are user-selected instead of being set by smoothing condition

```
splrep
```

An older, non object-oriented wrapping of FITPACK

```
splev, sproot,splint,spalde
```

BivariateSpline

A similar class for two-dimensional spline interpolation

## Notes

The number of data points must be larger than the spline degree $k$.

## Examples

```
>>> from numpy import linspace, exp
>>> from numpy.random import randn
>>> from scipy.interpolate import UnivariateSpline
>>> x = linspace(-3, 3, 100)
>>>y y exp(-x**2) + randn(100)/10
>>> s = UnivariateSpline(x, y, s=1)
>>> xs = linspace(-3, 3, 1000)
>>> ys = s(xs)
```

xs,ys is now a smoothed, super-sampled version of the noisy gaussian $\mathrm{x}, \mathrm{y}$.

## Methods

```
derivatives
get_coeffs
get_knots
get_residual
integral
roots
set_smoothing_factor
```

class scipy.interpolate. InterpolatedUnivariateSpline ( $x, y, w=$ None, bbox $=[$, None, None
One-dimensional interpolating spline for a given set of data points.
Fits a spline $\mathrm{y}=\mathrm{s}(\mathrm{x})$ of degree $k$ to the provided $x, y$ data. Spline function passes through all provided points. Equivalent to UnivariateSpline with $\mathrm{s}=0$.

## Parameters

$\mathbf{x}$ : array_like
input dimension of data points - must be increasing
$\mathbf{y}$ : array_like
input dimension of data points
$\mathbf{w}$ : array_like, optional
Weights for spline fitting. Must be positive. If None (default), weights are all equal.
bbox : array_like, optional
2-sequence specifying the boundary of the approximation interval. If None (default), bbox $=[x[0], x[-1]]$.
k : int, optional
Degree of the smoothing spline. Must be $<=5$.

## See Also:

UnivariateSpline
Superclass - allows knots to be selected by a smoothing condition

```
LSQUnivariateSpline
```

spline for which knots are user-selected

```
splrep
```

An older, non object-oriented wrapping of FITPACK
splev, sproot, splint, spalde

## BivariateSpline

A similar class for two-dimensional spline interpolation

## Notes

The number of data points must be larger than the spline degree $k$.

## Examples

```
>>> from numpy import linspace,exp
>>> from numpy.random import randn
>>> from scipy.interpolate import UnivariateSpline
>>> x = linspace(-3, 3, 100)
>>> y = exp(-x**2) + randn(100)/10
>>> s = UnivariateSpline(x, y, s=1)
>>> xs = linspace(-3, 3, 1000)
>>> ys = s(xs)
```

xs,ys is now a smoothed, super-sampled version of the noisy gaussian $\mathrm{x}, \mathrm{y}$

## Methods

```
derivatives
get_coeffs
get_knots
get_residual
integral
roots
set_smoothing_factor
```

class scipy.interpolate.LSQUnivariateSpline ( $x, y, t, w=$ None, bbox $=[$, None, None $], k=3$ )
One-dimensional spline with explicit internal knots.
Fits a spline $\mathrm{y}=\mathrm{s}(\mathrm{x})$ of degree $k$ to the provided $x, y$ data. $t$ specifies the internal knots of the spline

## Parameters

$\mathbf{x}$ : array_like
input dimension of data points - must be increasing
$\mathbf{y}$ : array_like
input dimension of data points
t: array_like :
interior knots of the spline. Must be in ascending order and bbox $[0]<\mathrm{t}[0]<\ldots<\mathrm{t}[-$ 1]<bbox[-1]
$\mathbf{w}$ : array_like, optional
weights for spline fitting. Must be positive. If None (default), weights are all equal.
bbox : array_like, optional
2-sequence specifying the boundary of the approximation interval. If None (default), bbox $=[x[0], x[-1]]$.
k: int, optional
Degree of the smoothing spline. Must be $<=5$.

## Raises

ValueError :
If the interior knots do not satisfy the Schoenberg-Whitney conditions

## See Also:

UnivariateSpline
Superclass - knots are specified by setting a smoothing condition
InterpolatedUnivariateSpline
spline passing through all points
splrep
An older, non object-oriented wrapping of FITPACK
splev, sproot, splint, spalde
BivariateSpline
A similar class for two-dimensional spline interpolation

## Notes

The number of data points must be larger than the spline degree $k$.

## Examples

```
>>> from numpy import linspace,exp
>>> from numpy.random import randn
>>> from scipy.interpolate import LSQUnivariateSpline
>>> x = linspace(-3,3,100)
>>> y = exp(-x**2) + randn(100)/10
>>> t = [-1,0,1]
```

```
>>> s = LSQUnivariateSpline(x,y,t)
>>> xs = linspace(-3,3,1000)
>>> ys = s(xs)
```

xs , ys is now a smoothed, super-sampled version of the noisy gaussian $\mathrm{x}, \mathrm{y}$ with knots $[-3,-1,0,1,3]$

## Methods

```
derivatives
get_coeffs
get_knots
get_residual
integral
roots
set_smoothing_factor
```

The above univariate spline classes have the following methods:

| UnivariateSpline.__call__(x[, nu]) | Evaluate spline (or its nu-th derivative) at positions x . |
| :---: | :---: |
| UnivariateSpline.derivatives(x) | Return all derivatives of the spline at the point x . |
| UnivariateSpline.integral(a, b) | Return definite integral of the spline between two |
| UnivariateSpline.roots() | Return the zeros of the spline. |
| UnivariateSpline.get_coeffs() | Return spline coefficients. |
| UnivariateSpline.get_knots() | Return the positions of (boundary and interior) |
| UnivariateSpline.get_residual() | Return weighted sum of squared residuals of the spline |
| UnivariateSpline.set_smoothing_factor(s) | Continue spline computation with the given smoothing |
| UnivariateSpline.__call__( $x, n u=0$ ) |  |
| Evaluate spline (or its nu-th derivative) at positions efficient if x is (partially) ordered. | Note: x can be unordered but the evaluation is more |

UnivariateSpline.derivatives $(x)$

Return all derivatives of the spline at the point x .
UnivariateSpline.integral ( $a, b$ )
Return definite integral of the spline between two given points.

```
UnivariateSpline.roots()
```

Return the zeros of the spline.
Restriction: only cubic splines are supported by fitpack.

```
UnivariateSpline.get_coeffs()
```

Return spline coefficients.
UnivariateSpline.get_knots()
Return the positions of (boundary and interior) knots of the spline.
UnivariateSpline.get_residual()
Return weighted sum of squared residuals of the spline approximation: sum $((\mathrm{w}[\mathrm{i}] *(\mathrm{y}[\mathrm{i}]-\mathrm{s}(\mathrm{x}[\mathrm{i}]))) * * 2, \mathrm{axis}=0)$
UnivariateSpline.set_smoothing_factor (s)
Continue spline computation with the given smoothing factor $s$ and with the knots found at the last call.
Low-level interface to FITPACK functions:

```
splrep(x, y[,w, xb, xe, k, task, s, t, ...]) Find the B-spline representation of 1-D curve.
splprep(x[,w, u, ub, ue, k, task, s,t,..]) Find the B-spline representation of an N-dimensional curve.
splev(x, tck[, der, ext])
splint(a,b,tck[, full_output])
sproot(tck[,mest]) Find the roots of a cubic B-spline.
spalde(x, tck) Evaluate all derivatives of a B-spline.
bisplrep(x, y, z[,w, xb, xe, yb, ye, kx, ...]) Find a bivariate B-spline representation of a surface.
bisplev(x, y, tck[, dx, dy])
Evaluate a B-spline or its derivatives.
Evaluate the definite integral of a B-spline.
Find a bivariate B-spline representation of a surface.
Evaluate a bivariate B-spline and its derivatives.
```

```
scipy.interpolate.splrep \((x, y, w=N o n e, x b=N o n e, x e=N o n e, k=3, t a s k=0, s=N o n e, t=\) None,
```

scipy.interpolate.splrep $(x, y, w=N o n e, x b=N o n e, x e=N o n e, k=3, t a s k=0, s=N o n e, t=$ None,
full_output $=0$, per $=0$, quiet $=1$ )

```
 full_output \(=0\), per \(=0\), quiet \(=1\))
```

Find the B-spline representation of 1-D curve.
Given the set of data points ( $\mathrm{x}[\mathrm{i}], \mathrm{y}[\mathrm{i}]$ ) determine a smooth spline approximation of degree k on the interval xb $<=\mathrm{x}<=\mathrm{xe}$. The coefficients, c , and the knot points, t , are returned. Uses the FORTRAN routine curfit from FITPACK.

## Parameters

$\mathbf{x}, \mathbf{y}$ : array_like
The data points defining a curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$.
$\mathbf{w}$ : array_like
Strictly positive rank-1 array of weights the same length as $x$ and $y$. The weights are used in computing the weighted least-squares spline fit. If the errors in the $y$ values have standard-deviation given by the vector $d$, then $w$ should be $1 / d$. Default is ones $(\operatorname{len}(x))$.
$\mathbf{x b}, \mathbf{x e}$ : float
The interval to fit. If None, these default to $x[0]$ and $x[-1]$ respectively.
k: int
The order of the spline fit. It is recommended to use cubic splines. Even order splines should be avoided especially with small s values. $1<=\mathrm{k}<=5$
task: $\{1,0,-1\}$
If task $=0$ find t and c for a given smoothing factor, s .
If task $==1$ find $t$ and $c$ for another value of the smoothing factor, $s$. There must have been a previous call with task $=0$ or task $=1$ for the same set of data ( t will be stored an used internally)

If task=-1 find the weighted least square spline for a given set of knots, t . These should be interior knots as knots on the ends will be added automatically.
s: float
A smoothing condition. The amount of smoothness is determined by satisfying the conditions: $\operatorname{sum}\left(\left(\mathrm{w}^{*}(\mathrm{y}-\mathrm{g})\right)^{* *}\right.$, axis=$\left.=0\right)<=\mathrm{s}$ where $\mathrm{g}(\mathrm{x})$ is the smoothed interpolation of $(\mathrm{x}, \mathrm{y})$. The user can use s to control the tradeoff between closeness and smoothness of fit. Larger s means more smoothing while smaller values of s indicate less smoothing. Recommended values of $s$ depend on the weights, w. If the weights represent the inverse of the standard-deviation of $y$, then a good $s$ value should be found in the range $(\mathrm{m}-\mathrm{sqrt}(2 * \mathrm{~m}), \mathrm{m}+\mathrm{sqrt}(2 * \mathrm{~m})$ ) where m is the number of datapoints in $\mathrm{x}, \mathrm{y}$, and w . default : $\mathrm{s}=\mathrm{m}-\mathrm{sqrt}(2 * \mathrm{~m})$ if weights are supplied. $\mathrm{s}=0.0$ (interpolating) if no weights are supplied.
t : int

The knots needed for task=-1. If given then task is automatically set to -1 .
full_output : bool
If non-zero, then return optional outputs.
per : bool
If non-zero, data points are considered periodic with period $x[m-1]-x[0]$ and a smooth periodic spline approximation is returned. Values of $y[m-1]$ and $w[m-1]$ are not used.
quiet : bool
Non-zero to suppress messages.

## Returns

tck: tuple
$(\mathrm{t}, \mathrm{c}, \mathrm{k})$ a tuple containing the vector of knots, the B-spline coefficients, and the degree of the spline.
fp : array, optional
The weighted sum of squared residuals of the spline approximation.
ier : int, optional
An integer flag about splrep success. Success is indicated if ier<=0. If ier in [1,2,3] an error occurred but was not raised. Otherwise an error is raised.
msg : str, optional
A message corresponding to the integer flag, ier.

## See Also:

```
UnivariateSpline, BivariateSpline, splprep, splev, sproot, spalde, splint,
bisplrep,bisplev
```


## Notes

See splev for evaluation of the spline and its derivatives.

## References

Based on algorithms described in [1], [2], [3], and [4]:
[R22], [R23], [R24], [R25]

## Examples

```
>>> x = linspace(0, 10, 10)
>>> y = sin(x)
>>> tck = splrep(x, y)
>>> x2 = linspace(0, 10, 200)
>>> y2 = splev(x2, tck)
>>> plot(x, y, 'o', x2, y2)
scipy.interpolate.splprep(x, w=None, }u=None, ub=None, ue=None, k=3, task=0, s=None
 t=None, full_output=0, nest=None, per=0, quiet=1)
```

Find the B -spline representation of an N -dimensional curve.
Given a list of $N$ rank-1 arrays, $x$, which represent a curve in $N$-dimensional space parametrized by $u$, find a smooth approximating spline curve $\mathrm{g}(\mathrm{u})$. Uses the FORTRAN routine parcur from FITPACK.

## Parameters

$\mathbf{x}$ : array_like
A list of sample vector arrays representing the curve.
$\mathbf{u}$ : array_like, optional
An array of parameter values. If not given, these values are calculated automatically as $M=\operatorname{len}(x[0]):$

$$
\mathrm{v}[0]=0 \mathrm{v}[\mathrm{i}]=\mathrm{v}[\mathrm{i}-1]+\operatorname{distance}(\mathrm{x}[\mathrm{i}], \mathrm{x}[\mathrm{i}-1]) \mathrm{u}[\mathrm{i}]=\mathrm{v}[\mathrm{i}] / \mathrm{v}[\mathrm{M}-1]
$$

ub, ue : int, optional
The end-points of the parameters interval. Defaults to $u[0]$ and $u[-1]$.
k: int, optional
Degree of the spline. Cubic splines are recommended. Even values of $k$ should be avoided especially with a small $s$-value. $1<=k<=5$, default is 3 .
task : int, optional
If task $=0$ (default), find $t$ and $c$ for a given smoothing factor, $s$. If task $==1$, find $t$ and c for another value of the smoothing factor, s . There must have been a previous call with task $=0$ or task $=1$ for the same set of data. If task $=-1$ find the weighted least square spline for a given set of knots, t .
s: float, optional
A smoothing condition. The amount of smoothness is determined by satisfying the conditions: sum $((\mathrm{w} *(\mathrm{y}-\mathrm{g})) * * 2$, axis $=0)<=s$, where $g(x)$ is the smoothed interpolation of ( $\mathrm{x}, \mathrm{y}$ ). The user can use $s$ to control the trade-off between closeness and smoothness of fit. Larger $s$ means more smoothing while smaller values of $s$ indicate less smoothing. Recommended values of $s$ depend on the weights, w. If the weights represent the inverse of the standard-deviation of y , then a good $s$ value should be found in the range ( $\mathrm{m}-\mathrm{sqrt}(2 * \mathrm{~m}$ ), $\mathrm{m}+\mathrm{sqrt}(2 * \mathrm{~m})$ ), where m is the number of data points in $\mathrm{x}, \mathrm{y}$, and w .
t: int, optional
The knots needed for task=-1.
full_output : int, optional
If non-zero, then return optional outputs.
nest : int, optional
An over-estimate of the total number of knots of the spline to help in determining the storage space. By default nest $=\mathrm{m} / 2$. Always large enough is nest $=\mathrm{m}+\mathrm{k}+1$.
per : int, optional
If non-zero, data points are considered periodic with period $\mathrm{x}[\mathrm{m}-1]-\mathrm{x}[0]$ and a smooth periodic spline approximation is returned. Values of $\mathrm{y}[\mathrm{m}-1]$ and $\mathrm{w}[\mathrm{m}-1]$ are not used.
quiet : int, optional
Non-zero to suppress messages.
Returns
tck : tuple

A tuple ( $\mathrm{t}, \mathrm{c}, \mathrm{k}$ ) containing the vector of knots, the B-spline coefficients, and the degree of the spline.
$\mathbf{u}$ : array
An array of the values of the parameter.
$\mathbf{f p}$ : float
The weighted sum of squared residuals of the spline approximation.
ier : int
An integer flag about splrep success. Success is indicated if ier $<=0$. If ier in $[1,2,3]$ an error occurred but was not raised. Otherwise an error is raised.
$\mathbf{m s g}$ : str
A message corresponding to the integer flag, ier.

## See Also:

splrep, splev, sproot, spalde, splint, bisplrep, bisplev, UnivariateSpline, BivariateSpline

## Notes

See splev for evaluation of the spline and its derivatives.

## References

[R19], [R20], [R21]
scipy.interpolate.splev ( $x, t c k, d e r=0, e x t=0$ )
Evaluate a B-spline or its derivatives.
Given the knots and coefficients of a B-spline representation, evaluate the value of the smoothing polynomial and its derivatives. This is a wrapper around the FORTRAN routines splev and splder of FITPACK.

## Parameters

$\mathbf{x}$ : array_like
A 1-D array of points at which to return the value of the smoothed spline or its derivatives. If $t c k$ was returned from splprep, then the parameter values, $u$ should be given.
tck : tuple
A sequence of length 3 returned by splrep or splprep containing the knots, coefficients, and degree of the spline.
der : int
The order of derivative of the spline to compute (must be less than or equal to k ).
ext : int
Controls the value returned for elements of x not in the interval defined by the knot sequence.

- if ext=0, return the extrapolated value.
- if ext=1, return 0
- if ext=2, raise a ValueError

The default value is 0 .

## Returns

$\mathbf{y}$ : ndarray or list of ndarrays
An array of values representing the spline function evaluated at the points in $x$. If tck was returned from splrep, then this is a list of arrays representing the curve in N -dimensional space.

## See Also:

splprep, splrep, sproot, spalde, splint, bisplrep, bisplev

## References

[R14], [R15], [R16]
scipy.interpolate.splint ( $a, b$, tck, full_output=0)
Evaluate the definite integral of a B-spline.
Given the knots and coefficients of a B-spline, evaluate the definite integral of the smoothing polynomial between two given points.

## Parameters

$\mathbf{a}, \mathbf{b}$ : float
The end-points of the integration interval.
tck: tuple
A tuple (t,c,k) containing the vector of knots, the B-spline coefficients, and the degree of the spline (see splev).
full_output : int, optional
Non-zero to return optional output.

## Returns

integral : float
The resulting integral.
wrk: ndarray
An array containing the integrals of the normalized B-splines defined on the set of knots.

## See Also:

splprep, splrep, sproot, spalde, splev, bisplrep, bisplev, UnivariateSpline,
BivariateSpline

## References

[R17], [R18]
scipy.interpolate.sproot (tck, mest=10)
Find the roots of a cubic B-spline.
Given the knots (>=8) and coefficients of a cubic B-spline return the roots of the spline.

## Parameters

tck: tuple
A tuple ( $\mathrm{t}, \mathrm{c}, \mathrm{k}$ ) containing the vector of knots, the B-spline coefficients, and the degree of the spline. The number of knots must be $>=8$. The knots must be a montonically increasing sequence.
mest : int
An estimate of the number of zeros (Default is 10).

## Returns

zeros : ndarray
An array giving the roots of the spline.

## See Also:

```
splprep, splrep, splint, spalde, splev, bisplrep, bisplev, UnivariateSpline,
BivariateSpline
```


## References

[R26], [R27], [R28]
scipy.interpolate.spalde ( $x, t c k$ )
Evaluate all derivatives of a B-spline.
Given the knots and coefficients of a cubic B-spline compute all derivatives up to order k at a point (or set of points).

## Parameters

tck : tuple
A tuple ( $\mathrm{t}, \mathrm{c}, \mathrm{k}$ ) containing the vector of knots, the B-spline coefficients, and the degree of the spline.
$\mathbf{x}$ : array_like
A point or a set of points at which to evaluate the derivatives. Note that $t(k)<=$ $\mathrm{x}<=\mathrm{t}(\mathrm{n}-\mathrm{k}+1)$ must hold for each $x$.

## Returns

results : array_like
An array (or a list of arrays) containing all derivatives up to order k inclusive for each point x .

See Also:
splprep, splrep, splint, sproot, splev, bisplrep, bisplev, UnivariateSpline, BivariateSpline

## References

[R11], [R12], [R13]
scipy.interpolate.bisplrep ( $x, y, z, w=$ None, $x b=N o n e, x e=N o n e, y b=N o n e, y e=N o n e, k x=3, k y=3$, task=0, $s=$ None, eps=9.9999999999999998e-17, $t x=$ None, $t y=$ None, full_output=0, nxest=None, nyest=None, quiet=1)
Find a bivariate B-spline representation of a surface.
Given a set of data points ( $\mathrm{x}[\mathrm{i}], \mathrm{y}[\mathrm{i}], \mathrm{z}[\mathrm{i}]$ ) representing a surface $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$, compute a B -spline representation of the surface. Based on the routine SURFIT from FITPACK.

## Parameters

$\mathbf{x}, \mathbf{y}, \mathbf{z}$ : ndarray
Rank- 1 arrays of data points.
$\mathbf{w}$ : ndarray, optional
Rank-1 array of weights. By default w=np.ones (len (x)).
$\mathbf{x b}, \mathbf{x e}$ : float, optional
End points of approximation interval in $x . \quad$ By default $x b=x \cdot m i n()$, $x e=x . \max ()$.
yb, ye : float, optional
End points of approximation interval in $y$. By default $y b=y \cdot m i n()$, ye $=$ $y . \max ()$.
kx, ky : int, optional
The degrees of the spline $(1<=k x, k y<=5)$. Third order $(k x=k y=3)$ is recommended.
task : int, optional
If task=0, find knots in x and y and coefficients for a given smoothing factor, s . If task=1, find knots and coefficients for another value of the smoothing factor, $s$. bisplrep must have been previously called with task=0 or task=1. If task=-1, find coefficients for a given set of knots tx, ty.
s: float, optional
A non-negative smoothing factor. If weights correspond to the inverse of the standard-deviation of the errors in z , then a good s-value should be found in the range $(m-\operatorname{sqrt}(2 \star m), m+\operatorname{sqrt}(2 \star m))$ where $m=\operatorname{len}(x)$.
eps : float, optional
A threshold for determining the effective rank of an over-determined linear system of equations ( $0<\mathrm{eps}<1$ ). eps is not likely to need changing.
tx, ty : ndarray, optional
Rank-1 arrays of the knots of the spline for task=-1
full_output : int, optional
Non-zero to return optional outputs.
nxest, nyest : int, optional
Over-estimates of the total number of knots. If None then nxest $=\max (k x+\operatorname{sqrt}(m / 2), 2 \star k x+3), \quad$ nyest $=$ $\max (k y+s q r t(m / 2), 2 * k y+3)$.
quiet : int, optional
Non-zero to suppress printing of messages.

## Returns

tck : array_like
A list [tx, ty, c, kx, ky] containing the knots (tx, ty) and coefficients (c) of the bivariate B-spline representation of the surface along with the degree of the spline.
fp : ndarray
The weighted sum of squared residuals of the spline approximation.
ier : int
An integer flag about splrep success. Success is indicated if ier<=0. If ier in [1,2,3] an error occurred but was not raised. Otherwise an error is raised.
msg : str

A message corresponding to the integer flag, ier.
See Also:

```
splprep, splrep, splint, sproot, splev,UnivariateSpline, BivariateSpline
```


## Notes

See bisplev to evaluate the value of the B-spline given its tck representation.

## References

[R8], [R9], [R10]
scipy.interpolate.bisplev ( $x, y, t c k, d x=0, d y=0$ )
Evaluate a bivariate B-spline and its derivatives.
Return a rank-2 array of spline function values (or spline derivative values) at points given by the cross-product of the rank-1 arrays x and y . In special cases, return an array or just a float if either x or y or both are floats. Based on BISPEV from FITPACK.

## Parameters

$\mathbf{x}, \mathbf{y}$ : ndarray
Rank-1 arrays specifying the domain over which to evaluate the spline or its derivative.
tck: tuple
A sequence of length 5 returned by bisplrep containing the knot locations, the coefficients, and the degree of the spline: [tx, ty, c, kx, ky].
dx, dy : int, optional
The orders of the partial derivatives in $x$ and $y$ respectively.

## Returns

vals : ndarray
The B-spline or its derivative evaluated over the set formed by the cross-product of $x$ and $y$.

## See Also:

splprep, splrep, splint, sproot, splev, UnivariateSpline, BivariateSpline

## Notes

See bisplrep to generate the tck representation.

## References

[R5], [R6], [R7]

### 3.5.4 2-D Splines

For data on a grid:
RectBivariateSpline(x, y, z, None, None[, ...]) $\quad$ Bivariate spline approximation over a rectangular mesh.
class scipy.interpolate.RectBivariateSpline $(x, y, z, b b o x=[$, None, None, None, None $], k x=3$, $k y=3, s=0$ )
Bivariate spline approximation over a rectangular mesh.

Can be used for both smoothing and interpolating data.

## Parameters

$\mathbf{x , y}$ : array_like
1-D arrays of coordinates in strictly ascending order.
z : array_like
2-D array of data with shape (x.size,y.size).
bbox : array_like, optional
Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default, bbox=[min(x,tx),max(x,tx), $\min (y, t y), \max (y, t y)]$.
$\mathbf{k x}, \mathbf{k y}$ : ints, optional
Degrees of the bivariate spline. Default is 3 .
s: float, optional
Positive smoothing factor defined for estimation condition: $\operatorname{sum}((w[i] *(z[i]-s(x[i], y[i]))) * * 2$, axis=0) $<=s$ Default is $\mathrm{s}=0$, which is for interpolation.

## See Also:

SmoothBivariateSpline
a smoothing bivariate spline for scattered data
bisplrep, bisplev
UnivariateSpline
a similar class for univariate spline interpolation

## Methods

```
ev
get_coeffs
get_knots
get_residual
integral
```

For unstructured data:

| BivariateSpline | Bivariate spline $s(x, y)$ of degrees kx and ky on the rectangle [xb,xe] $\mathrm{x}[\mathrm{yb}$, <br> ye] calculated from a given set of data points ( $\mathrm{x}, \mathrm{y}, \mathrm{z})$. |
| :--- | :--- |
| SmoothBivariateSpline(x, | Smooth bivariate spline approximation. |
| y, z, None, None[,..]) |  |
| LSQBivariateSpline(x, y, z, | Weighted least-squares bivariate spline approximation. |
| tx, ty, None, None) |  |

class scipy.interpolate.BivariateSpline
Bivariate spline $s(x, y)$ of degrees $k x$ and ky on the rectangle [xb, xe] $x$ [yb, ye] calculated from a given set of data points ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ).

## See Also:

bisplrep, bisplev
UnivariateSpline
a similar class for univariate spline interpolation

## SmoothUnivariateSpline

to create a BivariateSpline through the given points

## LSQUnivariateSpline

to create a BivariateSpline using weighted least-squares fitting

## Methods

```
ev
```

get_coeffs
get_knots
get_residual
integral
class scipy.interpolate.SmoothBivariateSpline $(x, y, z, w=$ None, bbox $=[$, None, None, None, None ], $k x=3, k y=3, s=$ None, eps=None)
Smooth bivariate spline approximation.

## Parameters

$\mathbf{x}, \mathbf{y}, \mathbf{z}$ : array_like
1-D sequences of data points (order is not important).
$\mathbf{w}$ : array_lie, optional
Positive 1-D sequence of weights.
bbox : array_like, optional
Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default, bbox=[min(x,tx),max(x,tx), $\min (y, t y), \max (y, t y)]$.
$\mathbf{k x}, \mathbf{k y}$ : ints, optional
Degrees of the bivariate spline. Default is 3 .
s: float, optional
Positive smoothing factor defined for estimation condition: sum((w[i]*(z[i]-s(x[i],y[i])))**2, axis=0) $<=s \quad$ Default $s=$ len ( $w$ ) which should be a good value if $1 / w[i]$ is an estimate of the standard deviation of $\mathrm{z}[\mathrm{i}]$.
eps : float, optional
A threshold for determining the effective rank of an over-determined linear system of equations. eps should have a value between 0 and 1 , the default is $1 \mathrm{e}-16$.

## See Also:

bisplrep, bisplev
UnivariateSpline
a similar class for univariate spline interpolation
LSQUnivariateSpline
to create a BivariateSpline using weighted

## Notes

The length of $x, y$ and $z$ should be at least $(k x+1) *(k y+1)$.

```
Methods
 ev
 get_coeffs
 get_knots
 get_residual
 integral
```

class scipy.interpolate.LSQBivariateSpline $(x, y, z, t x, t y, w=$ None, bbox $=[$, None, None, None, None ], $k x=3, k y=3$, eps $=$ None )
Weighted least-squares bivariate spline approximation.
Parameters
$\mathbf{x}, \mathbf{y}, \mathbf{z}$ : array_like
1-D sequences of data points (order is not important).
tx, ty : array_like
Strictly ordered 1-D sequences of knots coordinates.
$\mathbf{w}$ : array_lie, optional
Positive 1-D sequence of weights.
bbox : array_like, optional
Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default, bbox=[min(x,tx),max(x,tx), $\min (y, t y), \max (y, t y)]$.
$\mathbf{k x}, \mathbf{k y}$ : ints, optional
Degrees of the bivariate spline. Default is 3 .
s: float, optional
Positive smoothing factor defined for estimation condition: $\operatorname{sum}((w[i] *(z[i]-s(x[i], y[i]))) * * 2$, axis=0) $<=s \quad$ Default $s=l e n(w)$ which should be a good value if $1 / w[i]$ is an estimate of the standard deviation of $\mathrm{z}[\mathrm{i}]$.
eps : float, optional
A threshold for determining the effective rank of an over-determined linear system of equations. eps should have a value between 0 and 1 , the default is $1 \mathrm{e}-16$.

## See Also:

bisplrep, bisplev
UnivariateSpline
a similar class for univariate spline interpolation

## SmoothUnivariateSpline

To create a BivariateSpline through the given points

## Notes

The length of $x, y$ and $z$ should be at least $(k x+1) *(k y+1)$.

```
Methods
ev
get_coeffs
get_knots
get_residual
integral
```

Low-level interface to FITPACK functions:

```
bisplrep(x, y, z[,w, xb, xe, yb, ye, kx, ..]) Find a bivariate B-spline representation of a surface.
bisplev(x, y, tck[,dx, dy]) Evaluate a bivariate B-spline and its derivatives.
scipy.interpolate.bisplrep (}x,y,z,w=None, xb=None, xe=None, yb=None, ye=None, kx=3,ky=3
 task=0, s=None, eps=9.9999999999999998e-17, tx=None, ty=None,
 full_output=0, nxest=None, nyest=None, quiet=1)
```

Find a bivariate B-spline representation of a surface.
Given a set of data points ( $\mathrm{x}[\mathrm{i}], \mathrm{y}[\mathrm{i}], \mathrm{z}[\mathrm{i}]$ ) representing a surface $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$, compute a B-spline representation of the surface. Based on the routine SURFIT from FITPACK.

## Parameters

$\mathbf{x}, \mathbf{y}, \mathbf{z}$ : ndarray
Rank-1 arrays of data points.
w: ndarray, optional
Rank-1 array of weights. By default $\mathrm{w}=\mathrm{np}$. ones (len (x)).
$\mathbf{x b}, \mathbf{x e}$ : float, optional
End points of approximation interval in $x$. By default $\mathrm{xb}=\mathrm{x} . \mathrm{min}()$, $x==x$.max ().
yb, ye: float, optional
End points of approximation interval in $y$. By default $\mathrm{yb}=\mathrm{y} \cdot \min ()$, $\mathrm{ye}=$ $y$ yax ().
kx, ky : int, optional
The degrees of the spline ( $1<=\mathrm{kx}, \mathrm{ky}<=5$ ). Third order $(\mathrm{kx}=\mathrm{ky}=3)$ is recommended.
task : int, optional
If task $=0$, find knots in x and y and coefficients for a given smoothing factor, s . If task $=1$, find knots and coefficients for another value of the smoothing factor, $s$. bisplrep must have been previously called with task=0 or task $=1$. If task $=-1$, find coefficients for a given set of knots tx, ty.
s: float, optional
A non-negative smoothing factor. If weights correspond to the inverse of the standard-deviation of the errors in z , then a good s -value should be found in the range ( m -sqrt $(2 \star m$ ), $\mathrm{m}+\mathrm{sqrt}(2 \star \mathrm{~m})$ ) where $\mathrm{m}=\operatorname{len}(\mathrm{x})$.
eps : float, optional
A threshold for determining the effective rank of an over-determined linear system of equations ( $0<\mathrm{eps}<1$ ). eps is not likely to need changing.
tx, ty : ndarray, optional
Rank-1 arrays of the knots of the spline for task=-1
full_output : int, optional
Non-zero to return optional outputs.
nxest, nyest : int, optional

| Over-estimates of the total number of knots. | If None |
| :--- | :--- |
| then $\quad$ nxest $=\max (k x+\operatorname{sqrt}(m / 2), 2 \star k x+3)$, | nyest $=$ |
| $\max (k y+\operatorname{sqrt}(m / 2), 2 \star k y+3)$. |  | quiet : int, optional

Non-zero to suppress printing of messages.

## Returns

tck: array_like
A list [tx, ty, c, kx, ky] containing the knots (tx, ty) and coefficients (c) of the bivariate B -spline representation of the surface along with the degree of the spline.
fp: ndarray
The weighted sum of squared residuals of the spline approximation.
ier : int
An integer flag about splrep success. Success is indicated if ier<=0. If ier in [1,2,3] an error occurred but was not raised. Otherwise an error is raised.
msg : str
A message corresponding to the integer flag, ier.

## See Also:

splprep, splrep, splint, sproot, splev, UnivariateSpline, BivariateSpline

## Notes

See bisplev to evaluate the value of the B-spline given its tck representation.

## References

[R8], [R9], [R10]
scipy.interpolate.bisplev ( $x, y, t c k, d x=0, d y=0$ )
Evaluate a bivariate B-spline and its derivatives.
Return a rank-2 array of spline function values (or spline derivative values) at points given by the cross-product of the rank-1 arrays $x$ and $y$. In special cases, return an array or just a float if either x or y or both are floats. Based on BISPEV from FITPACK.

## Parameters

$\mathbf{x}, \mathbf{y}$ : ndarray
Rank-1 arrays specifying the domain over which to evaluate the spline or its derivative.
tck: tuple
A sequence of length 5 returned by bisplrep containing the knot locations, the coefficients, and the degree of the spline: [tx, ty, c, kx, ky].
$\mathbf{d x}, \mathbf{d y}$ : int, optional
The orders of the partial derivatives in $x$ and $y$ respectively.

## Returns

vals : ndarray
The B-spline or its derivative evaluated over the set formed by the cross-product of $x$ and $y$.

## See Also:

splprep, splrep, splint, sproot, splev, UnivariateSpline, BivariateSpline

## Notes

See bisplrep to generate the tck representation.

## References

[R5], [R6], [R7]

### 3.5.5 Additional tools

| lagrange(x,w) | Return a Lagrange interpolating polynomial. |
| :--- | :--- |
| approximate_taylor_polynomial(f, $x$, | Estimate the Taylor polynomial of $f$ at $x$ by polynomial |
| degree, ...) | fitting. |

scipy.interpolate.lagrange ( $x, w$ )
Return a Lagrange interpolating polynomial.
Given two 1-D arrays $x$ and $w$, returns the Lagrange interpolating polynomial through the points $(x, w)$.
Warning: This implementation is numerically unstable. Do not expect to be able to use more than about 20 points even if they are chosen optimally.

## Parameters

$\mathbf{x}$ : array_like
$x$ represents the $x$-coordinates of a set of datapoints.
$\mathbf{w}$ : array_like
$w$ represents the $y$-coordinates of a set of datapoints, i.e. $\mathrm{f}(x)$.
scipy.interpolate.approximate_taylor_polynomial ( $f$, $x$, degree, scale, order $=$ None $)$
Estimate the Taylor polynomial of f at x by polynomial fitting.

## Parameters

f: callable
The function whose Taylor polynomial is sought. Should accept a vector of x values.
$\mathbf{x}$ : scalar
The point at which the polynomial is to be evaluated.
degree : int
The degree of the Taylor polynomial
scale : scalar
The width of the interval to use to evaluate the Taylor polynomial. Function values spread over a range this wide are used to fit the polynomial. Must be chosen carefully.
order : int or None

The order of the polynomial to be used in the fitting; $f$ will be evaluated order +1 times. If None, use degree.

## Returns

p: poly1d instance
The Taylor polynomial (translated to the origin, so that for example $\mathrm{p}(0)=\mathrm{f}(\mathrm{x})$ ).

## Notes

The appropriate choice of "scale" is a trade-off; too large and the function differs from its Taylor polynomial too much to get a good answer, too small and round-off errors overwhelm the higher-order terms. The algorithm used becomes numerically unstable around order 30 even under ideal circumstances.
Choosing order somewhat larger than degree may improve the higher-order terms.

### 3.6 Input and output (scipy.io)

## See Also:

numpy-reference.routines.io (in Numpy)

### 3.6.1 MATLAB® files

| loadmat(file_name, **kwargs[, mdict, appendmat]) | Load MATLAB file |
| :---: | :---: |
| savemat(file_name, mdict[, appendmat, ...]) | Save a dictionary of names and arrays into a MATLAB-style .mat file. |
| scipy.io.loadmat (file_name, mdict=None, appendmat=True, **kwargs) Load MATLAB file |  |
| Parameters file_name : str |  |
| Name of the mat file (do not need .mat extension if appendmat==True) Can also pass open file-like object. |  |
| m_dict : dict, optional |  |
| appendmat : bool, optional |  |
| True to append the .mat extension to the end of the given filename, if not already present. |  |
| byte_order : str or None, optional |  |
| None by default, implying byte order guessed from mat file. Otherwise can be one of ('native', '=', 'little', '<', 'BIG', '>'). |  |
| mat_dtype : bool, optional |  |
| If True, return arrays in same dtype as would be loaded into MATLAB (instead of the dtype with which they are saved). |  |
| squeeze_me : bool, optional |  |
| Whether to squeeze unit | ix dimensions or not. |

chars_as_strings : bool, optional
Whether to convert char arrays to string arrays.
matlab_compatible : bool, optional
Returns matrices as would be loaded by MATLAB (implies squeeze_me=False, chars_as_strings=False, mat_dtype=True, struct_as_record=True).
struct_as_record : bool, optional
Whether to load MATLAB structs as numpy record arrays, or as old-style numpy arrays with dtype=object. Setting this flag to False replicates the behaviour of scipy version 0.7.x (returning numpy object arrays). The default setting is True, because it allows easier round-trip load and save of MATLAB files.
variable_names : None or sequence
If None (the default) - read all variables in file. Otherwise variable_names should be a sequence of strings, giving names of the matlab variables to read from the file. The reader will skip any variable with a name not in this sequence, possibly saving some read processing.

## Returns

mat_dict : dict
dictionary with variable names as keys, and loaded matrices as values

## Notes

v4 (Level 1.0), v6 and v7 to 7.2 matfiles are supported.
You will need an HDF5 python library to read matlab 7.3 format mat files. Because scipy does not supply one, we do not implement the HDF5 / 7.3 interface here.

```
scipy.io.savemat(file_name, mdict, appendmat=True, format='5', long_field_names=False,
 do_compression=False,oned_as=None)
```

Save a dictionary of names and arrays into a MATLAB-style .mat file.
This saves the array objects in the given dictionary to a MATLAB- style .mat file.

## Parameters

file_name : str or file-like object
Name of the .mat file (.mat extension not needed if appendmat $==$ True). Can also pass open file_like object.
m_dict : dict
Dictionary from which to save matfile variables.
appendmat : bool, optional
True to append the .mat extension to the end of the given filename, if not already present.
format : $\{$ ' 5 ', '4' $\}$, string, optional
' 5 ' (the default) for MATLAB 5 and up (to 7.2), '4' for MATLAB 4 .mat files
long_field_names : bool, optional

- False - maximum field name length in a structure is 31 characters which is the documented maximum length. This is the default.
- True - maximum field name length in a structure is 63 characters which works for Matlab 7.6
do_compression : bool, optional
Whether to compress matrices on write. Default is False.
oned_as : \{'column', 'row' $\}$, optional
If 'column', write 1-D numpy arrays as column vectors. If 'row', write 1D numpy arrays as row vectors.


## See Also:

```
mio4.MatFile4Writer,mio5.MatFile5Writer
```


## Notes

If format $=={ }^{\prime} 4^{\prime}$, mio4.MatFile4Writer is called, which sets oned_as to 'row' if it had been None. If format $==$ ' $5^{\prime}$, mio5.MatFile5Writer is called, which sets oned_as to 'column' if it had been None, but first it executes:

```
warnings.warn("Using oned_as default value ('column')" +
 " This will change to 'row' in future versions", FutureWarning,
 stacklevel=2)
```

without being more specific as to precisely when the change will take place.

### 3.6.2 Matrix Market files

```
mminfo(source) Queries the contents of the Matrix Market file 'filename' to
mmread(source) Reads the contents of a Matrix Market file 'filename' into a
matrix.
Writes the sparse or dense matrix A to a Matrix Market formatted
mmwrite(target, a[, comment, field,
precision])
file.
scipy.io.mminfo(source)
 Queries the contents of the Matrix Market file 'filename' to extract size and storage information.
```


## Parameters

```
source : file
Matrix Market filename (extension .mtx) or open file object
```


## Returns

```
rows,cols : int
Number of matrix rows and columns
entries : int
Number of non-zero entries of a sparse matrix or rows*cols for a dense matrix
format : \{ 'coordinate', 'array'\}
field : \{ 'real', 'complex', 'pattern', 'integer' \}
symm : \{'general', 'symmetric', 'skew-symmetric', 'hermitian'\}
scipy.io.mmread (source)
Reads the contents of a Matrix Market file 'filename' into a matrix.
```


## Parameters

```
source : file
```

Matrix Market filename (extensions .mtx, .mtz.gz) or open file object.

## Returns

a: :
Sparse or full matrix
scipy.io.mmwrite (target, a, comment='', field=None, precision=None)
Writes the sparse or dense matrix A to a Matrix Market formatted file.

## Parameters

target : file
Matrix Market filename (extension .mtx) or open file object
a : array like
Sparse or full matrix
comment : str
comments to be prepended to the Matrix Market file
field : \{ 'real', ‘complex', 'pattern', 'integer'\}, optional
precision : :
Number of digits to display for real or complex values.

### 3.6.3 Other

save_as_module([file_name, data]) Save the dictionary "data" into a module and shelf named save.
scipy.io.save_as_module (file_name=None, data=None)
Save the dictionary "data" into a module and shelf named save.

## Parameters

file_name : str, optional
File name of the module to save.
data : dict, optional
The dictionary to store in the module.

### 3.6.4 Wav sound files (scipy.io.wavfile)

```
read(file) Return the sample rate (in samples/sec) and data from a WAV file
write(filename, rate, data) Write a numpy array as a WAV file
scipy.io.wavfile.read(file)
Return the sample rate (in samples/sec) and data from a WAV file
```


## Parameters

```
file : file
Input wav file.
```


## Returns

```
rate : int
Sample rate of wav file
```

data: numpy array
Data read from wav file

## Notes

-The file can be an open file or a filename.
-The returned sample rate is a Python integer
-The data is returned as a numpy array with a data-type determined from the file.
scipy.io.wavfile.write (filename, rate, data)
Write a numpy array as a WAV file
Parameters filename : file

The name of the file to write (will be over-written).
rate : int
The sample rate (in samples/sec).
data : ndarray
A 1-D or 2-D numpy array of integer data-type.

## Notes

-Writes a simple uncompressed WAV file.
-The bits-per-sample will be determined by the data-type.
-To write multiple-channels, use a 2-D array of shape (Nsamples, Nchannels).

### 3.6.5 Arff files (scipy.io.arff)

Module to read ARFF files, which are the standard data format for WEKA.
ARFF is a text file format which support numerical, string and data values. The format can also represent missing data and sparse data.

See the WEKA website for more details about arff format and available datasets.

## Examples

```
>>> from scipy.io import arff
>>> content = """
... @relation foo
... @attribute width numeric
... @attribute height numeric
...@attribute color {red,green,blue,yellow,black}
... @data
... 5.0,3.25,blue
... 4.5,3.75,green
... 3.0,4.00,red
... """
>>> f = open('testdata.arff', 'w')
>>> f.write(content)
```

```
>>> f.close()
>>> data, meta = arff.loadarff('testdata.arff')
>>> data
array([(5.0, 3.25, 'blue'), (4.5, 3.75, 'green'), (3.0, 4.0, 'red')],
 dtype=[('width', '<f8'), ('height', '<f8'), ('color', '|S6')])
>>> meta
Dataset: foo
 width's type is numeric
 height's type is numeric
 color's type is nominal, range is ('red', 'green', 'blue', 'yellow', 'black')
```

loadarff(filename) Read an arff file.
scipy.io.arff.loadarff(filename)

Read an arff file.
The data is returned as a record array, which can be accessed much like a dictionary of numpy arrays. For example, if one of the attributes is called 'pressure', then its first 10 data points can be accessed from the data record array like so: data ['pressure' ] [0:10]

## Parameters

filename : str
the name of the file

## Returns

data : record array
The data of the arff file, accessible by attribute names.
meta : MetaData
Contains information about the arff file such as name and type of attributes, the relation (name of the dataset), etc...

## Raises

## 'ParseArffError' :

This is raised if the given file is not ARFF-formatted.

## NotImplementedError :

The ARFF file has an attribute which is not supported yet.

## Notes

This function should be able to read most arff files. Not implemented functionality include:
-date type attributes
-string type attributes
It can read files with numeric and nominal attributes. It cannot read files with sparse data ( $\}$ in the file). However, this function can read files with missing data (? in the file), representing the data points as NaNs.

### 3.6.6 Netcdf (scipy.io.netcdf)

[^3]class scipy.io.netcdf.netcdf_file (filename, mode='r', mmap=None, version=1)
A file object for NetCDF data.
A netcdf_file object has two standard attributes: dimensions and variables. The values of both are dictionaries, mapping dimension names to their associated lengths and variable names to variables, respectively. Application programs should never modify these dictionaries.
All other attributes correspond to global attributes defined in the NetCDF file. Global file attributes are created by assigning to an attribute of the netcdf_file object.

## Parameters

filename : string or file-like
string -> filename
mode : \{ 'r', 'w'\}, optional read-write mode, default is ' $r$ '
mmap : None or bool, optional
Whether to mmap filename when reading. Default is True when filename is a file name, False when filename is a file-like object
version : $\{1,2\}$, optional
version of netcdf to read / write, where 1 means Classic format and 2 means 64-bit offset format. Default is 1 . See here for more info.

## Methods

```
close
 createDimension
 createVariable
 flush
 sync
```

class scipy.io.netcdf.netcdf_variable (data, typecode, shape, dimensions, attributes=None)
A data object for the netcdf module.
netcdf_variable objects are constructed by calling the method netcdf_file.createVariable on the netcdf_file object. netcdf_variable objects behave much like array objects defined in numpy, except that their data resides in a file. Data is read by indexing and written by assigning to an indexed subset; the entire array can be accessed by the index [: ] or (for scalars) by using the methods getValue and assignValue. netcdf_variable objects also have attribute shape with the same meaning as for arrays, but the shape cannot be modified. There is another read-only attribute dimensions, whose value is the tuple of dimension names.
All other attributes correspond to variable attributes defined in the NetCDF file. Variable attributes are created by assigning to an attribute of the netcdf_variable object.

```
Parameters
 data : array_like
```

The data array that holds the values for the variable. Typically, this is initialized as empty, but with the proper shape.
typecode : dtype character code
Desired data-type for the data array.
shape : sequence of ints
The shape of the array. This should match the lengths of the variable's dimensions.
dimensions : sequence of strings
The names of the dimensions used by the variable. Must be in the same order of the dimension lengths given by shape.
attributes : dict, optional
Attribute values (any type) keyed by string names. These attributes become attributes for the netcdf_variable object.

## See Also:

```
isrec,shape
```


## Attributes

| dimensions <br> isrec, shape | list of str | List of names of dimensions used by the variable object. <br> Properties |
| :--- | :--- | :--- |

## Methods

```
assignValue
```

getValue
typecode

### 3.7 Linear algebra (scipy.linalg)

### 3.7.1 Basics

```
inv(a[,overwrite_a]) Compute the inverse of a matrix.
solve(a,b[, sym_pos, lower, overwrite_a,...]) Solve the equation a x = b for x
solve_banded(l, ab, b[, overwrite_ab, ...]) Solve the equation a x = b for x, assuming a is banded matrix.
solveh_banded(ab, b[, overwrite_ab, ...]) Solve equation a x = b.
solve_triangular(a, b[, trans, lower, ..]) Solve the equation a x = b for }x\mathrm{ , assuming a is a triangular matrix.
det(a[,overwrite_a]) Compute the determinant of a matrix
norm(a[, ord]) Matrix or vector norm.
lstsq(a, b[, cond, overwrite_a, overwrite_b]) Compute least-squares solution to equation Ax = b
pinv(a[, cond, rcond]) Compute the (Moore-Penrose) pseudo-inverse of a matrix.
pinv2(a[, cond, rcond]) Compute the (Moore-Penrose) pseudo-inverse of a matrix.
scipy.linalg.inv(a,overwrite_a=False)
 Compute the inverse of a matrix.
```


## Parameters

```
a : array_like
Square matrix to be inverted.
overwrite_a : bool, optional
```

Discard data in $a$ (may improve performance). Default is False.

## Returns

ainv : ndarray
Inverse of the matrix $a$.

## Raises

```
 LinAlgError : :
```

If $a$ is singular.

## ValueError : :

If $a$ is not square, or not 2 -dimensional.

## Examples

```
>>> a = np.array([[1., 2.], [3., 4.]])
>>> sp.linalg.inv(a)
array([[-2. , 1.],
 [1.5, -0.5]])
>>> np.dot(a, sp.linalg.inv(a))
array([[1., 0.],
 [0., 1.]])
scipy.linalg.solve (}a,b,\mathrm{ sym_pos=False,lower=False,overwrite_a=False,overwrite_b=False,de-
 bug=False)
```

Solve the equation $\mathrm{a} \mathrm{x}=\mathrm{b}$ for x

## Parameters

a : array, shape (M, M)
b : array, shape $(M$,$) or (M, N)$
sym_pos : boolean
Assume a is symmetric and positive definite
lower : boolean
Use only data contained in the lower triangle of a, if sym_pos is true. Default is to use upper triangle.
overwrite_a : boolean
Allow overwriting data in a (may enhance performance)
overwrite_b : boolean
Allow overwriting data in $b$ (may enhance performance)

## Returns

$\mathbf{x}$ : array, shape $(\mathrm{M}$,$) or (\mathrm{M}, \mathrm{N})$ depending on b
Solution to the system $\mathrm{ax}=\mathrm{b}$

## Raises LinAlgError if a is singular :

scipy.linalg.solve_banded ((l, u), ab, $b$, overwrite_ab=False, overwrite_b=False, debug=False)
Solve the equation $\mathrm{a} \mathrm{x}=\mathrm{b}$ for x , assuming a is banded matrix.
The matrix $a$ is stored in ab using the matrix diagonal orded form:

```
ab[u + i - j, j] == a[i,j]
```

Example of ab (shape of a is $(6,6), \mathrm{u}=1, \mathrm{l}=2$ ):

| $\star$ | a01 | a12 | a23 | a34 | a45 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| a00 | a11 | a22 | a33 | a44 | a55 |
| a10 | a21 | a32 | a43 | a54 | * |
| a20 | a31 | a42 | a53 | * | * |

## Parameters

$(\mathbf{l}, \mathbf{u}):$ (integer, integer)

Number of non-zero lower and upper diagonals $\mathbf{a b}:$ array, shape $(1+u+1, M)$

Banded matrix
b: array, shape (M,) or (M, K)
Right-hand side
overwrite_ab : boolean
Discard data in ab (may enhance performance)
overwrite_b : boolean
Discard data in b (may enhance performance)

## Returns

$\mathbf{x}$ : array, shape (M,) or (M, K)
The solution to the system $\mathrm{ax}=\mathrm{b}$
scipy.linalg.solveh_banded ( $a b, b$, overwrite_ab=False, overwrite_b=False, lower=False) Solve equation $\mathrm{ax}=\mathrm{b}$. a is Hermitian positive-definite banded matrix.

The matrix $a$ is stored in ab either in lower diagonal or upper diagonal ordered form:

$$
a b[u+i-j, j]==a[i, j] \text { (if upper form; } i<=j \text { ) } a b[i-j, j]==a[i, j] \text { (if lower form; } i>=j \text { ) }
$$

Example of $a b$ (shape of $a$ is $(6,6), u=2)$ :

```
upper form:
* * a02 a13 a24 a35
* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55
lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *
```

Cells marked with * are not used.

## Parameters

$\mathbf{a b}$ : array, shape $(u+1, M)$
Banded matrix
b : array, shape (M,) or (M, K)
Right-hand side
overwrite_ab : boolean
Discard data in ab (may enhance performance)
overwrite_b : boolean
Discard data in b (may enhance performance)
lower : boolean
Is the matrix in the lower form. (Default is upper form)

## Returns

$\mathbf{x}$ : array, shape $(\mathrm{M}$,$) or (\mathrm{M}, \mathrm{K})$

The solution to the system $\mathrm{ax}=\mathrm{b}$
scipy.linalg.solve_triangular $(a, \quad b, \quad \operatorname{trans}=0$, lower=False, unit_diagonal=False, overwrite_b=False, debug=False)
Solve the equation $a x=b$ for $x$, assuming a is a triangular matrix.

## Parameters

a : array, shape (M, M)
b : array, shape $(M$,$) or (M, N)$
lower : boolean
Use only data contained in the lower triangle of a. Default is to use upper triangle.
trans : $\{0,1,2, ~ ' N ', ~ ' T ', ~ ' C '\}$
Type of system to solve:

| trans | system |
| :--- | :--- |
| 0 or ' $\mathrm{N} '$ | $\mathrm{ax}=\mathrm{b}$ |
| 1 or ' T | $\mathrm{a}^{\wedge} \mathrm{T} \mathrm{x}=\mathrm{b}$ |
| 2 or ' $\mathrm{C} '$ | $\mathrm{a}^{\wedge} \mathrm{H} \mathrm{x}=\mathrm{b}$ |

unit_diagonal : boolean
If True, diagonal elements of A are assumed to be 1 and will not be referenced.
overwrite_b : boolean
Allow overwriting data in $b$ (may enhance performance)

## Returns

$\mathbf{x}$ : array, shape $(\mathrm{M}$, ) or $(\mathrm{M}, \mathrm{N})$ depending on b
Solution to the system $\mathrm{ax}=\mathrm{b}$

## Raises

LinAlgError :
If a is singular
scipy.linalg.det ( $a$, overwrite_ $a=$ False)
Compute the determinant of a matrix
Parameters
a : array, shape (M, M)

## Returns

det : float or complex
Determinant of a

## Notes

The determinant is computed via LU factorization, LAPACK routine $\mathrm{z} /$ dgetrf.
scipy.linalg.norm ( $a$, ord=None)
Matrix or vector norm.
This function is able to return one of seven different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the ord parameter.

## Parameters

$\mathbf{x}$ : array_like, shape $(\mathrm{M}$,$) or (\mathrm{M}, \mathrm{N})$
Input array.
ord : \{non-zero int, inf, -inf, 'fro' \}, optional
Order of the norm (see table under Notes). inf means numpy's inf object.

## Returns

n : float
Norm of the matrix or vector.

## Notes

For values of ord $<=0$, the result is, strictly speaking, not a mathematical 'norm', but it may still be useful for various numerical purposes.
The following norms can be calculated:

| ord | norm for matrices | norm for vectors |
| :--- | :--- | :--- |
| None | Frobenius norm | 2 -norm |
| 'fro' | Frobenius norm | - |
| inf | $\max (\operatorname{sum}(\operatorname{abs}(\mathrm{x})$, axis=1)) | $\max (\operatorname{abs}(\mathrm{x}))$ |
| $-\inf$ | $\min (\operatorname{sum}(\operatorname{abs}(\mathrm{x}), \operatorname{axis}=1))$ | $\min (\operatorname{abs}(\mathrm{x}))$ |
| 0 | - | $\operatorname{sum}(\mathrm{x}!=0)$ |
| 1 | $\max (\operatorname{sum}(\operatorname{abs}(\mathrm{x})$, axis=0)) | as below |
| -1 | $\min (\operatorname{sum}(\operatorname{abs}(\mathrm{x})$, axis=0)) | as below |
| 2 | 2-norm (largest sing. value) | as below |
| -2 | smallest singular value | as below |
| other | - | sum(abs(x)**ord)**(1./ord) |

The Frobenius norm is given by [R32]:

$$
\|A\|_{F}=\left[\sum_{i, j} a b s\left(a_{i, j}\right)^{2}\right]^{1 / 2}
$$

## References

[R32]

## Examples

```
>>> from numpy import linalg as LA
>>> a = np.arange(9) - 4
>>> a
array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
>>> b = a.reshape((3, 3))
>>> b
array([[-4, -3, -2],
 [-1, 0, 1],
 [2, 3, 4]])
>>> LA.norm(a)
7.745966692414834
>>> LA.norm(b)
7.745966692414834
>>> LA.norm(b, 'fro')
7.745966692414834
>>> LA.norm(a, np.inf)
4
>>> LA.norm(b, np.inf)
9
>>> LA.norm(a, -np.inf)
0
```

```
>>> LA.norm(b, -np.inf)
2
>>> LA.norm(a, 1)
20
>>> LA.norm(b, 1)
7
>>> LA.norm(a, -1)
-4.6566128774142013e-010
>>> LA.norm(b, -1)
6
>>> LA.norm(a, 2)
7.745966692414834
>>> LA.norm(b, 2)
7.3484692283495345
>>> LA.norm(a, -2)
nan
>>> LA.norm(b, -2)
1.8570331885190563e-016
>>> LA.norm(a, 3)
5.8480354764257312
>>> LA.norm(a, -3)
nan
```

scipy.linalg.lstsq ( $a, b$, cond=None, overwrite_a=False, overwrite_b=False)

Compute least-squares solution to equation $\mathrm{Ax}=\mathrm{b}$.
Compute a vector x such that the 2-norm $|\mathrm{b}-\mathrm{A} \mathrm{x}|$ is minimized.

## Parameters

a : array, shape ( $\mathrm{M}, \mathrm{N}$ )
Left hand side matrix (2-D array).
b : array, shape (M,) or (M, K)
Right hand side matrix or vector (1-D or 2-D array).
cond : float, optional
Cutoff for 'small' singular values; used to determine effective rank of a. Singular values smaller than rcond * largest_singular_value are considered zero.
overwrite_a : bool, optional
Discard data in $a$ (may enhance performance). Default is False.
overwrite_b : bool, optional
Discard data in $b$ (may enhance performance). Default is False.

## Returns

$\mathbf{x}$ : array, shape $(\mathrm{N}$,$) or (\mathrm{N}, \mathrm{K})$ depending on shape of b
Least-squares solution.
residues : ndarray, shape () or (1,) or (K, )
Sums of residues, squared 2-norm for each column in b - a x. If rank of matrix a is $\langle\mathrm{N}$ or $\rangle \mathrm{M}$ this is an empty array. If b was $1-\mathrm{D}$, this is an $(1$,$) shape array,$ otherwise the shape is $(\mathrm{K}$,$) .$
rank : int
Effective rank of matrix $a$.
s: array, shape ( $\min (\mathrm{M}, \mathrm{N})$, )
Singular values of $a$. The condition number of a is abs $(\mathrm{s}[0] / \mathrm{s}[-1])$.

## Raises

## LinAlgError : :

## If computation does not converge.

## See Also:

optimize.nnls
linear least squares with non-negativity constraint
scipy.linalg.pinv ( $a$, cond=None, rcond=None)
Compute the (Moore-Penrose) pseudo-inverse of a matrix.
Calculate a generalized inverse of a matrix using a least-squares solver.

## Parameters

a : array, shape (M, N)
Matrix to be pseudo-inverted
cond, rcond : float
Cutoff for 'small' singular values in the least-squares solver. Singular values smaller than rcond*largest_singular_value are considered zero.

## Returns

B : array, shape ( $\mathrm{N}, \mathrm{M}$ )

## Raises LinAlgError if computation does not converge :

## Examples

```
>>> from numpy import *
>>> a = random.randn(9, 6)
>>> B = linalg.pinv(a)
>>> allclose(a, dot(a, dot(B, a)))
True
>> allclose(B, dot(B, dot(a, B)))
True
```

scipy.linalg.pinv2 (a, cond=None, rcond=None)
Compute the (Moore-Penrose) pseudo-inverse of a matrix.
Calculate a generalized inverse of a matrix using its singular-value decomposition and including all 'large' singular values.

## Parameters

a : array, shape ( $\mathrm{M}, \mathrm{N}$ )
Matrix to be pseudo-inverted
cond, rcond : float or None
Cutoff for 'small' singular values. Singular values smaller than rcond*largest_singular_value are considered zero.

If None or -1 , suitable machine precision is used.

## Returns

B : array, shape ( $\mathrm{N}, \mathrm{M}$ )

## Raises LinAlgError if SVD computation does not converge :

## Examples

```
>>> from numpy import *
>>> a = random.randn (9, 6)
>>> B = linalg.pinv2(a)
>>> allclose(a, dot(a, dot(B, a)))
True
>>> allclose(B, dot(B, dot(a, B)))
True
```


### 3.7.2 Eigenvalue Problem

| eig(a[, b, left, right, overwrite_a, ...]) | Solve an ordinary or generalized eigenvalue problem of a square <br> matrix. |
| :--- | :--- |
| eigvals(a[, b, overwrite_a]) | Compute eigenvalues from an ordinary or generalized eigenvalue <br> problem. |
| eigh(a[,b, lower, eigvals_only, ...]) | Solve an ordinary or generalized eigenvalue problem for a complex |
| eigvalsh(a[, b, lower, overwrite_a, ...]) | Solve an ordinary or generalized eigenvalue problem for a complex |
| eig_banded(a_band[, lower, | Solve real symmetric or complex hermitian band matrix eigenvalue |
| eigvals_only, ...]) | problem. |
| eigvals_banded(a_band[, lower, ...]) | Solve real symmetric or complex hermitian band matrix eigenvalue |
|  | problem. |

scipy.linalg.eig ( $a, b=$ None, left $=$ False, right $=$ True, overwrite_ $a=$ False, overwrite_ $b=$ False $)$
Solve an ordinary or generalized eigenvalue problem of a square matrix.
Find eigenvalues $w$ and right or left eigenvectors of a general matrix:

```
a vr[:,i] = w[i] b vr[:,i]
a.H vl[:,i] = w[i].conj() b.H vl[:,i]
```

where . H is the Hermitean conjugation.

## Parameters

a : array, shape (M, M)
A complex or real matrix whose eigenvalues and eigenvectors will be computed.
b: array, shape (M, M)
Right-hand side matrix in a generalized eigenvalue problem. If omitted, identity matrix is assumed.
left : boolean
Whether to calculate and return left eigenvectors
right : boolean
Whether to calculate and return right eigenvectors
overwrite_a : boolean
Whether to overwrite data in a (may improve performance)
overwrite_b : boolean

Whether to overwrite data in b (may improve performance)

## Returns

$\mathbf{w}$ : double or complex array, shape ( M, )
The eigenvalues, each repeated according to its multiplicity.
(if left $==$ True) :
$\mathbf{v l}$ : double or complex array, shape ( $\mathrm{M}, \mathrm{M}$ )
The normalized left eigenvector corresponding to the eigenvalue $\mathrm{w}[\mathrm{i}]$ is the column $\mathrm{v}[$ :, i].
(if right $==$ True) :
$\mathbf{v r}$ : double or complex array, shape (M, M)
The normalized right eigenvector corresponding to the eigenvalue $\mathrm{w}[\mathrm{i}]$ is the column vr[:i].
Raises LinAlgError if eigenvalue computation does not converge :

## See Also:

eigh
eigenvalues and right eigenvectors for symmetric/Hermitian arrays
scipy.linalg.eigvals ( $a, b=$ None, overwrite_ $a=$ False)
Compute eigenvalues from an ordinary or generalized eigenvalue problem.
Find eigenvalues of a general matrix:

```
a vr[:,i] = w[i] b vr[:,i]
```


## Parameters

a : array, shape (M, M)
A complex or real matrix whose eigenvalues and eigenvectors will be computed.
b : array, shape (M, M)
Right-hand side matrix in a generalized eigenvalue problem. If omitted, identity matrix is assumed.
overwrite_a : boolean
Whether to overwrite data in a (may improve performance)

## Returns

$\mathbf{w}$ : double or complex array, shape ( M, )
The eigenvalues, each repeated according to its multiplicity, but not in any specific order.

## Raises LinAlgError if eigenvalue computation does not converge :

## See Also:

eigvalsh
eigenvalues of symmetric or Hemitiean arrays
eig
eigenvalues and right eigenvectors of general arrays
eigh
eigenvalues and eigenvectors of symmetric/Hermitean arrays.
scipy.linalg.eigh $\left(a, \quad b=N o n e, \quad l o w e r=T r u e, \quad e i g v a l s \_o n l y=F a l s e, \quad o v e r w r i t e \_a=F a l s e, \quad\right.$ overwrite_b=False, turbo=True, eigvals=None, type =1)
Solve an ordinary or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.
Find eigenvalues $w$ and optionally eigenvectors $v$ of matrix $a$, where $b$ is positive definite:

```
 a v[:,i] = w[i] b v[:,i]
v[i,:].conj() a v[:,i] = w[i]
v[i,:].conj() b v[:,i] = 1
```


## Parameters

a : array, shape (M, M)
A complex Hermitian or real symmetric matrix whose eigenvalues and eigenvectors will be computed.
b : array, shape (M, M)
A complex Hermitian or real symmetric definite positive matrix in. If omitted, identity matrix is assumed.
lower : boolean
Whether the pertinent array data is taken from the lower or upper triangle of a. (Default: lower)
eigvals_only : boolean
Whether to calculate only eigenvalues and no eigenvectors. (Default: both are calculated)
turbo : boolean
Use divide and conquer algorithm (faster but expensive in memory, only for generalized eigenvalue problem and if eigvals=None)

```
eigvals : tuple (lo, hi)
```

Indexes of the smallest and largest (in ascending order) eigenvalues and corresponding eigenvectors to be returned: $0<=\mathrm{lo}<\mathrm{hi}<=\mathrm{M}-1$. If omitted, all eigenvalues and eigenvectors are returned.

## type: integer :

Specifies the problem type to be solved:

$$
\begin{aligned}
& \text { type = 1: a v }[:, i]=w[i] \text { bv[:,i] type }=2: \text { a b v[:,i] }=w[i] v[:, i] \text { type }=3: \text { b a v[:,i] } \\
& =w[i] v[:, i]
\end{aligned}
$$

overwrite_a : boolean
Whether to overwrite data in a (may improve performance)
overwrite_b : boolean
Whether to overwrite data in b (may improve performance)

## Returns

$\mathbf{w}$ : real array, shape $(\mathrm{N}$,
The $\mathrm{N}(1<=\mathrm{N}<=\mathrm{M})$ selected eigenvalues, in ascending order, each repeated according to its multiplicity.
(if eigvals_only == False) :
$\mathbf{v}$ : complex array, shape ( $\mathrm{M}, \mathrm{N}$ )
The normalized selected eigenvector corresponding to the eigenvalue $w[i]$ is the column v[:,i]. Normalization: type 1 and 3: $v . c o n j()$ a v $=w$ type 2: $\operatorname{inv(v).conj()a}$ $\operatorname{inv}(\mathrm{v})=\mathrm{w}$ type $=1$ or $2: \operatorname{v.conj}() \mathrm{b} \mathrm{v}=\mathrm{I}$ type $=3: \mathrm{v} \cdot \operatorname{conj}() \operatorname{inv}(\mathrm{b}) \mathrm{v}=\mathrm{I}$

## Raises LinAlgError if eigenvalue computation does not converge, :

an error occurred, or $\mathbf{b}$ matrix is not definite positive. Note that :
if input matrices are not symmetric or hermitian, no error is reported :
but results will be wrong. :

## See Also:

eig
eigenvalues and right eigenvectors for non-symmetric arrays
scipy.linalg.eigvalsh ( $a, b=$ None, lower=True, overwrite_ $a=$ False, overwrite_ $b=F a l s e$, turbo=True, eigvals $=$ None, type $=1$ )
Solve an ordinary or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.
Find eigenvalues $w$ of matrix $a$, where $b$ is positive definite:

$$
\begin{aligned}
\text { a } v[:, i] & =w[i] b v[:, i] \\
v[i,:] \cdot \operatorname{conj}() \text { a } v[:, i] & =w[i] \\
v[i,:] \cdot \operatorname{conj}() \text { b } v[:, i] & =1
\end{aligned}
$$

## Parameters

a : array, shape (M, M)
A complex Hermitian or real symmetric matrix whose eigenvalues and eigenvectors will be computed.
b : array, shape (M, M)
A complex Hermitian or real symmetric definite positive matrix in. If omitted, identity matrix is assumed.
lower : boolean
Whether the pertinent array data is taken from the lower or upper triangle of a. (Default: lower)
turbo : boolean
Use divide and conquer algorithm (faster but expensive in memory, only for generalized eigenvalue problem and if eigvals=None)
eigvals : tuple (lo, hi)
Indexes of the smallest and largest (in ascending order) eigenvalues and corresponding eigenvectors to be returned: $0<=\mathrm{lo}<\mathrm{hi}<=\mathrm{M}-1$. If omitted, all eigenvalues and eigenvectors are returned.
type: integer :
Specifies the problem type to be solved:

$$
\begin{aligned}
& \text { type }=1: \text { a v } v[:, i]=w[i] \text { b v[:,i] type }=2: \text { a b v[:,i] }=w[i] v[:, i] \text { type }=3: \text { b a v[:,i] } \\
& =w[i] v[:, i]
\end{aligned}
$$

overwrite_a : boolean
Whether to overwrite data in a (may improve performance)
overwrite_b : boolean
Whether to overwrite data in $b$ (may improve performance)

## Returns

$\mathbf{w}$ : real array, shape ( N, )
The $\mathrm{N}(1<=\mathrm{N}<=\mathrm{M})$ selected eigenvalues, in ascending order, each repeated according to its multiplicity.

## Raises LinAlgError if eigenvalue computation does not converge, :

an error occurred, or $b$ matrix is not definite positive. Note that :
if input matrices are not symmetric or hermitian, no error is reported :
but results will be wrong. :

## See Also:

```
eigvals
```

eigenvalues of general arrays
eigh
eigenvalues and right eigenvectors for symmetric/Hermitian arrays
eig
eigenvalues and right eigenvectors for non-symmetric arrays
scipy.linalg.eig_banded (a_band, lower=False, eigvals_only=False, overwrite_a_band=False, select $=$ ' $a$ ', select_range $=$ None, max_ev=0)
Solve real symmetric or complex hermitian band matrix eigenvalue problem.
Find eigenvalues $w$ and optionally right eigenvectors $v$ of $a$ :

```
a v[:,i] = w[i] v[:,i]
v.H v = identity
```

The matrix $a$ is stored in ab either in lower diagonal or upper diagonal ordered form:

$$
a b[u+i-j, j]==a[i, j] \text { (if upper form; } i<=j \text { ) } a b[i-j, j]==a[i, j] \text { (if lower form; } i>=j \text { ) }
$$

Example of $a b$ (shape of $a$ is $(6,6), u=2)$ :

```
upper form:
* * a02 a13 a24 a35
* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55
lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *
```

Cells marked with * are not used.
Parameters

```
 a_band : array, shape (M,u+1)
```

Banded matrix whose eigenvalues to calculate
lower : boolean
Is the matrix in the lower form. (Default is upper form)
eigvals_only : boolean
Compute only the eigenvalues and no eigenvectors. (Default: calculate also eigenvectors)
overwrite_a_band: :
Discard data in a_band (may enhance performance)
select: $\left\{\mathbf{' a}^{\prime}, \quad{ }^{\prime} \mathbf{v},{ }^{\prime} \mathbf{i}\right\}$ :
Which eigenvalues to calculate

| select | calculated |
| :--- | :--- |
| ' a ' | All eigenvalues |
| ' v ' | Eigenvalues in the interval $(\min , \max ]$ |
| ' i ' | Eigenvalues with indices $\min <=\mathrm{i}<=\max$ |

select_range : (min, max)
Range of selected eigenvalues
max_ev : integer
For select=='v', maximum number of eigenvalues expected. For other values of select, has no meaning.

In doubt, leave this parameter untouched.

## Returns

$\mathbf{w}$ : array, shape (M,)
The eigenvalues, in ascending order, each repeated according to its multiplicity.
$\mathbf{v}$ : double or complex double array, shape (M, M)
The normalized eigenvector corresponding to the eigenvalue $\mathrm{w}[\mathrm{i}]$ is the column $\mathrm{v}[:, \mathrm{i}]$.

## Raises LinAlgError if eigenvalue computation does not converge :

scipy.linalg.eigvals_banded(a_band, lower=False, overwrite_a_band=False, select='a', select_range=None)
Solve real symmetric or complex hermitian band matrix eigenvalue problem.
Find eigenvalues w of a:

```
a v[:,i] = w[i] v[:,i]
v.H v = identity
```

The matrix $a$ is stored in ab either in lower diagonal or upper diagonal ordered form:

$$
a b[u+i-j, j]==a[i, j] \text { (if upper form; } i<=j \text { ) } a b[i-j, j]==a[i, j] \text { (if lower form; } i>=j \text { ) }
$$

Example of $a b$ (shape of $a$ is $(6,6), u=2$ ):

```
upper form:
* * a02 a13 a24 a35
* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55
lower form:
a00 a11 a22 a33 a44 a55
```

```
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *
```

Cells marked with * are not used.

## Parameters

a_band : array, shape $(\mathrm{M}, \mathrm{u}+1)$
Banded matrix whose eigenvalues to calculate
lower : boolean
Is the matrix in the lower form. (Default is upper form)
overwrite_a_band: :
Discard data in a_band (may enhance performance)
select: $\left\{{ }^{\prime} \mathbf{a}^{\prime}, \quad ‘{ }^{\prime}\right.$ ', ‘i'\} :
Which eigenvalues to calculate

| select | calculated |
| :--- | :--- |
| $' \mathrm{a} '$ | All eigenvalues |
| ' v ' | Eigenvalues in the interval (min, max] |
| ' i ' | Eigenvalues with indices $\min <=\mathrm{i}<=\max$ |

select_range : (min, max)
Range of selected eigenvalues

## Returns

w : array, shape (M,)
The eigenvalues, in ascending order, each repeated according to its multiplicity.
Raises LinAlgError if eigenvalue computation does not converge :

## See Also:

```
eig_banded
```

eigenvalues and right eigenvectors for symmetric/Hermitian band matrices
eigvals
eigenvalues of general arrays
eigh
eigenvalues and right eigenvectors for symmetric/Hermitian arrays
eig
eigenvalues and right eigenvectors for non-symmetric arrays

### 3.7.3 Decompositions

```
lu(a[, permute_l, overwrite_a]) Compute pivoted LU decompostion of a matrix.
lu_factor(a[, overwrite_a]) Compute pivoted LU decomposition of a matrix.
lu_solve(lu, b[, trans, overwrite_b]) Solve an equation system, a x = b, given the LU factorization of a
svd(a[, full_matrices, compute_uv,
overwrite_a])
svdvals(a[, overwrite_a]) Compute singular values of a matrix.
diagsvd(s, M, N)
orth(A)
cholesky(a[, lower, overwrite_a])
cholesky_banded(ab[, overwrite_ab,
lower])
cho_factor(a[, lower, overwrite_a])
cho_solve(c, b[,overwrite_b])
cho_solve_banded(cb, b[,
overwrite_b])
qr(a[, overwrite_a, lwork, mode])
schur(a[, output, lwork, overwrite_a])
rsf2csf(T, Z)
hessenberg(a[, calc_q, overwrite_a])
scipy.linalg.lu(a,permute_l=False,overwrite_a=False)
 Compute pivoted LU decompostion of a matrix.
```

The decomposition is:

```
A = P L U
```

where P is a permutation matrix, L lower triangular with unit diagonal elements, and U upper triangular.

## Parameters

a : array, shape ( $\mathrm{M}, \mathrm{N}$ )
Array to decompose
permute_l : boolean
Perform the multiplication $\mathrm{P} * \mathrm{~L}$ (Default: do not permute)
overwrite_a : boolean
Whether to overwrite data in a (may improve performance)

## Returns

(If permute_l == False) :
p : array, shape (M, M)
Permutation matrix
1 : array, shape (M, K)
Lower triangular or trapezoidal matrix with unit diagonal. $K=\min (M, N)$
$\mathbf{u}$ : array, shape $(\mathrm{K}, \mathrm{N})$
Upper triangular or trapezoidal matrix
(If permute_l == True) :
pl : array, shape (M, K)
Permuted L matrix. $K=\min (M, N)$
$\mathbf{u}$ : array, shape $(\mathrm{K}, \mathrm{N})$
Upper triangular or trapezoidal matrix

## Notes

This is a LU factorization routine written for Scipy.
scipy.linalg.lu_factor (a, overwrite_a=False)
Compute pivoted LU decomposition of a matrix.
The decomposition is:
$A=P L U$
where P is a permutation matrix, L lower triangular with unit diagonal elements, and U upper triangular.

## Parameters

a : array, shape (M, M)
Matrix to decompose
overwrite_a : boolean
Whether to overwrite data in A (may increase performance)

## Returns

lu : array, shape ( $\mathrm{N}, \mathrm{N}$ )
Matrix containing U in its upper triangle, and L in its lower triangle. The unit diagonal elements of L are not stored.
piv : array, shape ( N, )
Pivot indices representing the permutation matrix P: row i of matrix was interchanged with row piv[i].

See Also:
lu_solve
solve an equation system using the LU factorization of a matrix

## Notes

This is a wrapper to the *GETRF routines from LAPACK.
scipy.linalg.lu_solve ((lu, piv), $b$, trans $=0$, overwrite_ $b=$ False $)$
Solve an equation system, $\mathrm{ax}=\mathrm{b}$, given the LU factorization of a

## Parameters

(lu, piv) :
Factorization of the coefficient matrix a, as given by lu_factor
b : array
Right-hand side
trans: $\{0,1,2\}$

Type of system to solve:

| trans | system |
| :--- | :--- |
| 0 | $\mathrm{a} \mathrm{x}=\mathrm{b}$ |
| 1 | $\mathrm{a}^{\wedge} \mathrm{T} \mathrm{x}=\mathrm{b}$ |
| 2 | $\mathrm{a}^{\wedge} \mathrm{Hx}=\mathrm{b}$ |

## Returns

$\mathbf{x}$ : array
Solution to the system

## See Also:

lu_factor
LU factorize a matrix
scipy.linalg.svd(a,full_matrices=True, compute_uv=True, overwrite_a=False)
Singular Value Decomposition.
Factorizes the matrix a into two unitary matrices U and Vh and an 1d-array s of singular values (real, nonnegative) such that $a==U S V h$ if $S$ is an suitably shaped matrix of zeros whose main diagonal is $s$.

Parameters
a : array, shape (M, N)
Matrix to decompose
full_matrices : boolean
If true, $\mathrm{U}, \mathrm{Vh}$ are shaped $(\mathrm{M}, \mathrm{M}),(\mathrm{N}, \mathrm{N})$ If false, the shapes are $(\mathrm{M}, \mathrm{K}),(\mathrm{K}, \mathrm{N})$ where
$K=\min (M, N)$
compute_uv : boolean
Whether to compute also $\mathrm{U}, \mathrm{Vh}$ in addition to s (Default: true)
overwrite_a : boolean
Whether data in a is overwritten (may improve performance)

## Returns

U: array, shape (M,M) or (M,K) depending on full_matrices :
s: array, shape (K,) :
The singular values, sorted so that $\mathrm{s}[\mathrm{i}]>=\mathrm{s}[\mathrm{i}+1] . \mathrm{K}=\min (\mathrm{M}, \mathrm{N})$
Vh: array, shape $(\mathbf{N}, \mathbf{N})$ or $(K, N)$ depending on full_matrices :
For compute_uv = False, only $s$ is returned. :
Raises LinAlgError if SVD computation does not converge :

## See Also:

svdvals
return singular values of a matrix
diagsvd
return the Sigma matrix, given the vector s

## Examples

```
>>> from scipy import random, linalg, allclose, dot
>>> a = random.randn(9, 6) + lj*random.randn (9, 6)
>>> U, s, Vh = linalg.svd(a)
>>> U.shape, Vh.shape, s.shape
((9, 9), (6, 6), (6,))
>>> U, S, Vh = linalg.svd(a, full_matrices=False)
>>> U.shape, Vh.shape, s.shape
((9, 6), (6, 6), (6,))
>>> S = linalg.diagsvd(s, 6, 6)
>>> allclose(a, dot(U, dot(S, Vh)))
True
>>> s2 = linalg.svd(a, compute_uv=False)
>>> allclose(s, s2)
True
```

scipy.linalg.svdvals (a, overwrite_a=False)
Compute singular values of a matrix.

## Parameters

a : array, shape ( $\mathrm{M}, \mathrm{N}$ )
Matrix to decompose
overwrite_a : boolean
Whether data in a is overwritten (may improve performance)

## Returns

s: array, shape (K,) :
The singular values, sorted so that $\mathrm{s}[\mathrm{i}]>=\mathrm{s}[\mathrm{i}+1] . \mathrm{K}=\min (\mathrm{M}, \mathrm{N})$

## Raises LinAlgError if SVD computation does not converge :

## See Also:

svd
return the full singular value decomposition of a matrix
diagsvd
return the Sigma matrix, given the vector s
scipy.linalg.diagsvd ( $s, M, N$ )
Construct the sigma matrix in SVD from singular values and size M,N.
Parameters
s: array, shape (M,) or (N,)
Singular values
M : integer
$\mathbf{N}$ : integer
Size of the matrix whose singular values are $s$

## Returns

S : array, shape (M, N)
The S-matrix in the singular value decomposition
scipy.linalg.orth (A)
Construct an orthonormal basis for the range of A using SVD

## Parameters

A : array, shape $(\mathrm{M}, \mathrm{N})$

## Returns

$\mathbf{Q}$ : array, shape (M, K)
Orthonormal basis for the range of $A . K=$ effective rank of $A$, as determined by automatic cutoff

## See Also:

svd
Singular value decomposition of a matrix
scipy.linalg.cholesky ( $a$, lower=False, overwrite_ $a=$ False)
Compute the Cholesky decomposition of a matrix.
Returns the Cholesky decomposition, : $\mathbf{l m}:^{\bullet} \mathbf{A}=\mathbf{L} \mathbf{L}^{\wedge * `}$ or $: \mathbf{l m}:^{`} \mathbf{A}=\mathbf{U}^{\wedge *} \mathbf{U}^{\star}$ of a Hermitian positive-definite matrix :lm: ${ }^{6} \mathrm{~A}^{6}$.

## Parameters

a : array, shape (M, M)
Matrix to be decomposed
lower : boolean
Whether to compute the upper or lower triangular Cholesky factorization (Default: upper-triangular)
overwrite_a : boolean
Whether to overwrite data in a (may improve performance)

## Returns

c : array, shape (M, M)
Upper- or lower-triangular Cholesky factor of A

## Raises LinAlgError if decomposition fails :

## Examples

```
>>> from scipy import array, linalg, dot
>>> a = array([[1,-2j],[2j,5]])
>>> L = linalg.cholesky(a, lower=True)
>>> L
array([[1.+0.j, 0.+0.j],
 [0.+2.j, 1.+0.j]])
>>> dot(L, L.T.conj())
array([[1.+0.j, 0.-2.j],
 [0.+2.j, 5.+0.j]])
```

scipy.linalg.cholesky_banded (ab,overwrite_ab=False, lower=False)

Cholesky decompose a banded Hermitian positive-definite matrix
The matrix a is stored in ab either in lower diagonal or upper diagonal ordered form:

$$
a b[u+i-j, j]==a[i, j] \text { (if upper form; } i<=j \text { ) } a b[i-j, j]==a[i, j] \text { (if lower form; } i>=j \text { ) }
$$

Example of $a b$ (shape of $a$ is $(6,6), u=2$ ):

```
upper form:
* * a02 a13 a24 a35
* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55
lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *
```


## Parameters

 $\mathbf{a b}$ : array, shape $(u+1, M)$Banded matrix
overwrite_ab : boolean
Discard data in ab (may enhance performance)
lower : boolean
Is the matrix in the lower form. (Default is upper form)

## Returns

c: array, shape (u+1, M)
Cholesky factorization of $a$, in the same banded format as ab
scipy.linalg.cho_factor (a, lower=False, overwrite_a=False)
Compute the Cholesky decomposition of a matrix, to use in cho_solve
Returns a matrix containing the Cholesky decomposition, $A=L L *$ or $A=U * U$ of a Hermitian positivedefinite matrix $a$. The return value can be directly used as the first parameter to cho_solve.

Warning: The returned matrix also contains random data in the entries not used by the Cholesky decomposition. If you need to zero these entries, use the function cholesky instead.

## Parameters

a : array, shape (M, M)
Matrix to be decomposed
lower : boolean
Whether to compute the upper or lower triangular Cholesky factorization (Default: upper-triangular)
overwrite_a : boolean
Whether to overwrite data in a (may improve performance)

## Returns

c : array, shape (M, M)
Matrix whose upper or lower triangle contains the Cholesky factor of $a$. Other parts of the matrix contain random data.
lower : boolean
Flag indicating whether the factor is in the lower or upper triangle

## Raises

## LinAlgError :

Raised if decomposition fails.

## See Also:

cho_solve
Solve a linear set equations using the Cholesky factorization of a matrix.
scipy.linalg.cho_solve (( $c$, lower), $b$, overwrite_b=False)
Solve the linear equations $\mathrm{A} \mathrm{x}=\mathrm{b}$, given the Cholesky factorization of A .

## Parameters

(c, lower) : tuple, (array, bool)
Cholesky factorization of a, as given by cho_factor
b : array
Right-hand side

## Returns

$\mathbf{x}$ : array
The solution to the system $\mathrm{Ax}=\mathrm{b}$

## See Also:

cho_factor
Cholesky factorization of a matrix
scipy.linalg.cho_solve_banded ((cb, lower), $b$, overwrite_b=False)
Solve the linear equations $\mathrm{A} x=\mathrm{b}$, given the Cholesky factorization of A .
Parameters
(cb, lower) : tuple, (array, bool)
$c b$ is the Cholesky factorization of A, as given by cholesky_banded. lower must be the same value that was given to cholesky_banded.
b : array
Right-hand side
overwrite_b : bool
If True, the function will overwrite the values in $b$.

## Returns

$\mathbf{x}$ : array
The solution to the system $\mathrm{Ax}=\mathrm{b}$

## See Also:

cholesky_banded
Cholesky factorization of a banded matrix

## Notes

New in version 0.8.0.
scipy.linalg.qr (a, overwrite_a=False, lwork=None, mode='full')
Compute QR decomposition of a matrix.
Calculate the decomposition :Im: ${ }^{‘} \mathbf{A}=\mathbf{Q} \mathbf{R}^{`}$ where Q is unitary/orthogonal and R upper triangular.

## Parameters

a : array, shape ( $\mathrm{M}, \mathrm{N}$ )
Matrix to be decomposed
overwrite_a : bool, optional
Whether data in a is overwritten (may improve performance)
Iwork: int, optional
Work array size, lwork $>=$ a.shape[1]. If None or -1 , an optimal size is computed.
mode : \{'full', 'r', 'economic'\}
Determines what information is to be returned: either both Q and R ('full', default), only R ('r') or both $Q$ and $R$ but computed in economy-size ('economic', see Notes).

## Returns

Q : double or complex ndarray
Of shape (M, M), or (M, K) for mode=' economic' . Not returned if mode=' $r^{\prime}$.
$\mathbf{R}$ : double or complex ndarray
Of shape ( $\mathrm{M}, \mathrm{N}$ ), or $(\mathrm{K}, \mathrm{N}$ ) for mode=' economic'. $\mathrm{K}=\min (\mathrm{M}, \mathrm{N})$.

## Raises LinAlgError if decomposition fails :

## Notes

This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, and zungqr.
If mode=economic, the shapes of $Q$ and $R$ are ( $M, K$ ) and ( $K, N$ ) instead of ( $M, M$ ) and ( $M, N$ ), with $K=\min (\mathrm{M}, \mathrm{N})$.

## Examples

```
>>> from scipy import random, linalg, dot, allclose
>>> a = random.randn (9, 6)
>>> q, r = linalg.qr(a)
>>> allclose(a, dot(q, r))
True
>>> q.shape, r.shape
((9, 9), (9, 6))
>>> r2 = linalg.qr(a, mode='r')
>>> allclose(r, r2)
True
>>> q3, r3 = linalg.qr(a, mode='economic')
>>> q3.shape, r3.shape
((9, 6), (6, 6))
```

scipy.linalg.schur ( $a$, output='real', lwork=None, overwrite_a=False)

Compute Schur decomposition of a matrix.
The Schur decomposition is

$$
\mathrm{A}=\mathrm{Z} \mathrm{~T} \mathrm{Z} \mathrm{Z}^{\wedge} \mathrm{H}
$$

where Z is unitary and T is either upper-triangular, or for real Schur decomposition (output='real'), quasi-upper triangular. In the quasi-triangular form, $2 \times 2$ blocks describing complex-valued eigenvalue pairs may extrude from the diagonal.

## Parameters

a : array, shape (M, M)
Matrix to decompose
output : \{ 'real', 'complex'\}
Construct the real or complex Schur decomposition (for real matrices).
lwork: integer
Work array size. If None or -1 , it is automatically computed.
overwrite_a : boolean
Whether to overwrite data in a (may improve performance)

## Returns

T : array, shape (M, M)
Schur form of A. It is real-valued for the real Schur decomposition.
$\mathbf{Z}$ : array, shape (M, M)
An unitary Schur transformation matrix for A. It is real-valued for the real Schur decomposition.

## See Also:

rsf2csf
Convert real Schur form to complex Schur form
scipy.linalg.rsf2csf $(T, Z)$
Convert real Schur form to complex Schur form.
Convert a quasi-diagonal real-valued Schur form to the upper triangular complex-valued Schur form.

## Parameters

$\mathbf{T}$ : array, shape (M, M)
Real Schur form of the original matrix
$\mathbf{Z}$ : array, shape (M, M)
Schur transformation matrix
Returns
$\mathbf{T}$ : array, shape (M, M)
Complex Schur form of the original matrix
$\mathbf{Z}$ : array, shape (M, M)
Schur transformation matrix corresponding to the complex form

## See Also:

schur
Schur decompose a matrix

```
scipy.linalg.hessenberg(a,calc_q=False,overwrite_a=False)
```

Compute Hessenberg form of a matrix.
The Hessenberg decomposition is

$$
\mathrm{A}=\mathrm{Q} \mathrm{H} \mathrm{Q} \mathrm{Q}^{\wedge} \mathrm{H}
$$

where Q is unitary/orthogonal and H has only zero elements below the first subdiagonal.

## Parameters

a : array, shape (M,M)
Matrix to bring into Hessenberg form
calc_q : boolean
Whether to compute the transformation matrix
overwrite_a : boolean
Whether to ovewrite data in a (may improve performance)
Returns
H: array, shape (M,M)
Hessenberg form of A
(If calc_q == True) :
Q : array, shape (M,M)
Unitary/orthogonal similarity transformation matrix s.t. $\mathrm{A}=\mathrm{Q} \mathrm{H}_{\mathrm{Q}}{ }^{\wedge} \mathrm{H}$

### 3.7.4 Matrix Functions

```
expm(A[,q]) Compute the matrix exponential using Pade approximation.
expm2(A) Compute the matrix exponential using eigenvalue decomposition.
expm3(A[,q]) Compute the matrix exponential using Taylor series.
logm(A[, disp]) Compute matrix logarithm.
cosm(A) Compute the matrix cosine.
sinm(A) Compute the matrix sine.
tanm(A) Compute the matrix tangent.
coshm(A) Compute the hyperbolic matrix cosine.
sinhm(A) Compute the hyperbolic matrix sine.
tanhm(A) Compute the hyperbolic matrix tangent.
signm(a[, disp]) Matrix sign function.
sqrtm(A[, disp]) Matrix square root.
funm(A, func[, disp]) Evaluate a matrix function specified by a callable.
scipy.linalg.expm(}A,q=7
Compute the matrix exponential using Pade approximation.
```


## Parameters

A : array, shape(M,M)
Matrix to be exponentiated
$\mathbf{q}$ : integer
Order of the Pade approximation

## Returns

$\exp A: \operatorname{array}, \operatorname{shape}(M, M)$

Matrix exponential of A
scipy.linalg.expm2 (A)
Compute the matrix exponential using eigenvalue decomposition.
Parameters
A : array, shape(M,M)
Matrix to be exponentiated

## Returns

$\exp A: \operatorname{array}, \operatorname{shape}(M, M)$
Matrix exponential of A
scipy.linalg.expm3 $(A, q=20)$
Compute the matrix exponential using Taylor series.

## Parameters

A : array, shape(M,M)
Matrix to be exponentiated
$\mathbf{q}$ : integer
Order of the Taylor series

## Returns

expA : array, shape(M,M)
Matrix exponential of A
scipy.linalg.logm (A, disp=True)
Compute matrix logarithm.
The matrix logarithm is the inverse of expm: expm $(\operatorname{logm}(\mathrm{A}))=\mathrm{A}$
Parameters
A : array, shape(M,M)
Matrix whose logarithm to evaluate
disp : boolean
Print warning if error in the result is estimated large instead of returning estimated error. (Default: True)

## Returns

$\log \mathbf{A}$ : array, shape (M,M)
Matrix logarithm of A
(if disp == False) :
errest : float
1-norm of the estimated error, \|errll_1 / \|A\|_1
scipy.linalg.cosm ( $A$ )
Compute the matrix cosine.
This routine uses expm to compute the matrix exponentials.

## Parameters

A : array, shape(M,M)

## Returns

cosA : array, shape $(\mathrm{M}, \mathrm{M})$
Matrix cosine of A
scipy.linalg.sinm ( $A$ )
Compute the matrix sine.
This routine uses expm to compute the matrix exponentials.

## Parameters

A : array, shape(M,M)

## Returns

$\sin \mathrm{A}: \operatorname{array}$, shape $(\mathrm{M}, \mathrm{M})$
Matrix cosine of A
scipy.linalg.tanm ( $A$ )
Compute the matrix tangent.
This routine uses expm to compute the matrix exponentials.

## Parameters

A : array, shape(M,M)

## Returns

$\boldsymbol{\operatorname { t a n }} \mathbf{A}: \operatorname{array}, \operatorname{shape}(\mathrm{M}, \mathrm{M})$
Matrix tangent of A
scipy.linalg.coshm ( $A$ )
Compute the hyperbolic matrix cosine.
This routine uses expm to compute the matrix exponentials.

## Parameters

A : array, shape(M,M)

## Returns

$\cosh \mathbf{A}$ : array, shape (M,M)
Hyperbolic matrix cosine of A
scipy.linalg.sinhm (A)
Compute the hyperbolic matrix sine.
This routine uses expm to compute the matrix exponentials.

## Parameters

A : array, shape(M,M)

## Returns

$\boldsymbol{\operatorname { s i n h }} \mathbf{A}$ : array, shape $(\mathrm{M}, \mathrm{M})$
Hyperbolic matrix sine of A
scipy.linalg.tanhm (A)
Compute the hyperbolic matrix tangent.
This routine uses expm to compute the matrix exponentials.

## Parameters

A : array, shape(M,M)

## Returns

$\boldsymbol{\operatorname { t a n h }} \mathbf{A}: \operatorname{array}, \operatorname{shape}(\mathrm{M}, \mathrm{M})$
Hyperbolic matrix tangent of A
scipy.linalg.signm ( $a$, disp=True)
Matrix sign function.
Extension of the scalar $\operatorname{sign}(\mathrm{x})$ to matrices.

## Parameters

A : array, shape(M,M)
Matrix at which to evaluate the sign function
disp : boolean
Print warning if error in the result is estimated large instead of returning estimated error. (Default: True)

## Returns

$\operatorname{sgn} \mathbf{A}: \operatorname{array}, \operatorname{shape}(M, M)$
Value of the sign function at A
(if disp == False) :
errest : float
1-norm of the estimated error, \|err\|_1/\|A\|_1

## Examples

```
>>> from scipy.linalg import signm, eigvals
>>> a = [[1,2,3], [1,2,1], [1,1,1]]
>>> eigvals(a)
array([4.12488542+0.j, -0.76155718+0.j, 0.63667176+0.j])
>>> eigvals(signm(a))
array([-1.+0.j, 1.+0.j, 1.+0.j])
scipy.linalg.sqrtm(A, disp=True)
Matrix square root.
Parameters
A : array, shape(M,M)
Matrix whose square root to evaluate
disp : boolean
```

Print warning if error in the result is estimated large instead of returning estimated error. (Default: True)

## Returns

$\operatorname{sgn} \mathbf{A}: \operatorname{array}, \operatorname{shape}(\mathrm{M}, \mathrm{M})$
Value of the sign function at A
(if disp == False) :
errest : float
Frobenius norm of the estimated error, \|errll_F / \|A\|_F

## Notes

Uses algorithm by Nicholas J. Higham
scipy.linalg.funm ( $A$, func, disp=True)
Evaluate a matrix function specified by a callable.
Returns the value of matrix-valued function $f$ at $A$. The function $f$ is an extension of the scalar-valued function func to matrices.

## Parameters

A : array, shape $(M, M)$
Matrix at which to evaluate the function
func : callable
Callable object that evaluates a scalar function f . Must be vectorized (eg. using vectorize).
disp : boolean
Print warning if error in the result is estimated large instead of returning estimated error. (Default: True)

## Returns

$$
\text { fA : array, shape }(\mathrm{M}, \mathrm{M})
$$

Value of the matrix function specified by func evaluated at A
(if disp == False) :
errest : float
1-norm of the estimated error, \|errll_1 / |IAl_1

### 3.7.5 Special Matrices

| block_diag(*arrs) | Create a block diagonal matrix from provided arrays. |
| :---: | :---: |
| circulant(c) | Construct a circulant matrix. |
| companion(a) | Create a companion matrix. |
| hadamard(n[, dtype]) | Construct a Hadamard matrix. |
| hankel(c[, r]) | Construct a Hankel matrix. |
| kron(a, b) | Kronecker product of a and b . |
| leslie(f, s) | Create a Leslie matrix. |
| toeplitz(c[, r]) | Construct a Toeplitz matrix. |
| tri(N[, M, k, dtype]) | Construct ( $\mathrm{N}, \mathrm{M}$ ) matrix filled with ones at and below the k-th diagonal. |
| tril(m[, k]) | Construct a copy of a matrix with elements above the k-th diagonal zeroed. |
| triu(m[, k]) | Construct a copy of a matrix with elements below the k -th diagonal zeroed. |

Given the inputs $A, B$ and $C$, the output will have these arrays arranged on the diagonal:

```
[[A, 0, 0],
 [0, B, 0],
 [0, 0, C]]
```


## Parameters

A, B, C, ... : array_like, up to 2-D

Input arrays. A 1-D array or array_like sequence of length $n$ 'is treated as a 2-D array with shape ' $(1, n)$ '.

## Returns

D : ndarray
Array with $A, B, C, \ldots$ on the diagonal. $D$ has the same dtype as $A$.

## Notes

If all the input arrays are square, the output is known as a block diagonal matrix.

## Examples

```
>>> A = [[1, 0],
 [0, 1]]
>>> B = [[3, 4, 5],
... [6, 7, 8]]
>>> C = [[7]]
>>> block_diag(A, B, C)
[[1 [0 0 0 0 0]
 [00 1 0 0 0 0}
 [0 0 3 4 5 0]
 [0}00067llll
 [0 0 0 0 0 7]]
>>> block_diag(1.0, [2, 3], [[4, 5], [6, 7]])
array([[1., 0., 0., 0., 0.],
 [0., 2., 3., 0., 0.],
 [0., 0., 0., 4., 5.],
 [0., 0., 0., 6., 7.]])
```

scipy.linalg.circulant (c)

Construct a circulant matrix.

## Parameters

c : array_like
1-D array, the first column of the matrix.

## Returns

A : array, shape (len(c), len(c))
A circulant matrix whose first column is $c$.

## See Also:

toeplitz
Toeplitz matrix
hankel
Hankel matrix

## Notes

New in version 0.8.0.

## Examples

```
>>> from scipy.linalg import circulant
>>> circulant([1, 2, 3])
array([[1, 3, 2],
```

$[2,1,3]$,
$[3,2,1]])$
scipy.linalg.companion (a)
Create a companion matrix.
Create the companion matrix [R29] associated with the polynomial whose coefficients are given in $a$.

## Parameters

a : array_like
1-D array of polynomial coefficients. The length of $a$ must be at least two, and a [ 0 ] must not be zero.

## Returns

c : ndarray
A square array of shape $(\mathrm{n}-1, \mathrm{n}-1)$, where $n$ is the length of $a$. The first row of $c$ is $-\mathrm{a}[1:] / \mathrm{a}[0]$, and the first sub-diagonal is all ones. The data-type of the array is the same as the data-type of $1.0 * a[0]$.

## Raises

ValueError :
If any of the following are true: a) a.ndim ! = 1;b)a.size $<2$; c) a[0] == 0.

## Notes

New in version 0.8.0.

## References

[R29]

## Examples

```
>>> from scipy.linalg import companion
>>> companion([1, -10, 31, -30])
array([[10., -31., 30.],
[1., 0., 0.],
[0., 1., 0.]])
```

scipy.linalg. hadamard ( $n$, dtype=<type 'int'>)
Construct a Hadamard matrix.
hadamard( $n$ ) constructs an n-by-n Hadamard matrix, using Sylvester's construction. $n$ must be a power of 2 .

## Parameters

$\mathbf{n}$ : int
The order of the matrix. $n$ must be a power of 2 .
dtype : numpy dtype
The data type of the array to be constructed.

## Returns

$\mathbf{H}$ : ndarray with shape ( $\mathrm{n}, \mathrm{n}$ )
The Hadamard matrix.

## Notes

New in version 0.8.0.

## Examples

```
>>> hadamard(2, dtype=complex)
array([[1.+0.j, 1.+0.j],
 [1.+0.j, -1.-0.j]])
>>> hadamard(4)
array([[1, 1, 1, 1],
 [1, -1, 1, -1],
 [1, 1, -1, -1],
 [1, -1, -1, 1]])
```

scipy.linalg.hankel ( $c, r=$ None)
Construct a Hankel matrix.

The Hankel matrix has constant anti-diagonals, with $c$ as its first column and $r$ as its last row. If $r$ is not given, then $r=$ zeros_like( $c$ ) is assumed.

## Parameters

c : array_like
First column of the matrix. Whatever the actual shape of $c$, it will be converted to a 1-D array.
r: array_like, 1D
Last row of the matrix. If None, $r=$ zeros_like (c) is assumed. r[0] is ignored; the last row of the returned matrix is $[c[-1], r[1:]]$. Whatever the actual shape of $r$, it will be converted to a 1-D array.

## Returns

A : array, shape (len(c), len(r))
The Hankel matrix. Dtype is the same as $(c[0]+r[0])$.dtype.

## See Also:

toeplitz
Toeplitz matrix
circulant
circulant matrix

## Examples

```
>>> from scipy.linalg import hankel
>>> hankel([1, 17, 99])
array([[1, 17, 99],
 [17, 99, 0],
 [99, 0, 0]])
>>> hankel([1,2,3,4], [4,7,7,8,9])
array([[1, 2, 3, 4, 7],
 [2, 3, 4, 7, 7],
 [3, 4, 7, 7, 8],
 [4, 7, 7, 8, 9]])
scipy.linalg.kron(a,b)
Kronecker product of \(a\) and \(b\).
```

The result is the block matrix:

```
a[0,0]*b a[0,1]*b ... a[0,-1]*b
a[1,0]*b a[1,1]*b ... a[1,-1]*b
a[-1,0]*b a[-1,1]*b ... a[-1,-1]*b
```


## Parameters

a : array, shape (M, N)
b : array, shape ( $\mathrm{P}, \mathrm{Q}$ )

## Returns

A : array, shape $\left(\mathrm{M}^{*} \mathrm{P}, \mathrm{N}^{*} \mathrm{Q}\right)$
Kronecker product of $a$ and $b$

## Examples

```
>>> from scipy import kron, array
>>> kron(array([[1,2],[3,4]]), array([[1,1,1]]))
array([[1, 1, 1, 2, 2, 2],
 [3, 3, 3, 4, 4, 4]])
```

scipy.linalg.leslie ( $f, s$ )
Create a Leslie matrix.
Given the length n array of fecundity coefficients $f$ and the length $\mathrm{n}-1$ array of survival coefficents $s$, return the associated Leslie matrix.

## Parameters

f: array_like
The "fecundity" coefficients, has to be 1-D.
s: array_like
The "survival" coefficients, has to be 1-D. The length of $s$ must be one less than the length of $f$, and it must be at least 1 .

## Returns

$\mathbf{L}$ : ndarray
Returns a 2-D ndarray of shape ( $\mathrm{n}, \mathrm{n}$ ), where $n$ is the length of $f$. The array is zero except for the first row, which is $f$, and the first sub-diagonal, which is $s$. The data-type of the array will be the data-type of $f[0]+s[0]$.

## Notes

New in version 0.8.0. The Leslie matrix is used to model discrete-time, age-structured population growth [R30] [R31]. In a population with $n$ age classes, two sets of parameters define a Leslie matrix: the $n$ "fecundity coefficients", which give the number of offspring per-capita produced by each age class, and the $n-1$ "survival coefficients", which give the per-capita survival rate of each age class.

## References

[R30], [R31]

## Examples

```
>>> leslie([0.1, 2.0, 1.0, 0.1], [0.2, 0.8, 0.7])
array([[0.1, 2. , 1. , 0.1],
 [0.2, 0. , 0. , 0.],
 [0., 0.8, 0. , 0.],
 [0., 0., 0.7, 0.]])
```

scipy.linalg.toeplitz ( $c, r=$ None $)$

Construct a Toeplitz matrix.
The Toeplitz matrix has constant diagonals, with c as its first column and r as its first row. If r is not given, r == conjugate (c) is assumed.

## Parameters

c : array_like
First column of the matrix. Whatever the actual shape of $c$, it will be converted to a 1-D array.
r : array_like
First row of the matrix. If None, $r=$ conjugate ( $c$ ) is assumed; in this case, if $c[0]$ is real, the result is a Hermitian matrix. $\mathrm{r}[0]$ is ignored; the first row of the returned matrix is [c[0], r[1:]]. Whatever the actual shape of $r$, it will be converted to a 1-D array.

## Returns

A : array, shape (len(c), len(r))
The Toeplitz matrix. Dtype is the same as $(c[0]+r[0])$.dtype.

## See Also:

circulant
circulant matrix
hankel
Hankel matrix

## Notes

The behavior when $c$ or $r$ is a scalar, or when $c$ is complex and $r$ is None, was changed in version 0.8.0. The behavior in previous versions was undocumented and is no longer supported.

Examples

```
>>> from scipy.linalg import toeplitz
>>> toeplitz([1,2,3], [1,4,5,6])
array([[1, 4, 5, 6],
 [2, 1, 4, 5],
 [3, 2, 1, 4]])
>>> toeplitz([1.0, 2+3j, 4-1j])
array([[1.+0.j, 2.-3.j, 4.+1.j],
 [2.+3.j, 1.+0.j, 2.-3.j],
 [4.-1.j, 2.+3.j, 1.+0.j]])
```

scipy.linalg.tri ( $N, M=$ None, $k=0$, dtype=None)
Construct ( $\mathrm{N}, \mathrm{M}$ ) matrix filled with ones at and below the k-th diagonal.
The matrix has $A[i, j]==1$ for $i<=j+k$

## Parameters

$\mathbf{N}$ : integer
The size of the first dimension of the matrix.
M : integer or None
The size of the second dimension of the matrix. If $M$ is None, $M=N$ is assumed.
$\mathbf{k}$ : integer
Number of subdiagonal below which matrix is filled with ones. $k=0$ is the main diagonal, $k<0$ subdiagonal and $k>0$ superdiagonal.
dtype : dtype
Data type of the matrix.

## Returns

A : array, shape ( $\mathrm{N}, \mathrm{M}$ )

## Examples

```
>>> from scipy.linalg import tri
>>> tri(3, 5, 2, dtype=int)
array([[1, 1, 1, 0, 0],
 [1, 1, 1, 1, 0],
 [1, 1, 1, 1, 1]])
>>> tri(3, 5, -1, dtype=int)
array([[0, 0, 0, 0, 0],
 [1, 0, 0, 0, 0],
 [1, 1, 0, 0, 0]])
```

scipy.linalg.tril( $m, k=0$ )
Construct a copy of a matrix with elements above the $k$-th diagonal zeroed.

## Parameters

m : array
Matrix whose elements to return
$\mathbf{k}$ : integer
Diagonal above which to zero elements. $\mathrm{k}==0$ is the main diagonal, $\mathrm{k}<0$ subdiagonal and $\mathrm{k}>0$ superdiagonal.

## Returns

A : array, shape m.shape, dtype m.dtype

## Examples

```
>>> from scipy.linalg import tril
```

$\ggg \operatorname{tril}([[1,2,3],[4,5,6],[7,8,9],[10,11,12]],-1)$
array ([[ 0, 0, 0],
$[4,0,0]$,
$[7,8,0]$,
$[10,11,12]])$
scipy.linalg.triu ( $m, k=0$ )
Construct a copy of a matrix with elements below the k -th diagonal zeroed.

## Parameters

m : array

Matrix whose elements to return
$\mathbf{k}$ : integer
Diagonal below which to zero elements. $\mathrm{k}==0$ is the main diagonal, $\mathrm{k}<0$ subdiagonal and $\mathrm{k}>0$ superdiagonal.

## Returns

A : array, shape m.shape, dtype m.dtype

## Examples

```
>>> from scipy.linalg import tril
>>> triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[1, 2, 3],
 [4, 5, 6],
 [0, 8, 9],
 [0, 0, 12]])
```


### 3.8 Maximum entropy models (scipy .maxentropy)

### 3.8.1 Routines for fitting maximum entropy models

Contains two classes for fitting maximum entropy models (also known as "exponential family" models) subject to linear constraints on the expectations of arbitrary feature statistics. One class, "model", is for small discrete sample spaces, using explicit summation. The other, "bigmodel", is for sample spaces that are either continuous (and perhaps high-dimensional) or discrete but too large to sum over, and uses importance sampling. conditional Monte Carlo methods.

The maximum entropy model has exponential form

$$
p(x)=\exp \left(\frac{\theta^{T} f(x)}{Z(\theta)}\right)
$$

with a real parameter vector theta of the same length as the feature statistic $\mathrm{f}(\mathrm{x})$, For more background, see, for example, Cover and Thomas (1991), Elements of Information Theory.

See the file bergerexample.py for a walk-through of how to use these routines when the sample space is small enough to be enumerated.

See bergerexamplesimulated.py for a a similar walk-through using simulation.
Copyright: Ed Schofield, 2003-2006 License: BSD-style (see LICENSE.txt in main source directory)

## Modules

$$
\begin{aligned}
& \text { maxentropy } \\
& \text { maxentutils } \quad \text { Utility routines for the maximum entropy module. }
\end{aligned}
$$

## Functions



## Exceptions

DivergenceError(message) Exception raised if the entropy dual has no finite minimum.
Utility routines for the maximum entropy module.
Most of them are either Python replacements for the corresponding Fortran routines or wrappers around matrices to allow the maxent module to manipulate ndarrays, scipy sparse matrices, and PySparse matrices a common interface.

Perhaps the logsumexp() function belongs under the utils/ branch where other modules can access it more easily.
Copyright: Ed Schofield, 2003-2006 License: BSD-style (see LICENSE.txt in main source directory)

## Functions

| arrayexp(x) Retur | Returns the elementwise antilog of the real array x . |
| :---: | :---: |
| arrayexpcomplex(x) Retur | Returns the elementwise antilog of the vector x . |
| asarray(a[, dtype, order]) | Convert the input to an array. |
| columnmeans(A) This | This is a wrapper for general dense or sparse dot products. |
| columnvariances(A) Th | This is a wrapper for general dense or sparse dot products. |
| densefeaturematrix(fR <br> sample) | fReturns an (mxn) dense array of non-zero evaluations of the |
| densefeatures(f,x) Re | Returns a dense array of non-zero evaluations of the functions fi |
| dotprod(u, v) Th | This is a wrapper around general dense or sparse dot products. |
| empty(shape[, dtype, order]) | Return a new array of given shape and type, without initializing entries. |
| flatten(a) Fl | Flattens the sparse matrix or dense array/matrix ' $a$ ' into a |
| innerprod(A, v) This | This is a wrapper around general dense or sparse dot products. |
| innerprodtranspose(AThis | AThis is a wrapper around general dense or sparse dot products. |
| v) |  |
| logsumexp(a) Co | Compute the $\log$ of the sum of exponentials $\log \left(e^{\wedge}\left\{\mathrm{a} \_1\right\}+\ldots . . \mathrm{e}^{\wedge}\left\{\mathrm{a} \_\mathrm{n}\right\}\right)$ |
| logsumexp_naive(value ${ }^{\text {dor }}$ | For testing logsumexp(). |
| robustlog(x) Re | Returns $\log (\mathrm{x})$ if $\mathrm{x}>0$, the complex $\log$ cmath. $\log (\mathrm{x})$ if $\mathrm{x}<0$, |
| rowmeans(A) Th | This is a wrapper for general dense or sparse dot products. |
| sample_wr(population, k) | Chooses k random elements (with replacement) from a population. |
| ```sparsefeaturematrix(\mathbb{R} sample[, format]) sparsefeatures(f, x[, format])``` | ( $\mathbb{R}$,eturns an ( mx n ) sparse matrix of non-zero evaluations of the scalar or vector functions $\mathrm{f} \_1, \ldots, \mathrm{f} \_\mathrm{m}$ in the list f at the points $\mathrm{x} \_1, \ldots, \mathrm{x} \_\mathrm{n}$ in the sequence 'sample'. Returns an Mx1 sparse matrix of non-zero evaluations of the |
| Classes |  |
| ndarray An array object repres | t represents a multidimensional, homogeneous array of fixed-size items. |
| Exceptions |  |
| DivergenceError(message) Exception raised if the entropy dual has no finite minimum. |  |
| Classes |  |

Classes

| DivergenceError(message) | Exception raised if the entropy dual has no finite minimum. |
| :--- | :--- |
| basemodel() | A base class providing generic functionality for both small and large |
|  | maximum entropy models. |
| bigmodel() | A maximum-entropy (exponential-form) model on a large sample space. |
| conditionalmodel(F, counts, | A conditional maximum-entropy (exponential-form) model p(xlw) on a <br> numcontexts) |
| discrete sample space. |  |

exception scipy.maxentropy.DivergenceError (message)
Exception raised if the entropy dual has no finite minimum.

```
class scipy.maxentropy.basemodel
```

A base class providing generic functionality for both small and large maximum entropy models. Cannot be instantiated.

## Methods

```
beginlogging
clearcache
crossentropy
dual
endlogging
entropydual
fit
grad
log
logparams
normconst
reset
setcallback
setparams
setsmooth
```

class scipy.maxentropy.bigmodel
A maximum-entropy (exponential-form) model on a large sample space.
The model expectations are not computed exactly (by summing or integrating over a sample space) but approximately (by Monte Carlo estimation). Approximation is necessary when the sample space is too large to sum or integrate over in practice, like a continuous sample space in more than about 4 dimensions or a large discrete space like all possible sentences in a natural language.

Approximating the expectations by sampling requires an instrumental distribution that should be close to the model for fast convergence. The tails should be fatter than the model.

## Methods

```
beginlogging
clearcache
crossentropy
dual
endlogging
entropydual
estimate
expectations
fit
grad
log
lognormconst
logparams
logpdf
normconst
pdf
pdf_function
resample
reset
setcallback
setparams
setsampleFgen
setsmooth
settestsamples
stochapprox
test([label, verbose, extra_argv, doctests, ...]) Run tests for module using nose.
```

class scipy.maxentropy. conditionalmodel ( $F$, counts, numcontexts)
A conditional maximum-entropy (exponential-form) model $\mathrm{p}(\mathrm{x} \mid \mathrm{w})$ on a discrete sample space.
This is useful for classification problems: given the context $w$, what is the probability of each class $x$ ?
The form of such a model is:

```
p(x | w) = exp(theta . f(w, x)) / Z(w; theta)
```

where $\mathrm{Z}(\mathrm{w}$; theta) is a normalization term equal to:

```
Z(w; theta) = sum_x exp(theta . f(w, x)).
```

The sum is over all classes $x$ in the set $Y$, which must be supplied to the constructor as the parameter 'samplespace'.
Such a model form arises from maximizing the entropy of a conditional model $\mathrm{p}(\mathrm{x} \mid \mathrm{w})$ subject to the constraints:

$$
\text { K_i = E f_i }(W, X)
$$

where the expectation is with respect to the distribution:

$$
q(w) \quad p(x \quad \mid \quad w)
$$

where $\mathrm{q}(\mathrm{w})$ is the empirical probability mass function derived from observations of the context w in a training set. Normally the vector $K=\left\{K \_i\right\}$ of expectations is set equal to the expectation of $f \_i(w, x)$ with respect to the empirical distribution.
This method minimizes the Lagrangian dual $L$ of the entropy, which is defined for conditional models as:

```
L(theta) = sum__w q(w) log Z(w; theta)
 - sum_{w,x} q(w,x) [theta . f(w,x)]
```

Note that both sums are only over the training set $\{\mathrm{w}, \mathrm{x}\}$, not the entire sample space, since $\mathrm{q}(\mathrm{w}, \mathrm{x})=0$ for all $\mathrm{w}, \mathrm{x}$ not in the training set.

The partial derivatives of $L$ are:

```
dL / dtheta_i = K_i - E f_i(X, Y)
```

where the expectation is as defined above.

## Methods

```
beginlogging
clearcache
crossentropy
dual
endlogging
entropydual
expectations
fit
grad
log
lognormconst
logparams
logpmf
normconst
pmf
pmf_function
probdist
reset
setcallback
setfeaturesandsamplespace
setparams
setsmooth
```

class scipy.maxentropy.model ( $f=$ None, samplespace $=$ None)
A maximum-entropy (exponential-form) model on a discrete sample space.

## Methods

```
beginlogging
 clearcache
 crossentropy
 dual
 endlogging
 entropydual
 expectations
 fit
 grad
 log
 lognormconst
 logparams
 logpmf
 normconst
 pmf
 pmf_function
 probdist
 reset
 setcallback
 setfeaturesandsamplespace
 setparams
 setsmooth
```


## Functions

```
arrayexp(x) Returns the elementwise antilog of the real array x.
arrayexpcomplex
columnmeans(A)
 This is a wrapper for general dense or sparse dot products.
 columnvariances(A) This is a wrapper for general dense or sparse dot products.
 densefeaturematrix
 densefeatures
 dotprod
 flatten(a) Flattens the sparse matrix or dense array/matrix 'a' into a
 innerprod(A,v) This is a wrapper around general dense or sparse dot products.
 innerprodtranspose(AThis is a wrapper around general dense or sparse dot products.
v)
logsumexp(a) Compute the log of the sum of exponentials log(e^{a_1}+...e^{a_n})
logsumexp_naive
robustlog
rowmeans
sample_wr
sparsefeaturematrix(\mathbb{Returns an (m x n) sparse matrix of non-zero evaluations of the scalar or vector}
sample[, format]) functions f_1,\ldots,f_m in the list f at the points x_1,\ldots,x_n in the sequence 'sample'.
sparsefeatures
scipy.maxentropy.arrayexp (x)
Returns the elementwise antilog of the real array x .
```

We try to exponentiate with numpy.exp() and, if that fails, with python's math.exp(). numpy.exp() is about 10 times faster but throws an OverflowError exception for numerical underflow (e.g. $\exp (-800)$, whereas python's math. $\exp ()$ just returns zero, which is much more helpful.

```
scipy.maxentropy.columnmeans (A)
```

This is a wrapper for general dense or sparse dot products.
It is only necessary as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays.
Returns a dense ( $1 \times n$ ) vector with the column averages of $A$, which can be an ( mxn ) sparse or dense matrix.

```
>>> a = numpy.array([[1,2],[3,4]],'d')
>>> columnmeans(a)
array([2., 3.])
scipy.maxentropy.columnvariances (\(A\))
```

This is a wrapper for general dense or sparse dot products.
It is not necessary except as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays.
Returns a dense ( 1 x n ) vector with unbiased estimators for the column variances for each column of the ( m x
$\mathrm{n})$ sparse or dense matrix A. (The normalization is by $(\mathrm{m}-1)$.)

```
>>> a = numpy.array([[1,2], [3,4]], 'd')
>>> columnvariances(a)
array([2., 2.])
scipy.maxentropy.flatten(a)
```

Flattens the sparse matrix or dense array/matrix 'a' into a 1-dimensional array

```
scipy.maxentropy.innerprod (}A,v\mathrm{)
```

This is a wrapper around general dense or sparse dot products.
It is not necessary except as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays.
Returns the inner product of the ( $\mathrm{m} \times \mathrm{n}$ ) dense or sparse matrix A with the n-element dense array v. This is a wrapper for A.dot(v) for dense arrays and spmatrix objects, and for A.matvec(v, result) for PySparse matrices.
scipy.maxentropy.innerprodtranspose ( $A, v$ )
This is a wrapper around general dense or sparse dot products.
It is not necessary except as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays.
Computes $\mathrm{A}^{\wedge} \mathrm{T} V$, where A is a dense or sparse matrix and V is a numpy array. If A is sparse, V must be a rank-1 array, not a matrix. This function is efficient for large matrices A. This is a wrapper for u.T.dot(v) for dense arrays and spmatrix objects, and for u.matvec_transp(v, result) for pysparse matrices.
scipy.maxentropy.logsumexp (a)
Compute the $\log$ of the sum of exponentials $\log \left(e^{\wedge}\left\{a \_1\right\}+\ldots e^{\wedge}\left\{a \_n\right\}\right)$ of the components of the array a, avoiding numerical overflow.
scipy.maxentropy.sparsefeaturematrix (f, sample, format='csc_matrix')
Returns an ( mxn ) sparse matrix of non-zero evaluations of the scalar or vector functions $f \_1, \ldots, f$ _ $m$ in the list $f$ at the points $\mathrm{x} \_1, \ldots, \mathrm{x} \_\mathrm{n}$ in the sequence 'sample'.

If format='ll_mat', the PySparse module (or a symlink to it) must be available in the Python site-packages/ directory. A trimmed-down version, patched for NumPy compatibility, is available in the SciPy sandbox/pysparse directory.

## Objects

```
 division
scipy.maxentropy.division
```


### 3.8.2 Models

class scipy.maxentropy.basemodel
A base class providing generic functionality for both small and large maximum entropy models. Cannot be instantiated.

## Methods

beginlogging
clearcache
crossentropy
dual
endlogging
entropydual
fit
grad
log
logparams
normconst
reset
setcallback
setparams
setsmooth

```
basemodel.beginlogging(filenfamable logging params for each fn evaluation to files named
freq]) 'filename.freq.pickle', 'filename.(2*freq).pickle', ...
basemodel.endlogging() Stop logging param values whenever setparams() is called.
basemodel.clearcache() Clears the interim results of computations depending on the
basemodel.crossentropy(fx[,Returns the cross entropy H(q, p) of the empirical
log_prior_x, base])
basemodel.dual([params, Computes the Lagrangian dual L(theta) of the entropy of the
ignorepenalty, ...])
basemodel.fit(K[, Fit the maxent model p whose feature expectations are given
algorithm])
basemodel.grad([params, Computes or estimates the gradient of the entropy dual.
ignorepenalty])
basemodel.log(params) This method is called every iteration during the optimization process.
basemodel.logparams() Saves the model parameters if logging has been
basemodel.normconst() Returns the normalization constant, or partition function, for the current
 model.
basemodel.reset([numfeatures]Resets the parameters self.params to zero, clearing the cache variables
 dependent on them.
basemodel.setcallback([callbSels, callback functions to be called every iteration, every function
...]) evaluation, or every gradient evaluation.
basemodel.setparams(params)Set the parameter vector to params, replacing the existing parameters.
basemodel.setsmooth(sigma) Specifies that the entropy dual and gradient should be computed with a
 quadratic penalty term on magnitude of the parameters.
```

basemodel. beginlogging (filename, freq=10)
Enable logging params for each fn evaluation to files named 'filename.freq.pickle', 'filename.( $2 *$ freq).pickle',
... each 'freq' iterations.
basemodel.endlogging()

Stop logging param values whenever setparams() is called.

```
basemodel.clearcache()
```

Clears the interim results of computations depending on the parameters and the sample.
basemodel.crossentropy (fx, log_prior_x=None, base $=2.7182818284590451$ )
Returns the cross entropy $\mathrm{H}(\mathrm{q}, \mathrm{p})$ of the empirical distribution q of the data (with the given feature matrix fx ) with respect to the model p . For discrete distributions this is defined as:

$$
H(q, p)=-n^{\wedge}\{-1\} \operatorname{sum}_{-}\{j=1\}^{\wedge} n \log p\left(x_{-j}\right)
$$

where $x_{\_} \mathfrak{j}$ are the data elements assumed drawn from $q$ whose features are given by the matrix $f x=\left\{f\left(x_{\_} \mathfrak{j}\right)\right\}$, $\mathrm{j}=1, \ldots, \mathrm{n}$.

The 'base' argument specifies the base of the logarithm, which defaults to e.
For continuous distributions this makes no sense!
basemodel.dual (params=None, ignorepenalty=False, ignoretest=False)
Computes the Lagrangian dual L (theta) of the entropy of the model, for the given vector theta=params. Minimizing this function (without constraints) should fit the maximum entropy model subject to the given constraints. These constraints are specified as the desired (target) values self.K for the expectations of the feature statistic.

## This function is computed as:

$$
\mathrm{L}(\text { theta })=\log (\hat{\mathrm{Z}})-\text { theta^ } \mathrm{T} \cdot \mathrm{~K}
$$

For 'bigmodel' objects, it estimates the entropy dual without actually computing p_theta. This is important if the sample space is continuous or innumerable in practice. We approximate the norm constant Z using importance sampling as in [Rosenfeld01whole]. This estimator is deterministic for any given sample. Note that the gradient of this estimator is equal to the importance sampling ratio estimator of the gradient of the entropy dual [see my thesis], justifying the use of this estimator in conjunction with grad() in optimization methods that use both the function and gradient. Note, however, that convergence guarantees break down for most optimization algorithms in the presence of stochastic error.
Note that, for 'bigmodel' objects, the dual estimate is deterministic for any given sample. It is given as:

$$
\text { L_est }=\log \text { Z_est - sum_i }\left\{\text { theta_i } \mathrm{K} \_i\right\}
$$

## where

$$
\text { Z_est = 1/m sum_\{x in sample S_0\} p_dot(x) / aux_dist(x), }
$$

and $m=$ \# observations in sample S_0, and $K \_i=$ the empirical expectation E_p_tilde f_i $(X)=\operatorname{sum} \_x\{p(x)$ f_i(x) $\}$.
basemodel.fit ( $K$, algorithm=' $C G^{\prime}$ )
Fit the maxent model p whose feature expectations are given by the vector K .
Model expectations are computed either exactly or using Monte Carlo simulation, depending on the 'func' and 'grad' parameters passed to this function.
For 'model' instances, expectations are computed exactly, by summing over the given sample space. If the sample space is continuous or too large to iterate over, use the 'bigmodel' class instead.

For 'bigmodel' instances, the model expectations are not computed exactly (by summing or integrating over a sample space) but approximately (by Monte Carlo simulation). Simulation is necessary when the sample space is too large to sum or integrate over in practice, like a continuous sample space in more than about 4 dimensions or a large discrete space like all possible sentences in a natural language.
Approximating the expectations by sampling requires an instrumental distribution that should be close to the model for fast convergence. The tails should be fatter than the model. This instrumental distribution is specified by calling setsampleFgen() with a user-supplied generator function that yields a matrix of features of a random sample and its $\log$ pdf values.
The algorithm can be 'CG', 'BFGS', 'LBFGSB', 'Powell', or 'Nelder-Mead'.

The CG (conjugate gradients) method is the default; it is quite fast and requires only linear space in the number of parameters, (not quadratic, like Newton-based methods).

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm is a variable metric Newton method. It is perhaps faster than the CG method but requires $\mathrm{O}\left(\mathrm{N}^{\wedge} 2\right)$ instead of $\mathrm{O}(\mathrm{N})$ memory, so it is infeasible for more than about $10^{\wedge} 3$ parameters.

The Powell algorithm doesn't require gradients. For small models it is slow but robust. For big models (where func and grad are simulated) with large variance in the function estimates, this may be less robust than the gradient-based algorithms.

```
basemodel.grad(params=None, ignorepenalty=False)
```

Computes or estimates the gradient of the entropy dual.
basemodel.log (params)
This method is called every iteration during the optimization process. It calls the user-supplied callback function (if any), logs the evolution of the entropy dual and gradient norm, and checks whether the process appears to be diverging, which would indicate inconsistent constraints (or, for bigmodel instances, too large a variance in the estimates).
basemodel.logparams ()
Saves the model parameters if logging has been enabled and the \# of iterations since the last save has reached self.paramslogfreq.
basemodel.normconst ()
Returns the normalization constant, or partition function, for the current model. Warning - this may be too large to represent; if so, this will result in numerical overflow. In this case use lognormconst() instead.

For 'bigmodel' instances, estimates the normalization term as $\mathrm{Z}=\mathrm{E}$ _aux_dist $[\{\exp$ (params. $\mathrm{f}(\mathrm{X})$ ) \} / aux_dist(X)] using a sample from aux_dist.
basemodel. reset (numfeatures=None)
Resets the parameters self.params to zero, clearing the cache variables dependent on them. Also resets the number of function and gradient evaluations to zero.
basemodel.setcallback (callback=None, callback_dual=None, callback_grad=None)
Sets callback functions to be called every iteration, every function evaluation, or every gradient evaluation. All callback functions are passed one argument, the current model object.

Note that line search algorithms in e.g. CG make potentially several function and gradient evaluations per iteration, some of which we expect to be poor.
basemodel.setparams (params)
Set the parameter vector to params, replacing the existing parameters. params must be a list or numpy array of the same length as the model's feature vector $f$.
basemodel.setsmooth (sigma)
Specifies that the entropy dual and gradient should be computed with a quadratic penalty term on magnitude of the parameters. This 'smooths' the model to account for noise in the target expectation values or to improve robustness when using simulation to fit models and when the sampling distribution has high variance. The smoothing mechanism is described in Chen and Rosenfeld, 'A Gaussian prior for smoothing maximum entropy models' (1999).

The parameter 'sigma' will be squared and stored as self.sigma2.
class scipy.maxentropy.model ( $f=$ None, samplespace $=$ None)
A maximum-entropy (exponential-form) model on a discrete sample space.

## Methods

```
beginlogging
clearcache
crossentropy
dual
endlogging
entropydual
expectations
fit
grad
log
lognormconst
logparams
logpmf
normconst
pmf
pmf_function
probdist
reset
setcallback
setfeaturesandsamplespace
setparams
setsmooth
```

model.expectations()
model.lognormconst()
model.logpmf()
model.pmf_function([f])

The vector E_p[f(X)] under the model p_params of the vector of
Compute the log of the normalization constant (partition Returns an array indexed by integers representing the Returns the pmf p_theta(x) as a function taking values on the model's sample space.
model.setfeaturesandsamplespace(f, Creates a new matrix self.F of features $f$ of all points in the samplespace)
model.expectations()
The vector $\mathrm{E} \_\mathrm{p}[\mathrm{f}(\mathrm{X})]$ under the model p_params of the vector of feature functions $\mathrm{f} \_$i over the sample space.
model.lognormconst ()
Compute the $\log$ of the normalization constant (partition function) $\mathrm{Z}=$ sum_ $\{\mathrm{x}$ in samplespace $\} \quad \mathrm{p} \_0(\mathrm{x})$ $\exp ($ params . $\mathrm{f}(\mathrm{x})$ ). The sample space must be discrete and finite.

```
model.logpmf()
```

Returns an array indexed by integers representing the logarithms of the probability mass function (pmf) at each point in the sample space under the current model (with the current parameter vector self.params).

```
model.pmf_function(f=None)
```

Returns the pmf p_theta(x) as a function taking values on the model's sample space. The returned pmf is defined as:

$$
\text { p_theta }(\mathrm{x})=\exp (\text { theta. } \mathrm{f}(\mathrm{x})-\log \mathrm{Z})
$$

where theta is the current parameter vector self.params. The returned function p_theta also satisfies $\operatorname{all}([\mathrm{p}(\mathrm{x})$ for x in self.samplespace $]==\operatorname{pmf}())$.
The feature statistic f should be a list of functions $[\mathrm{f} 1(), \ldots, \mathrm{fn}(\mathrm{x})]$. This must be passed unless the model already contains an equivalent attribute 'model.f'.

Requires that the sample space be discrete and finite, and stored as self.samplespace as a list or array.
model.setfeaturesandsamplespace ( $f$, samplespace)
Creates a new matrix self.F of features $f$ of all points in the sample space. $f$ is a list of feature functions $f \_i$ mapping the sample space to real values. The parameter vector self.params is initialized to zero.
We also compute $f(x)$ for each x in the sample space and store them as self.F. This uses lots of memory but is much faster.

This is only appropriate when the sample space is finite.

```
class scipy.maxentropy.bigmodel
```

A maximum-entropy (exponential-form) model on a large sample space.
The model expectations are not computed exactly (by summing or integrating over a sample space) but approximately (by Monte Carlo estimation). Approximation is necessary when the sample space is too large to sum or integrate over in practice, like a continuous sample space in more than about 4 dimensions or a large discrete space like all possible sentences in a natural language.
Approximating the expectations by sampling requires an instrumental distribution that should be close to the model for fast convergence. The tails should be fatter than the model.

## Methods

```
beginlogging
clearcache
crossentropy
dual
endlogging
entropydual
estimate
expectations
fit
grad
log
lognormconst
logparams
logpdf
normconst
pdf
pdf_function
resample
reset
setcallback
setparams
setsampleFgen
setsmooth
settestsamples
stochapprox
test([label, verbose, extra_argv, doctests, ...]) Run tests for module using nose.
```

```
bigmodel.estimate() This function approximates both the feature expectation vector
bigmodel.logpdf(fx[, Returns the log of the estimated density p(x) = p_theta(x) at the point x.
log_prior_x])
bigmodel.pdf(fx) Returns the estimated density p_theta(x) at the point x with feature statistic
fx =f(x).
bigmodel.pdf_function() Returns the estimated density p_theta(x) as a function p(f) taking a vector f
 =f}(\textrm{x})\mathrm{ of feature statistics at any point }\textrm{x}\mathrm{ .
 (Re)samples the matrix F of sample features.
staticsample])
bigmodel.settestsamples(F_lRequests that the model be tested every 'testevery' iterations
logprob_list)
bigmodel.stochapprox(K) Tries to fit the model to the feature expectations K using
bigmodel.test() Estimate the dual and gradient on the external samples, keeping track of the
 parameters that yield the minimum such dual.
```

bigmodel.estimate()
This function approximates both the feature expectation vector $E \_p f(X)$ and the log of the normalization term Z with importance sampling.

It also computes the sample variance of the component estimates of the feature expectations as: varE $=\operatorname{var}\left(\mathrm{E} \_1\right.$, ..., E_T) where T is self.matrixtrials and E_t is the estimate of E_p $f(X)$ approximated using the ' $t$ 'th auxiliary feature matrix.

It doesn't return anything, but stores the member variables logZapprox, mu and varE. (This is done because some optimization algorithms retrieve the dual fn and gradient fn in separate function calls, but we can compute them more efficiently together.)
It uses a supplied generator sampleFgen whose .next() method returns features of random observations $\mathrm{s}_{\mathrm{-}} \mathrm{j}$ generated according to an auxiliary distribution aux_dist. It uses these either in a matrix (with multiple runs) or with a sequential procedure, with more updating overhead but potentially stopping earlier (needing fewer samples). In the matrix case, the features $\mathrm{F}=\left\{\mathrm{f} \_\mathrm{i}\left(\mathrm{s}_{\mathrm{J}}\right)\right\}$ and vector $\left[\log \_\right.$aux_dist( $\left.\left.\mathrm{s}_{\mathrm{J}} \mathrm{j}\right)\right]$ of log probabilities are generated by calling resample().

We use [Rosenfeld01Wholesentence]'s estimate of $E_{-} \mathbf{p}\left[f \_i\right]$ as:

```
{sum_j p(s_j)/aux_dist(s_j) f_i_(s_j)}
 / {sum_j p(s_j) / aux_dist(s_j)}.
```

Note that this is consistent but biased.
This equals:
$\left\{\operatorname{sum}_{-} \mathbf{j} \mathbf{p}_{-}\right.$dot $\left(\mathbf{s}_{-} \mathbf{j}\right) /$ aux_dist(s_j$\left.) \mathbf{f} \mathbf{i}\left(\mathbf{s}_{\mathbf{-}} \mathbf{j}\right)\right\}$
/ \{sum_j p_dot(s_j) / aux_dist(s_j) \}
Compute the estimator $E \_p f(\mathbf{i}(\mathbf{X})$ in $\log$ space as:
num_i / denom,
where

```
num_i = exp(logsumexp(theta.f(s_j) - log aux_dist(s_\mathbf{j})
```

- $\log \mathrm{f}$ _i(s_j)))
and

$$
\text { denom }=[n * \text { Zapprox }]
$$

where Zapprox $=\exp ($ self.lognormconst()).

## We can compute the denominator $n *$ Zapprox directly as:

$$
\begin{aligned}
& \quad \exp \left(\operatorname{logsumexp}\left(\log \mathrm{p} \_ \text {dot }\left(\mathrm{s} \_\mathbf{j}\right)-\log \operatorname{aux} \_d i s t\left(\mathrm{~s} \_\mathbf{j}\right)\right)\right) \\
= & \exp \left(\log \operatorname{sumexp}\left(\operatorname{theta} . f\left(\mathrm{~s} \_\mathbf{j}\right)-\log \operatorname{aux} \_\operatorname{dist}\left(\mathrm{s} \_\mathbf{j}\right)\right)\right)
\end{aligned}
$$

bigmodel.logpdf ( $f x$, log_prior_ $x=$ None )
Returns the $\log$ of the estimated density $\mathrm{p}(\mathrm{x})=\mathrm{p}$ _theta $(\mathrm{x})$ at the point x . If $\log _{-}$prior_x is None, this is defined as:

$$
\log \mathrm{p}(\mathrm{x})=\text { theta. } \mathrm{f}(\mathrm{x})-\log \mathrm{Z}
$$

where $f(x)$ is given by the ( $m \times 1$ ) array $f x$.
If, instead, $f x$ is a $2-d(m \times n)$ array, this function interprets each of its rows $j=0, \ldots, n-1$ as a feature vector $f\left(x \_j\right)$, and returns an array containing the $\log \mathrm{pdf}$ value of each point $\mathrm{x}_{-} \mathrm{j}$ under the current model.
$\log \mathrm{Z}$ is estimated using the sample provided with setsampleFgen().
The optional argument $\log _{\_}$prior_x is the $\log$ of the prior density $p_{-} 0$ at the point $x$ (or at each point $x_{\_} \mathrm{j}$ if fx is 2-dimensional). The $\log$ pdf of the model is then defined as

$$
\log \mathrm{p}(\mathrm{x})=\log \mathrm{p} 0(\mathrm{x})+\text { theta.f } \mathrm{f})-\log \mathrm{Z}
$$

and $p$ then represents the model of minimum KL divergence $\mathrm{D}(\mathrm{pllp} 0)$ instead of maximum entropy.

## bigmodel.pdf ( $f x$ )

Returns the estimated density $p_{-}$theta $(x)$ at the point x with feature statistic $\mathrm{fx}=\mathrm{f}(\mathrm{x})$. This is defined as

$$
\text { p_theta }(x)=\exp (\text { theta. } f(x)) / Z(\text { theta }),
$$

where Z is the estimated value self.normconst() of the partition function.

## bigmodel.pdf_function()

Returns the estimated density $p$ _theta( $x$ ) as a function $p(f)$ taking a vector $f=f(x)$ of feature statistics at any point x . This is defined as:

$$
\text { p_theta }(x)=\exp (\text { theta. } f(x)) / Z
$$

bigmodel.resample()
$(\mathrm{Re})$ samples the matrix F of sample features.
bigmodel.setsampleFgen (sampler, staticsample=True)
Initializes the Monte Carlo sampler to use the supplied generator of samples' features and log probabilities. This is an alternative to defining a sampler in terms of a (fixed size) feature matrix sampleF and accompanying vector samplelogprobs of $\log$ probabilities.
Calling sampler.next() should generate tuples ( $F, l p$ ), where $F$ is an ( $m x n$ ) matrix of features of the $n$ sample points $\mathrm{x} \_1, \ldots, \mathrm{x} \_\mathrm{n}$, and lp is an array of length n containing the (natural) $\log$ probability density (pdf or pmf) of each point under the auxiliary sampling distribution.

The output of sampler.next() can optionally be a 3-tuple (F, lp, sample) instead of a 2-tuple (F, lp). In this case the value 'sample' is then stored as a class variable self.sample. This is useful for inspecting the output and understanding the model characteristics.

If matrixtrials $>1$ and staticsample $=$ True, (which is useful for estimating variance between the different feature estimates), sampler.next() will be called once for each trial ( $0, \ldots$, matrixtrials) for each iteration. This allows using a set of feature matrices, each of which stays constant over all iterations.
We now insist that sampleFgen.next() return the entire sample feature matrix to be used each iteration to avoid overhead in extra function calls and memory copying (and extra code).

An alternative was to supply a list of samplers, sampler=[sampler0, sampler1, ..., sampler_\{m-1\}, samplerZ], one for each feature and one for estimating the normalization constant $Z$. But this code was unmaintained, and has now been removed (but it's in Ed's CVS repository :).
Example use: >>> import spmatrix >>> model $=\operatorname{bigmodel}() \ggg$ def sampler(): ... $n=0$... while True: $\ldots \mathrm{f}=\operatorname{spmatrix.ll\_ mat}(1,3) \ldots \mathrm{f}[0,0]=\mathrm{n}+1 ; \mathrm{f}[0,1]=\mathrm{n}+1 ; \mathrm{f}[0,2]=\mathrm{n}+1 \ldots$ yield $\mathrm{f}, 1.0 \ldots \mathrm{n}+=1 \ldots \ggg$ model.setsampleFgen(sampler()) >>> type(model.sampleFgen) <type 'generator'\gg>> [model.sampleF[0,i] for $i$ in range(3)] [1.0, 1.0, 1.0]

We now set matrixtrials as a class property instead, rather than passing it as an argument to this function, where it can be written over (perhaps with the default function argument by accident) when we re-call this func (e.g. to change the matrix size.)
bigmodel.settestsamples (F_list, logprob_list, testevery=1, priorlogprob_list=None)
Requests that the model be tested every 'testevery' iterations during fitting using the provided list F_list of feature matrices, each representing a sample $\left\{\mathrm{x}_{\mathrm{j}} \mathrm{j}\right\}$ from an auxiliary distribution q , together with the corresponding $\log$ probabiltiy mass or density values $\log \left\{q\left(x_{-} \mathfrak{j}\right)\right\}$ in logprob_list. This is useful as an external check on the fitting process with sample path optimization, which could otherwise reflect the vagaries of the single sample being used for optimization, rather than the population as a whole.

If self.testevery $>1$, only perform the test every self.testevery calls.
If priorlogprob_list is not None, it should be a list of arrays of $\log \left(p 0\left(x \_j\right)\right)$ values, $j=0, \ldots, n-1$, specifying the prior distribution p 0 for the sample points $\mathrm{x}_{\mathrm{f}} \mathrm{j}$ for each of the test samples.
bigmodel.stochapprox ( $K$ )
Tries to fit the model to the feature expectations K using stochastic approximation, with the Robbins-Monro stochastic approximation algorithm: theta_ $\{\mathrm{k}+1\}=$ theta_k $+\mathrm{a}_{-} \mathrm{k} \mathrm{g}_{-} \mathrm{k}-\mathrm{a} \_\mathrm{k} \mathrm{e}_{-} \mathrm{k}$ where $\mathrm{g} \_\mathrm{k}$ is the gradient vector (= feature expectations $\mathrm{E}-\mathrm{K}$ ) evaluated at the point theta $\mathrm{l}_{\mathrm{k}}$, $\mathrm{a}_{-} \mathrm{k}$ is the sequence $\mathrm{a} \_\mathrm{k}=\mathrm{a} \_0 / \mathrm{k}$, where a_0 is some step size parameter defined as self.a_0 in the model, and e_k is an unknown error term representing the uncertainty of the estimate of $g_{-} k$. We assume $e_{-} k$ has nice enough properties for the algorithm to converge.
bigmodel.test()
Estimate the dual and gradient on the external samples, keeping track of the parameters that yield the minimum such dual. The vector of desired (target) feature expectations is stored as self.K.
class scipy.maxentropy.conditionalmodel ( $F$, counts, numcontexts)
A conditional maximum-entropy (exponential-form) model $\mathrm{p}(\mathrm{x} \mid \mathrm{w})$ on a discrete sample space.
This is useful for classification problems: given the context $w$, what is the probability of each class x ?
The form of such a model is:

```
p(x | w) = exp(theta . f(w, x)) / Z(w; theta)
```

where $\mathrm{Z}(\mathrm{w}$; theta) is a normalization term equal to:

```
Z(w; theta) = sum_x exp(theta . f(w, x)).
```

The sum is over all classes $x$ in the set $Y$, which must be supplied to the constructor as the parameter 'samplespace'.

Such a model form arises from maximizing the entropy of a conditional model $p(x \mid w)$ subject to the constraints:
K_i = E f_i (W, X)
where the expectation is with respect to the distribution:

$$
q(w) p(x \mid w)
$$

where $\mathrm{q}(\mathrm{w})$ is the empirical probability mass function derived from observations of the context w in a training set. Normally the vector $K=\left\{K \_i\right\}$ of expectations is set equal to the expectation of $f \_i(w, x)$ with respect to the empirical distribution.

This method minimizes the Lagrangian dual $L$ of the entropy, which is defined for conditional models as:

```
L(theta) = sum_w q(w) log Z(w; theta)
 - sum_{w,x} q(w,x) [theta . f(w,x)]
```

Note that both sums are only over the training set $\{\mathrm{w}, \mathrm{x}\}$, not the entire sample space, since $\mathrm{q}(\mathrm{w}, \mathrm{x})=0$ for all $\mathrm{w}, \mathrm{x}$ not in the training set.
The partial derivatives of $L$ are:

```
dL / dtheta_i = K_i - E f_i(X, Y)
```

where the expectation is as defined above.

## Methods

```
beginlogging
clearcache
crossentropy
dual
endlogging
entropydual
expectations
fit
grad
log
lognormconst
logparams
logpmf
normconst
pmf
pmf_function
probdist
reset
setcallback
setfeaturesandsamplespace
setparams
setsmooth
```

conditionalmodel. dualThpaemrepy dual function is defined for conditional models as ignorepenalty])
conditionalmodel. expeFteavecton o(f)expectations of the features with respect to the
conditionalmodel.fit( (Failtgatriehomb)ditional maximum entropy model subject to the
conditionalmodel.lognCompute the (elementwise log of the normalization constant
conditionalmodel.logpRet(l)rns a (sparse) row vector of logarithms of the conditional probability mass function ( pmf ) values $\mathrm{p}(\mathrm{x} \mid \mathrm{c}$ ) for all pairs ( $\mathrm{c}, \mathrm{x}$ ), where c are contexts and x are points in the sample space.
conditionalmodel.dual (params=None, ignorepenalty=False)
The entropy dual function is defined for conditional models as
$\mathbf{L}($ theta $)=$ sum $\quad \mathbf{w} \mathbf{q}(\mathbf{w}) \log \mathbf{Z}(\mathbf{w} ;$ theta $)$

- sum_\{w,x\} q(w,x) [theta . $f(w, x)]$
or equivalently as
$\mathrm{L}($ theta $)=$ sum_w $\mathrm{q}(\mathrm{w}) \log \mathrm{Z}(\mathrm{w}$; theta) - (theta. k )
where $K \_i=\operatorname{sum} \_\{w, x\} q(w, x) f \_i(w, x)$, and where $q(w)$ is the empirical probability mass function derived from observations of the context $w$ in a training set. Normally $q(w, x)$ will be 1 , unless the same class label is assigned to the same context more than once.

Note that both sums are only over the training set $\{\mathrm{w}, \mathrm{x}\}$, not the entire sample space, since $\mathrm{q}(\mathrm{w}, \mathrm{x})=0$ for all $\mathrm{w}, \mathrm{x}$ not in the training set.

The entropy dual function is proportional to the negative log likelihood.
Compare to the entropy dual of an unconditional model:
$\mathrm{L}($ theta $)=\log (\mathrm{Z})-$ theta^ $^{\wedge} \mathrm{T} . \mathrm{K}$
conditionalmodel.expectations()
The vector of expectations of the features with respect to the distribution p_tilde(w) $\mathrm{p}(\mathrm{x} \mid \mathrm{w})$, where $\mathrm{p}_{-}$tilde $(w)$ is the empirical probability mass function value stored as self.p_tilde_context[w].
conditionalmodel. fit (algorithm=' $C G^{\prime}$ )
Fits the conditional maximum entropy model subject to the constraints

$$
\text { sum_ }\{w, x\} p \_t i l d e(w) p(x \mid w) f \_i(w, x)=k \_i
$$

for $i=1, \ldots, m$, where $k \_i$ is the empirical expectation
$k_{-} i=\operatorname{sum}_{-}\{w, x\} p_{-}$tilde $(w, x) f_{-} i(w, x)$.
conditionalmodel.lognormconst()
Compute the elementwise $\log$ of the normalization constant (partition function) $\mathrm{Z}(\mathrm{w})=\operatorname{sum}_{-}\{\mathrm{y}$ in $\mathrm{Y}(\mathrm{w})\}$ $\exp ($ theta.$f(w, y))$. The sample space must be discrete and finite. This is a vector with one element for each context w.
conditionalmodel.logpmf()
Returns a (sparse) row vector of logarithms of the conditional probability mass function ( pmf ) values $\mathrm{p}(\mathrm{x} \mid \mathrm{c})$ for all pairs $(\mathrm{c}, \mathrm{x})$, where c are contexts and x are points in the sample space. The order of these is $\log \mathrm{p}(\mathrm{x} \mid \mathrm{c})=$ $\log p m f()[c *$ numsamplepoints $+x]$.

### 3.8.3 Utilities

Utility routines for the maximum entropy module.
Most of them are either Python replacements for the corresponding Fortran routines or wrappers around matrices to allow the maxent module to manipulate ndarrays, scipy sparse matrices, and PySparse matrices a common interface.

Perhaps the logsumexp() function belongs under the utils/ branch where other modules can access it more easily.
Copyright: Ed Schofield, 2003-2006 License: BSD-style (see LICENSE.txt in main source directory)

```
arrayexp(x) Returns the elementwise antilog of the real array x.
arrayexpcomplex(x) Returns the elementwise antilog of the vector x.
columnmeans(A) This is a wrapper for general dense or sparse dot products.
columnvariances(A) This is a wrapper for general dense or sparse dot products.
densefeaturematrix(fReturns an (m x n) dense array of non-zero evaluations of the
sample)
densefeatures(f,x) Returns a dense array of non-zero evaluations of the functions fi
dotprod(u,v) This is a wrapper around general dense or sparse dot products.
flatten(a) Flattens the sparse matrix or dense array/matrix 'a' into a
innerprod(A,v) This is a wrapper around general dense or sparse dot products.
innerprodtranspose(AThis is a wrapper around general dense or sparse dot products.
v)
logsumexp(a) Compute the log of the sum of exponentials log(e^{a_1}+..e^{a_n})
logsumexp_naive(value#or testing logsumexp().
robustlog(x) Returns log(x) if x > 0, the complex log cmath.log(x) if x<0,
rowmeans(A) This is a wrapper for general dense or sparse dot products.
sample_wr(population, Chooses k random elements (with replacement) from a population.
k)
sparsefeaturematrix(\mathbb{Returns an (m x n) sparse matrix of non-zero evaluations of the scalar or vector}
sample[, format]) functions f_1,\ldots,f_m in the list f at the points }\textrm{x}_1,\ldots,\textrm{x}_\textrm{n}\mathrm{ in the sequence 'sample'.
sparsefeatures(f, Returns an Mx1 sparse matrix of non-zero evaluations of the
x[, format])
```

scipy.maxentropy.maxentutils.arrayexp ( $x$ )

Returns the elementwise antilog of the real array $x$.
We try to exponentiate with numpy.exp() and, if that fails, with python's math.exp(). numpy.exp() is about 10 times faster but throws an OverflowError exception for numerical underflow (e.g. $\exp (-800)$, whereas python's math. $\exp ()$ just returns zero, which is much more helpful.
scipy.maxentropy.maxentutils.arrayexpcomplex $(x)$
Returns the elementwise antilog of the vector $x$.
We try to exponentiate with numpy. $\exp ()$ and, if that fails, with python's math.exp(). numpy.exp() is about 10 times faster but throws an OverflowError exception for numerical underflow (e.g. exp(-800), whereas python's math. $\exp ()$ just returns zero, which is much more helpful.
scipy.maxentropy.maxentutils.columnmeans $(A)$
This is a wrapper for general dense or sparse dot products.
It is only necessary as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays.
Returns a dense ( $1 \times n$ ) vector with the column averages of $A$, which can be an ( mxn ) sparse or dense matrix.

```
>>> a = numpy.array([[1,2],[3,4]],' d')
>>> columnmeans(a)
array([2., 3.])
scipy.maxentropy.maxentutils.columnvariances \((A)\)
```

This is a wrapper for general dense or sparse dot products.
It is not necessary except as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays.
Returns a dense ( 1 xn ) vector with unbiased estimators for the column variances for each column of the ( m x
$\mathrm{n})$ sparse or dense matrix A . (The normalization is by $(m-1)$.)

```
>>> a = numpy.array([[1,2], [3,4]], 'd')
>>> columnvariances(a)
array([2., 2.])
```

```
scipy.maxentropy.maxentutils.densefeaturematrix (f, sample)
```

Returns an ( $\mathrm{m} \times \mathrm{n}$ ) dense array of non-zero evaluations of the scalar functions fi in the list f at the points $\mathrm{x} \_1, \ldots, \mathrm{x} \_\mathrm{n}$ in the list sample.
scipy.maxentropy.maxentutils.densefeatures $(f, x)$
Returns a dense array of non-zero evaluations of the functions fi in the list f at the point x .
scipy.maxentropy.maxentutils.dotprod ( $u, v$ )
This is a wrapper around general dense or sparse dot products.
It is not necessary except as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays.
Returns the dot product of the ( $1 \mathrm{x} m$ ) sparse array $u$ with the ( $\mathrm{m} \times 1$ ) (dense) numpy array v .

```
scipy.maxentropy.maxentutils.flatten (a)
```

Flattens the sparse matrix or dense array/matrix ' $a$ ' into a 1-dimensional array
scipy.maxentropy.maxentutils.innerprod $(A, v)$
This is a wrapper around general dense or sparse dot products.
It is not necessary except as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays.
Returns the inner product of the ( $\mathrm{m} \times \mathrm{n}$ ) dense or sparse matrix A with the n-element dense array v . This is a wrapper for A.dot(v) for dense arrays and spmatrix objects, and for A.matvec( $v$, result) for PySparse matrices.

```
scipy.maxentropy.maxentutils.innerprodtranspose (A,v)
```

This is a wrapper around general dense or sparse dot products.
It is not necessary except as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays.
Computes $\mathrm{A}^{\wedge} \mathrm{T} V$, where A is a dense or sparse matrix and V is a numpy array. If A is sparse, V must be a rank-1 array, not a matrix. This function is efficient for large matrices A. This is a wrapper for u.T.dot(v) for dense arrays and spmatrix objects, and for u.matvec_transp(v, result) for pysparse matrices.
scipy.maxentropy.maxentutils.logsumexp (a)
Compute the $\log$ of the sum of exponentials $\log \left(e^{\wedge}\left\{a \_1\right\}+\ldots e^{\wedge}\left\{a \_n\right\}\right)$ of the components of the array a, avoiding numerical overflow.

```
scipy.maxentropy.maxentutils.logsumexp_naive (values)
 For testing logsumexp(). Subject to numerical overflow for large values (e.g. 720).
scipy.maxentropy.maxentutils.robustlog(x)
 Returns }\operatorname{log}(x)\mathrm{ if }x>0, the complex log cmath. log(x) if x < 0, or float('-inf') if x == 0.
scipy.maxentropy.maxentutils.rowmeans(A)
This is a wrapper for general dense or sparse dot products.
```

It is only necessary as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays.
Returns a dense ( $\mathrm{m} \times 1$ ) vector representing the mean of the rows of $A$, which be an ( $\mathrm{m} x \mathrm{n}$ ) sparse or dense matrix.

```
>>> a = numpy.array([[1,2],[3,4]], float)
>>> rowmeans(a)
array([1.5, 3.5])
```

scipy.maxentropy.maxentutils.sample_wr (population, $k$ )
Chooses k random elements (with replacement) from a population. (From the Python Cookbook).
scipy.maxentropy.maxentutils.sparsefeaturematrix (f, sample, format='csc_matrix')
Returns an ( $\mathrm{m} x \mathrm{n}$ ) sparse matrix of non-zero evaluations of the scalar or vector functions $\mathrm{f} \_1, \ldots, \mathrm{f}$ _m in the list f at the points $x_{-} 1, \ldots, x \_n$ in the sequence 'sample'.

If format='ll_mat', the PySparse module (or a symlink to it) must be available in the Python site-packages/ directory. A trimmed-down version, patched for NumPy compatibility, is available in the SciPy sandbox/pysparse directory.
scipy.maxentropy.maxentutils.sparsefeatures ( $f$, $x$, format='csc_matrix')
Returns an Mx1 sparse matrix of non-zero evaluations of the scalar functions $f \_1, \ldots, f \_m$ in the list $f$ at the point x .

If format='ll_mat', the PySparse module (or a symlink to it) must be available in the Python site-packages/ directory. A trimmed-down version, patched for NumPy compatibility, is available in the SciPy sandbox/pysparse directory.

### 3.9 Miscellaneous routines (scipy.misc)

Warning: This documentation is work-in-progress and unorganized.
Various utilities that don't have another home.
Note that the Python Imaging Library (PIL) is not a dependency of SciPy and therefore the pilutil module is not available on systems that don't have PIL installed.

### 3.9.1 Modules

| common | Functions which are common and require SciPy Base and Level 1 SciPy |
| :--- | :--- |
| doccer | Utilities to allow inserting docstring fragments for common |
| pilutil | A collection of image utilities using the Python Imaging Library (PIL). |
| setup |  |
| setupscons |  |

Functions which are common and require SciPy Base and Level 1 SciPy (special, linalg)

## Functions

```
arange([dtype]) Return evenly spaced values within a given interval.
array(object[, dtype, copy, order, subok, Create an array.
ndmin])
asarray(a[, dtype, order]) Convert the input to an array.
central_diff_weights(Np[, ndiv]) Return weights for an Np-point central derivative of order ndiv
comb(N, k[, exact])
derivative(func, x0[, dx, n, args, order])
dot(a, b[, out])
extract(condition, arr)
eye(N[,M, k, dtype])
factorial(n[, exact])
factorial2(n[, exact])
factorialk(n, k[, exact])
hstack(tup)
lena()
pade(an,m)
place(arr, mask, vals)
product(a[, axis, dtype, out])
where(condition, x)
zeros(shape[, dtype, order])
asarray(a[, dtype, order])
The number of combinations of N
Find the n-th derivative of a function at point x0.
Dot product of two arrays.
Return the elements of an array that satisfy some condition.
Return a 2-D array with ones on the diagonal and zeros
elsewhere.
The factorial function, n! = special.gamma(n+1).
Double factorial.
n(!!...!) = multifactorial of order k
Stack arrays in sequence horizontally (column wise).
Get classic image processing example image, Lena, at 8-bit
grayscale
Given Taylor series coefficients in an, return a Pade
approximation to
Change elements of an array based on conditional and input
values.
Return the product of array elements over a given axis.
Return elements, either from }x\mathrm{ or }y\mathrm{ , depending on condition.
Return a new array of given shape and type, filled with zeros.
```


## Classes

```
poly1d(c_or_r[,r, variable]) A one-dimensional polynomial class.
```

```
poly1d(c_or_r[,r, variable]) A one-dimensional polynomial class.
```

Utilities to allow inserting docstring fragments for common parameters into function and method docstrings

## Functions

| docformat(docstring[, docdict]) | Fill a function docstring from variables in dictionary |
| :--- | :--- |
| filldoc(docdict[, unindent_params]) | Return docstring decorator using docdict variable dictionary |
| indentcount_lines(lines) | Minumum indent for all lines in line list |
| unindent_dict(docdict) | Unindent all strings in a docdict |
| unindent_string(docstring) | Set docstring to minimum indent for all lines, including first |

A collection of image utilities using the Python Imaging Library (PIL).
Note that PIL is not a dependency of SciPy and this module is not available on systems that don't have PIL installed.

## Functions

| amax(a[, axis, out]) | Return the maximum of an array or maximum along an axis. |
| :---: | :---: |
| amin(a[, axis, out]) | Return the minimum of an array or minimum along an axis. |
| arange([dtype]) | Return evenly spaced values within a given interval. |
| array(object[, dtype, copy, order, subok, ndmin]) | Create an array. |
| asarray(a[, dtype, order]) | Convert the input to an array. |
| bytescale(data[, cmin, cmax, high, low]) | Byte scales an array (image). |
| fromimage(im[, flatten]) | Return a copy of a PIL image as a numpy array. |
| imfilter(arr, ftype) | Simple filtering of an image. |
| imread(name[, flatten]) | Read an image file from a filename. |
| imresize(arr, size[, interp, mode]) | Resize an image. |
| imrotate(arr, angle[, interp]) | Rotate an image counter-clockwise by angle degrees. |
| imsave(name, arr) | Save an array to an image file. |
| imshow(arr) | Simple showing of an image through an external viewer. |
| iscomplexobj(x) | Return True if $x$ is a complex type or an array of complex numbers. |
| issubdtype(arg1, $\arg 2)$ | Returns True if first argument is a typecode lower/equal in type hierarchy. |
| ones(shape[, dtype, order]) radon(arr[, theta]) | Return a new array of given shape and type, filled with ones. |
| ravel(a[, order]) | Return a flattened array. |
| sum(a[, axis, dtype, out]) | Sum of array elements over a given axis. |
| toimage(arr[, high, low, cmin, cmax, pal, ...]) | Takes a numpy array and returns a PIL image. The mode of the |
| transpose(a[, axes]) | Permute the dimensions of an array. |
| zeros(shape[, dtype, order]) | Return a new array of given shape and type, filled with zeros. |
| Classes |  |
| uint 8 |  |
| Functions |  |
| configuration([parent_package, top_path]) |  |
| Functions |  |
| configuration([parent_package, top_path]) |  |

### 3.9.2 Functions

```
bytescale(data[, cmin, cmax, high, low]) Byte scales an array (image).
central_diff_weights(Np[, ndiv]) Return weights for an Np-point central derivative of order ndiv
comb(N, k[, exact])
derivative(func, x0[, dx, n, args, order])
factorial(n[, exact])
factorial2(n[, exact])
factorialk(n, k[, exact])
fromimage(im[, flatten])
imfilter(arr, ftype)
imread(name[, flatten])
imresize(arr, size[, interp, mode])
imrotate(arr, angle[, interp])
imsave(name, arr)
imshow(arr)
info([object, maxwidth, output, toplevel])
lena()
pade(an, m)
radon(arr[, theta])
toimage(arr[, high, low, cmin, cmax, pal,...]) Takes a numpy array and returns a PIL image. The mode of the
scipy.misc.bytescale (data, cmin=None, cmax=None, high=255,low=0)
 Byte scales an array (image).
 Parameters
 data : ndarray
 PIL image data array.
 cmin : Scalar
 Bias scaling of small values, Default is data.min().
 cmax : scalar
 Bias scaling of large values, Default is data.max().
 high : scalar
 Scale max value to high.
 low : scalar
 Scale min value to low.
 Returns
 img_array : ndarray
 Bytescaled array.
```


## Examples

```
>>> img = array([[91.06794177, 3.39058326, 84.4221549],
```

>>> img = array([[ 91.06794177, 3.39058326, 84.4221549 ],
[ 73.88003259, 80.91433048, 4.88878881],
[ 73.88003259, 80.91433048, 4.88878881],
[ 51.53875334, 34.45808177, 27.5873488 ]])
[ 51.53875334, 34.45808177, 27.5873488 ]])
>>> bytescale(img)
>>> bytescale(img)
array([[255, 0, 236],
array([[255, 0, 236],
[205, 225, 4],
[205, 225, 4],
[140, 90, 70]], dtype=uint8)
[140, 90, 70]], dtype=uint8)
>>> bytescale(img, high=200, low=100)

```
>>> bytescale(img, high=200, low=100)
```

```
array([[200, 100, 192],
 [180, 188, 102],
 [155, 135, 128]], dtype=uint8)
>>> bytescale(img, cmin=0, cmax=255)
array([[91, 3, 84],
 [74, 81, 5],
 [52, 34, 28]], dtype=uint8)
```

scipy.misc.central_diff_weights ( $N p, n d i v=1$ )

Return weights for an Np -point central derivative of order ndiv assuming equally-spaced function points.
If weights are in the vector w , then derivative is $\mathrm{w}[0] * \mathrm{f}(\mathrm{x}-\mathrm{ho} * \mathrm{dx})+\ldots+\mathrm{w}[-1] * \mathrm{f}(\mathrm{x}+\mathrm{h} 0 * \mathrm{dx})$

## Notes

Can be inaccurate for large number of points.
scipy.misc.comb ( $N, k$, exact $=0$ )
The number of combinations of N things taken k at a time. This is often expressed as " N choose k ".

## Parameters

$\mathbf{N}$ : int, array
Number of things.
$\mathbf{k}$ : int, array
Number of elements taken.
exact : int, optional
If exact is 0 , then floating point precision is used, otherwise exact long integer is computed.

## Returns

val : int, array
The total number of combinations.

## Notes

- Array arguments accepted only for exact=0 case.
-If $\mathrm{k}>\mathrm{N}, \mathrm{N}<0$, or $\mathrm{k}<0$, then a 0 is returned.


## Examples

```
>>> k = np.array([3, 4])
>>> n = np.array([10, 10])
>>> sc.comb(n, k, exact=False)
array([120., 210.])
>>> sc.comb(10, 3, exact=True)
120L
```

scipy.misc.derivative (func, $x 0, d x=1.0, n=1, \operatorname{args}=()$, order $=3$ )
Find the $n$-th derivative of a function at point x 0 .
Given a function, use a central difference formula with spacing $d x$ to compute the $n$-th derivative at $x 0$.

## Parameters

func : function
Input function.
$\mathbf{x 0}$ : float
The point at which nth derivative is found.
dx : int, optional
Spacing.
n: int, optional
Order of the derivative. Default is 1 .
args : tuple, optional
Arguments
order : int, optional
Number of points to use, must be odd.

## Notes

Decreasing the step size too small can result in round-off error.

## Examples

>>> def x2(x):
... return $x * x$
>>> derivative(x2, 2)
4.0
scipy.misc.factorial (n, exact=0)
The factorial function, $\mathrm{n}!=$ special.gamma $(\mathrm{n}+1)$.
If exact is 0 , then floating point precision is used, otherwise exact long integer is computed.

- Array argument accepted only for exact=0 case.
-If $\mathrm{n}<0$, the return value is 0 .


## Parameters

$\mathbf{n}$ : int or array_like of ints
Calculate $n$ !. Arrays are only supported with exact set to False. If $n<0$, the return value is 0 .
exact : bool, optional
The result can be approximated rapidly using the gamma-formula above. If exact is set to True, calculate the answer exactly using integer arithmetic. Default is False.

## Returns

nf : float or int
Factorial of $n$, as an integer or a float depending on exact.

## Examples

```
>>> arr = np.array([3,4,5])
>>> sc.factorial(arr, exact=False)
array([6., 24., 120.])
>>> sc.factorial(5, exact=True)
120L
```

```
scipy.misc.factorial2(n, exact=False)
```

Double factorial.
This is the factorial with every second value skipped, i.e., $7!!=7 \times 5 * 3 * 1$. It can be approximated numerically as:

```
n!! = special.gamma(n/2+1)*2**((m+1)/2)/sqrt(pi) n odd
 =2**(n/2)* (n/2)! n even
```


## Parameters

$\mathbf{n}$ : int or array_like
Calculate $n$ !!. Arrays are only supported with exact set to False. If $n<0$, the return value is 0 .
exact : bool, optional
The result can be approximated rapidly using the gamma-formula above (default). If exact is set to True, calculate the answer exactly using integer arithmetic.

## Returns

nff : float or int
Double factorial of $n$, as an int or a float depending on exact.

## Examples

```
 >>> factorial2(7, exact=False)
```

        array (105.00000000000001)
        >>> factorial2(7, exact=True)
        105L
    scipy.misc.factorialk ( $n, k$, exact=1)
$\mathrm{n}(!!\ldots!)=$ multifactorial of order kk times

## Parameters

n : int, array_like
Calculate multifactorial. Arrays are only supported with exact set to False. If $n<0$, the return value is 0 .
exact : bool, optional
If exact is set to True, calculate the answer exactly using integer arithmetic.

## Returns

val : int
Multi factorial of $n$.

## Raises

## NotImplementedError :

Raises when exact is False

## Examples

```
>>> sc.factorialk(5, 1, exact=True)
120L
>>> sc.factorialk(5, 3, exact=True)
10L
```

scipy.misc.fromimage (im, flatten=0)
Return a copy of a PIL image as a numpy array.

## Parameters

im : PIL image
Input image.
flatten : bool
If true, convert the output to grey-scale.

## Returns

img_array : ndarray
The different colour bands/channels are stored in the third dimension, such that a grey-image is MxN , an RGB-image MxNx 3 and an RGBA-image MxNx4.
scipy.misc.imfilter (arr,ftype)
Simple filtering of an image.

## Parameters

arr : ndarray
The array of Image in which the filter is to be applied.
ftype : str
The filter that has to be applied. Legal values are: 'blur', 'contour', 'detail', 'edge_enhance', 'edge_enhance_more', 'emboss', 'find_edges', 'smooth', 'smooth_more', 'sharpen'.

## Returns

res : nd_array
The array with filter applied.

## Raises

ValueError :
Unknown filter type. . If the filter you are trying to apply is unsupported.
scipy.misc.imread (name, flatten=0)
Read an image file from a filename.

## Parameters

name : str
The file name to be read.
flatten : bool, optional
If True, flattens the color layers into a single gray-scale layer.

## Returns

: nd_array :
The array obtained by reading image.

## Notes

The image is flattened by calling convert(' $F$ ') on the resulting image object.

```
scipy.misc.imresize(arr, size, interp='bilinear', mode=None)
```

Resize an image.

## Parameters

arr : nd_array
The array of image to be resized.
size : int, float or tuple

- int - Percentage of current size.
- float - Fraction of current size.
- tuple - Size of the output image.
interp : string
interpolation to use for re-sizing ('nearest', 'bilinear', 'bicubic' or 'cubic')
mode : :
mode is the PIL image mode (' P ', ' L ', etc.)


## Returns

: nd_array :
The resized array of image.
scipy.misc.imrotate (arr, angle, interp='bilinear')
Rotate an image counter-clockwise by angle degrees.

## Parameters

arr : nd_array
Input array of image to be rotated.
angle : float
The angle of rotation.
interp : str, optional
Interpolation

## Returns

: nd_array :
The rotated array of image.

## Notes

Interpolation methods can be: * 'nearest' : for nearest neighbor * 'bilinear' : for bilinear * 'cubic' : cubic * 'bicubic' : for bicubic
scipy.misc.imsave (name, arr)
Save an array to an image file.

## Parameters

im : PIL image
Input image.
flatten : bool
If true, convert the output to grey-scale.

## Returns

img_array : ndarray

The different colour bands/channels are stored in the third dimension, such that a grey-image is MxN , an RGB-image MxNx 3 and an RGBA-image MxNx4.
scipy.misc.imshow (arr)
Simple showing of an image through an external viewer.
Uses the image viewer specified by the environment variable SCIPY_PIL_IMAGE_VIEWER, or if that is not defined then see, to view a temporary file generated from array data.

## Parameters

arr : ndarray
Array of image data to show.

## Returns

None :

## Examples

```
 >>> a = np.tile(np.arange(255), (255,1))
```

        >>> from scipy import misc
        >>> misc.pilutil.imshow(a)
    scipy.misc.info(object=None, maxwidth=76, output=<open file '<stdout>', mode ' $w$ ' at
Ox7f4cadfec 198>, toplevel = 'scipy')

Get help information for a function, class, or module.

## Parameters

object : object or str, optional
Input object or name to get information about. If object is a numpy object, its docstring is given. If it is a string, available modules are searched for matching objects. If None, information about info itself is returned.
maxwidth : int, optional Printing width.
output : file like object, optional
File like object that the output is written to, default is stdout. The object has to be opened in ' $w$ ' or ' $a$ ' mode.
toplevel : str, optional
Start search at this level.

## See Also:

source, lookfor

## Notes

When used interactively with an object, np.info(obj) is equivalent to help (obj) on the Python prompt or obj? on the IPython prompt.

## Examples

```
>>> np.info(np.polyval)
 polyval(p, x)
 Evaluate the polynomial p at x.
```

When using a string for object it is possible to get multiple results.

```
>>> np.info('fft')
 *** Found in numpy ***
Core FFT routines
 *** Found in numpy.fft ***
 fft(a, n=None, axis=-1)
 *** Repeat reference found in numpy.fft.fftpack ***
 *** Total of 3}\mathrm{ references found. ***
```

scipy.misc.lena()

Get classic image processing example image, Lena, at 8-bit grayscale bit-depth, $512 \times 512$ size.

## Parameters

None :

## Returns

lena : ndarray
Lena image

## Examples

```
>>> import scipy.misc
>>> lena = scipy.misc.lena()
>>> lena.shape
(512, 512)
>>> lena.max()
245
>>> lena.dtype
dtype('int32')
>>> import matplotlib.pyplot as plt
>>> plt.gray()
>>> plt.imshow(lena)
>>> plt.show()
```



Given Taylor series coefficients in an, return a Pade approximation to the function as the ratio of two polynomials
$\mathrm{p} / \mathrm{q}$ where the order of q is m .
scipy.misc.radon (arr, theta=None)
scipy.misc.toimage (arr, high=255, low=0, cmin=None, cmax=None, pal=None, mode $=$ None, channel_axis=None)
Takes a numpy array and returns a PIL image. The mode of the PIL image depends on the array shape, the pal keyword, and the mode keyword.

For 2-D arrays, if pal is a valid ( $\mathrm{N}, 3$ ) byte-array giving the RGB values (from 0 to 255 ) then mode=' P ', otherwise mode='L', unless mode is given as ' F ' or ' I ' in which case a float and/or integer array is made

For 3-D arrays, the channel_axis argument tells which dimension of the
array holds the channel data.
For 3-D arrays if one of the dimensions is 3, the mode is ' RGB '
by default or 'YCbCr' if selected.
if the
The numpy array must be either 2 dimensional or 3 dimensional.
scipy.misc. who (vardict=None)
Print the Numpy arrays in the given dictionary.
If there is no dictionary passed in or vardict is None then returns Numpy arrays in the globals() dictionary (all Numpy arrays in the namespace).

## Parameters

vardict : dict, optional
A dictionary possibly containing ndarrays. Default is globals().

## Returns

out : None
Returns 'None'.

## Notes

Prints out the name, shape, bytes and type of all of the ndarrays present in vardict.

## Examples

```
>>> a = np.arange(10)
>>> b = np.ones(20)
>>> np.who()
```



```
Upper bound on total bytes = 200
>>> d = {'x': np.arange(2.0), 'y': np.arange(3.0), 'txt': 'Some str',
... 'idx':5}
>>> np.who(d)
Name Shape Bytes,==
===
\begin{tabular}{lccc}
y & 3 & 24 & float64 \\
x & 2 & 16 & float64 \\
Upper bound on total bytes \(=\) & 40
\end{tabular}
```

```
scipy.misc.source (object,output=<open file '<stdout>', mode 'w' at 0x7f4cadfec198>)
```

Print or write to a file the source code for a Numpy object.
The source code is only returned for objects written in Python. Many functions and classes are defined in C and will therefore not return useful information.

## Parameters

object : numpy object
Input object. This can be any object (function, class, module, ...).
output : file object, optional
If output not supplied then source code is printed to screen (sys.stdout). File object must be created with either write ' $w$ ' or append 'a' modes.

## See Also:

```
lookfor,info
```


## Examples

```
>>> np.source(np.interp)
In file: /usr/lib/python2.6/dist-packages/numpy/lib/function_base.py
def interp(x, xp, fp, left=None, right=None):
 """.... (full docstring printed)"""
 if isinstance(x, (float, int, number)):
 return compiled_interp([x], xp, fp, left, right).item()
 else:
 return compiled_interp(x, xp, fp, left, right)
```

The source code is only returned for objects written in Python.

```
>>> np.source(np.array)
Not available for this object.
```

scipy.misc.info(object=None, maxwidth=76, output=<open file '<stdout>', mode 'w' at
0x7f4cadfec 198>, toplevel='scipy')

Get help information for a function, class, or module.

## Parameters

object : object or str, optional
Input object or name to get information about. If object is a numpy object, its docstring is given. If it is a string, available modules are searched for matching objects. If None, information about info itself is returned.
maxwidth : int, optional
Printing width.
output : file like object, optional
File like object that the output is written to, default is stdout. The object has to be opened in ' $w$ ' or 'a' mode.
toplevel : str, optional
Start search at this level.

## See Also:

source, lookfor

## Notes

When used interactively with an object, np.info (obj) is equivalent to help (obj) on the Python prompt or obj? on the IPython prompt.

## Examples

```
>>> np.info(np.polyval)
 polyval(p, x)
 Evaluate the polynomial p at x.
```

When using a string for object it is possible to get multiple results.

```
>>> np.info('fft')
 *** Found in numpy ***
Core FFT routines
...
 *** Found in numpy.fft ***
 fft(a, n=None, axis=-1)
...
 *** Repeat reference found in numpy.fft.fftpack ***
 *** Total of 3 references found. ***
scipy.misc.fromimage(im, flatten=0)
Return a copy of a PIL image as a numpy array.
```


## Parameters

im : PIL image
Input image.
flatten : bool
If true, convert the output to grey-scale.

## Returns

img_array : ndarray
The different colour bands/channels are stored in the third dimension, such that a grey-image is MxN , an RGB-image MxNx 3 and an RGBA-image MxNx 4 .
scipy.misc.toimage (arr, high=255, low=0, cmin=None, cmax=None, pal=None, mode=None, channel_axis=None)
Takes a numpy array and returns a PIL image. The mode of the PIL image depends on the array shape, the pal keyword, and the mode keyword.

For 2-D arrays, if pal is a valid ( $\mathrm{N}, 3$ ) byte-array giving the RGB values (from 0 to 255 ) then mode=' P ', otherwise mode=' L ', unless mode is given as ' F ' or ' I ' in which case a float and/or integer array is made

For 3-D arrays, the channel_axis argument tells which dimension of the
array holds the channel data.
For 3-D arrays if one of the dimensions is 3 , the mode is 'RGB'
by default or ' YCbCr ' if selected.
if the
The numpy array must be either 2 dimensional or 3 dimensional.

```
scipy.misc.imsave (name,arr)
```

Save an array to an image file.

## Parameters

im : PIL image
Input image.
flatten : bool
If true, convert the output to grey-scale.

## Returns

img_array : ndarray
The different colour bands/channels are stored in the third dimension, such that a grey-image is MxN , an RGB-image MxNx 3 and an RGBA-image MxNx 4 .
scipy.misc.imread (name, flatten=0)
Read an image file from a filename.

## Parameters

name : str
The file name to be read.
flatten : bool, optional
If True, flattens the color layers into a single gray-scale layer.

## Returns

: nd_array :
The array obtained by reading image.

## Notes

The image is flattened by calling convert(' $F$ ') on the resulting image object.

```
scipy.misc.bytescale (data, cmin=None, cmax=None, high=255,low=0)
 Byte scales an array (image).
 Parameters
 data : ndarray
 PIL image data array.
 cmin : Scalar
 Bias scaling of small values, Default is data.min().
 cmax : scalar
 Bias scaling of large values, Default is data.max().
 high : scalar
 Scale max value to high.
 low : scalar
 Scale min value to low.
```


## Returns

img_array : ndarray
Bytescaled array.

## Examples

```
>>> img = array([[91.06794177, 3.39058326, 84.4221549],
 [73.88003259, 80.91433048, 4.88878881],
 [51.53875334, 34.45808177, 27.5873488]])
>>> bytescale(img)
array([[255, 0, 236],
 [205, 225, 4],
 [140, 90, 70]], dtype=uint8)
>>> bytescale(img, high=200, low=100)
array([[200, 100, 192],
 [180, 188, 102],
 [155, 135, 128]], dtype=uint8)
>>> bytescale(img, cmin=0, cmax=255)
array([[91, 3, 84],
 [74, 81, 5],
 [52, 34, 28]], dtype=uint8)
```

scipy.misc.imrotate (arr, angle, interp='bilinear')

Rotate an image counter-clockwise by angle degrees.

## Parameters

arr : nd_array
Input array of image to be rotated.
angle : float
The angle of rotation.
interp : str, optional
Interpolation

## Returns

: nd_array :
The rotated array of image.

## Notes

Interpolation methods can be: * 'nearest' : for nearest neighbor * 'bilinear' : for bilinear * 'cubic' : cubic * 'bicubic' : for bicubic

```
scipy.misc.imresize(arr, size, interp='bilinear', mode=None)
```

Resize an image.

## Parameters

arr : nd_array
The array of image to be resized.
size : int, float or tuple

- int - Percentage of current size.
- float - Fraction of current size.
- tuple - Size of the output image.
interp : string
interpolation to use for re-sizing ('nearest', 'bilinear', 'bicubic' or 'cubic')
mode : :
mode is the PIL image mode ('P', 'L', etc.)


## Returns

: nd_array :
The resized array of image.
scipy.misc.imshow (arr)
Simple showing of an image through an external viewer.
Uses the image viewer specified by the environment variable SCIPY_PIL_IMAGE_VIEWER, or if that is not defined then see, to view a temporary file generated from array data.

## Parameters

arr : ndarray
Array of image data to show.

## Returns

None :

## Examples

>>> a = np.tile(np.arange(255), (255,1))
>>> from scipy import misc
>>> misc.pilutil.imshow(a)
scipy.misc.imfilter (arr, ftype)
Simple filtering of an image.
Parameters
arr : ndarray
The array of Image in which the filter is to be applied.
ftype : str
The filter that has to be applied. Legal values are: 'blur', 'contour', 'detail', 'edge_enhance', 'edge_enhance_more', 'emboss', 'find_edges', 'smooth', 'smooth_more', 'sharpen'.

## Returns

res : nd_array
The array with filter applied.

## Raises

ValueError :
Unknown filter type. . If the filter you are trying to apply is unsupported.
scipy.misc.factorial ( $n$, exact $=0$ )
The factorial function, $\mathrm{n}!=$ special.gamma $(\mathrm{n}+1)$.
If exact is 0 , then floating point precision is used, otherwise exact long integer is computed.

- Array argument accepted only for exact=0 case.
-If $\mathrm{n}<0$, the return value is 0 .


## Parameters

$\mathbf{n}$ : int or array_like of ints
Calculate n!. Arrays are only supported with exact set to False. If $n<0$, the return value is 0 .
exact : bool, optional
The result can be approximated rapidly using the gamma-formula above. If exact is set to True, calculate the answer exactly using integer arithmetic. Default is False.

## Returns

nf : float or int
Factorial of $n$, as an integer or a float depending on exact.

## Examples

```
>>> arr = np.array([3,4,5])
>>> sc.factorial(arr, exact=False)
array([6., 24., 120.])
>>> sc.factorial(5, exact=True)
120L
scipy.misc.factorial2(n, exact=False)
Double factorial.
```

This is the factorial with every second value skipped, i.e., $7!!=7 * 5 * 3 * 1$. It can be approximated numerically as:

```
n!! = special.gamma(n/2+1)*2**((m+1)/2)/sqrt(pi) n odd
 =2**(n/2) * (n/2)! n even
```


## Parameters

$\mathbf{n}$ : int or array_like
Calculate n!!. Arrays are only supported with exact set to False. If $n<0$, the return value is 0 .
exact : bool, optional
The result can be approximated rapidly using the gamma-formula above (default). If exact is set to True, calculate the answer exactly using integer arithmetic.

## Returns

nff : float or int
Double factorial of $n$, as an int or a float depending on exact.

## Examples

```
>>> factorial2(7, exact=False)
array(105.00000000000001)
>>> factorial2(7, exact=True)
105L
scipy.misc.factorialk(n,k,exact=1)
 n(!!...!) = multifactorial of order k k times
```


## Parameters

n : int, array_like
Calculate multifactorial. Arrays are only supported with exact set to False. If $n<0$, the return value is 0 .
exact : bool, optional
If exact is set to True, calculate the answer exactly using integer arithmetic.

## Returns

val : int
Multi factorial of $n$.
Raises
NotImplementedError :
Raises when exact is False

## Examples

```
>>> sc.factorialk(5, 1, exact=True)
120L
>>> sc.factorialk(5, 3, exact=True)
10L
```

scipy.misc. $\operatorname{comb}(N, k$, exact $=0)$
The number of combinations of N things taken k at a time. This is often expressed as " N choose k ".

## Parameters

$\mathbf{N}$ : int, array
Number of things.
$\mathbf{k}$ : int, array
Number of elements taken.
exact : int, optional
If exact is 0 , then floating point precision is used, otherwise exact long integer is computed.

## Returns

val : int, array
The total number of combinations.

## Notes

- Array arguments accepted only for exact=0 case.
-If $\mathrm{k}>\mathrm{N}, \mathrm{N}<0$, or $\mathrm{k}<0$, then a 0 is returned.


## Examples

```
>>> k = np.array([3, 4])
>>> n = np.array([10, 10])
>>> sc.comb(n, k, exact=False)
array([120., 210.])
>>> sc.comb(10, 3, exact=True)
120L
```

scipy.misc.central_diff_weights ( $N p$, ndiv=1)
Return weights for an Np-point central derivative of order ndiv assuming equally-spaced function points.
If weights are in the vector $w$, then derivative is $w[0] * f(x-h o * d x)+\ldots+w[-1] * f(x+h 0 * d x)$

## Notes

Can be inaccurate for large number of points.
scipy.misc.derivative (func, $x 0, d x=1.0, n=1, \arg s=()$, order $=3)$
Find the n -th derivative of a function at point x 0 .
Given a function, use a central difference formula with spacing $d x$ to compute the n-th derivative at $x 0$.

## Parameters

func : function
Input function.
$\mathbf{x 0}$ : float
The point at which nth derivative is found.
dx : int, optional
Spacing.
$\mathbf{n}$ : int, optional
Order of the derivative. Default is 1.
args : tuple, optional
Arguments
order : int, optional
Number of points to use, must be odd.

## Notes

Decreasing the step size too small can result in round-off error.

## Examples

```
>>> def x2(x):
... return x*x
...
>>> derivative(x2, 2)
4.0
```

scipy.misc.pade (an, m)

Given Taylor series coefficients in an, return a Pade approximation to the function as the ratio of two polynomials $\mathrm{p} / \mathrm{q}$ where the order of q is m .
scipy.misc.lena()
Get classic image processing example image, Lena, at 8-bit grayscale bit-depth, $512 \times 512$ size.

## Parameters

None :

## Returns

lena : ndarray
Lena image

## Examples

```
>>> import scipy.misc
>>> lena = scipy.misc.lena()
>>> lena.shape
(512, 512)
>>> lena.max()
245
```

```
>>> lena.dtype
dtype('int32')
>>> import matplotlib.pyplot as plt
>>> plt.gray()
>>> plt.imshow(lena)
>>> plt.show()
```



### 3.10 Multi-dimensional image processing (scipy.ndimage)

Functions for multi-dimensional image processing.

### 3.10.1 Filters scipy.ndimage.filters

| convolve(input, weights[, output, mode, ...]) | Multi-dimensional convolution. |
| :---: | :---: |
| convolve1d(input, weights[, axis, output, ...]) | Calculate a one-dimensional convolution along the given axis. |
| correlate(input, weights[, output, mode, ...]) | Multi-dimensional correlation. |
| correlate1d(input, weights[, axis, output, ...]) | Calculate a one-dimensional correlation along the given axis. |
| ```gaussian_filter(input, sigma[, order, ...])``` | Multi-dimensional Gaussian filter. |
| gaussian_filterld(input, sigma[, axis, ...]) | One-dimensional Gaussian filter. |
| gaussian_gradient_magnitud sigma[, ...]) | iffalc,ulate a multidimensional gradient magnitude using gaussian derivatives. |
| ```gaussian_laplace(input, sigma[, output, ...])``` | Calculate a multidimensional laplace filter using gaussian second derivatives. |
| ```generic_filter(input, function[, size, ...])``` | Calculates a multi-dimensional filter using the given function. |
| generic_filterld(input, function, filter_size) | Calculate a one-dimensional filter along the given axis. |
| generic_gradient_magnitud derivative) | Gualculate a gradient magnitude using the provided function for the gradient. |
| generic_laplace(input, derivative2[, ...]) | Calculate a multidimensional laplace filter using the provided second derivative function. |
| laplace(input[, output, mode, cval]) | Calculate a multidimensional laplace filter using an estimation for the second derivative based on differences. |
| maximum_filter(input[, size, footprint, ...]) | Calculates a multi-dimensional maximum filter. |
| maximum_filterld(input, size[, axis, ...]) | Calculate a one-dimensional maximum filter along the given axis. |
| median_filter(input[, size, footprint, ...]) | Calculates a multi-dimensional median filter. |
| minimum_filter(input[, size, footprint, ...]) | Calculates a multi-dimensional minimum filter. |
| minimum_filterld(input, size[, axis, ...]) | Calculate a one-dimensional minimum filter along the given axis. |
| percentile_filter(input, percentile[, size, ...]) | Calculates a multi-dimensional percentile filter. |
| prewitt(input[, axis, output, mode, cval]) | Calculate a Prewitt filter. |
| rank_filter(input, rank[, size, footprint, ...]) | Calculates a multi-dimensional rank filter. |
| sobel(input[, axis, output, mode, cval]) | Calculate a Sobel filter. |
| uniform_filter(input[, size, output, mode, ...]) | Multi-dimensional uniform filter. |
| $\begin{aligned} & \text { uniform_filter1d(input, size[, } \\ & \text { axis, ...]) } \end{aligned}$ | Calculate a one-dimensional uniform filter along the given axis. |
| scipy.ndimage.filters.convolve (input, weights, output=None, mode='reflect', cval=0.0, ori- $\operatorname{gin}=0)$ <br> Multi-dimensional convolution. |  |

The array is convolved with the given kernel.

## Parameters

input : array_like
Input array to filter.
weights : array_like
Array of weights, same number of dimensions as input
output : ndarray, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap' \}, optional
the mode parameter determines how the array borders are handled. For 'constant' mode, values beyond borders are set to be cval. Default is 'reflect'.
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
origin : scalar, optional
The origin parameter controls the placement of the filter. Default is 0 .

## Returns

result : ndarray
The result of convolution of input with weights.

## See Also:

## correlate

Correlate an image with a kernel.

## Notes

Each value in result is $C_{i}=\sum_{j} I_{i+j-k} W_{j}$, where W is the weights kernel, j is the $\mathrm{n}-\mathrm{D}$ spatial index over $W$, I is the input and k is the coordinate of the center of W , specified by origin in the input parameters.

## Examples

Perhaps the simplest case to understand is mode=' constant', cval=0.0, because in this case borders (i.e. where the weights kernel, centered on any one value, extends beyond an edge of input.

```
>>> a = np.array([[1, 2, 0, 0],
.... [5, 3, 0, 4],
.... [0, 0, 0, 7],
.... [9, 3, 0, 0]])
>>> b = np.array([[1,1,1],[1,1,0],[1,0,0]])
>>> from scipy import ndimage
>>> ndimage.convolve(a, k, mode='constant', cval=0.0)
array([[11, 10, 7, 4],
 [10, 3, 11, 11],
 [15, 12, 14, 7],
 [12, 3, 7, 0]])
```

Setting cval=1.0 is equivalent to padding the outer edge of input with 1.0 's (and then extracting only the original region of the result).

```
>>> ndimage.convolve(a, k, mode='constant', cval=1.0)
array([[13, 11, 8, 7],
 [11, 3, 11, 14],
 [16, 12, 14, 10],
 [15, 6, 10, 5]])
```

With mode='reflect' (the default), outer values are reflected at the edge of input to fill in missing values.

```
>>> b = np.array([[[2, 0, 0],
 [1, 0, 0],
 [0, 0, 0]])
>>> k = np.array([[0,1,0],[0,1,0],[0,1,0]])
array([[5, 0, 0],
 [3, 0, 0],
 [1, 0, 0]])
```

This includes diagonally at the corners.

```
>>> k = np.array([[1,0,0],[0,1,0],[0,0,1]])
>>> ndimage.convolve(b, k)
array([[4, 2, 0],
 [3, 2, 0],
 [1, 1, 0]])
```

With mode=' nearest', the single nearest value in to an edge in input is repeated as many times as needed to match the overlapping weights.

```
>>> c = np.array([[2, 0, 1],
 [1, 0, 0],
 [0, 0, 0]])
>>> k = np.array([[0, 1, 0],
 [0, 1, 0],
 [0, 1, 0],
 [0, 1, 0],
 [0, 1, 0]])
```

>>> ndimage.convolve(c, k, mode='nearest')
array([[7, 0, 3],
$[5,0,2]$,
$[3,0,1]])$

```
scipy.ndimage.filters.convolve1d(input, weights, axis=-1, output=None, mode='reflect',
 cval=0.0, origin=0)
```

Calculate a one-dimensional convolution along the given axis.
The lines of the array along the given axis are convolved with the given weights.

```
Parameters
 input : array-like
 input array to filter
 weights : ndarray
 one-dimensional sequence of numbers
 axis : integer, optional
 axis of input along which to calculate. Default is -1
 output : array, optional
```

The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap'\}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
origin : scalar, optional
The "origin" parameter controls the placement of the filter. Default 0 :
scipy.ndimage.filters.correlate (input, weights, output=None, mode='reflect', cval=0.0, origin=0)
Multi-dimensional correlation.
The array is correlated with the given kernel.

## Parameters

input : array-like
input array to filter
weights : ndarray
array of weights, same number of dimensions as input
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap'\}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0

## See Also:

convolve
Convolve an image with a kernel.
scipy.ndimage.filters.correlate1d(input, weights, axis=-1, output=None, mode='reflect', cval $=0.0$, origin $=0$ )
Calculate a one-dimensional correlation along the given axis.
The lines of the array along the given axis are correlated with the given weights.

## Parameters

input : array-like
input array to filter
weights : array
one-dimensional sequence of numbers
axis : integer, optional
axis of input along which to calculate. Default is -1
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap'\}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
origin : scalar, optional
The 'origin'" parameter controls the placement of the filter. Default 0 :

```
scipy.ndimage.filters.gaussian_filter(input, sigma, order=0, output=None, mode='reflect',
```

    cval=0.0)
    Multi-dimensional Gaussian filter.

## Parameters

input : array-like
input array to filter
sigma : scalar or sequence of scalars
standard deviation for Gaussian kernel. The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes.
order : $\{0,1,2,3\}$ or sequence from same set, optional
The order of the filter along each axis is given as a sequence of integers, or as a single number. An order of 0 corresponds to convolution with a Gaussian kernel. An order of 1,2 , or 3 corresponds to convolution with the first, second or third derivatives of a Gaussian. Higher order derivatives are not implemented
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap' \}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0

## Notes

The multi-dimensional filter is implemented as a sequence of one-dimensional convolution filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the results may be imprecise because intermediate results may be stored with insufficient precision.

```
scipy.ndimage.filters.gaussian_filter1d(input, sigma, axis=-1, order=0, output=None,
 mode='reflect', cval=0.0)
```

One-dimensional Gaussian filter.

```
 Parameters
 input : array-like
 input array to filter
```

sigma : scalar
standard deviation for Gaussian kernel
axis : integer, optional
axis of input along which to calculate. Default is -1
order : $\{0,1,2,3\}$, optional
An order of 0 corresponds to convolution with a Gaussian kernel. An order of 1, 2, or 3 corresponds to convolution with the first, second or third derivatives of a Gaussian. Higher order derivatives are not implemented
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap' \}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0

```
scipy.ndimage.filters.gaussian_gradient_magnitude(input, sigma, output=None,
 mode='reflect', cval=0.0)
```

Calculate a multidimensional gradient magnitude using gaussian derivatives.

## Parameters

input : array-like
input array to filter
sigma : scalar or sequence of scalars
The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes..
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap' \}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0

```
scipy.ndimage.filters.gaussian_laplace(input, sigma, output=None, mode='reflect',
```

                            cval=0.0)
    Calculate a multidimensional laplace filter using gaussian second derivatives.

## Parameters

input : array-like
input array to filter
sigma : scalar or sequence of scalars
The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes..
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap' \}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
scipy.ndimage.filters.generic_filter(input, function, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0, extra_arguments=(), extra_keywords=None)
Calculates a multi-dimensional filter using the given function.
At each element the provided function is called. The input values within the filter footprint at that element are passed to the function as a 1D array of double values.

## Parameters

input : array-like
input array to filter
function : callable
function to apply at each element
size : scalar or tuple, optional
See footprint, below
footprint : array, optional
Either size or footprint must be defined. size gives the shape that is taken from the input array, at every element position, to define the input to the filter function. footprint is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus size $=(n, m)$ is equivalent to footprint $=n p$. ones $((n, m))$. We adjust size to the number of dimensions of the input array, so that, if the input array is shape $(10,10,10)$, and size is 2 , then the actual size used is $(2,2,2)$.
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap' \}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
origin : scalar, optional
The 'origin" parameter controls the placement of the filter. Default 0 :
extra_arguments : sequence, optional
Sequence of extra positional arguments to pass to passed function
extra_keywords : dict, optional
dict of extra keyword arguments to pass to passed function
scipy.ndimage.filters.generic_filterld(input, function, filter_size, axis=-1, output=None, mode='reflect', cval=0.0, origin=0, extra_arguments=(), extra_keywords=None)
Calculate a one-dimensional filter along the given axis.
generic_filter1d iterates over the lines of the array, calling the given function at each line. The arguments of the line are the input line, and the output line. The input and output lines are 1D double arrays. The input line is extended appropriately according to the filter size and origin. The output line must be modified in-place with the result.

## Parameters <br> input : array-like <br> input array to filter <br> function : callable

function to apply along given axis
filter_size : scalar
length of the filter
axis : integer, optional
axis of input along which to calculate. Default is -1
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap'\}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
origin : scalar, optional
The "origin" parameter controls the placement of the filter. Default 0 :
extra_arguments : sequence, optional
Sequence of extra positional arguments to pass to passed function
extra_keywords : dict, optional
dict of extra keyword arguments to pass to passed function

```
scipy.ndimage.filters.generic_gradient_magnitude(input, derivative, output=None,
 mode='reflect', cval=0.0,
 extra_arguments=(), ex-
 tra_keywords=None)
```

Calculate a gradient magnitude using the provided function for the gradient.

```
Parameters
 input : array-like
 input array to filter
 derivative : callable
```


## Callable with the following signature::

## derivative(input, axis, output, mode, cval,

*extra_arguments, **extra_keywords)
See extra_arguments, extra_keywords below derivative can assume that input and output are ndarrays. Note that the output from derivative is modified inplace; be careful to copy important inputs before returning them.
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap' \}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
extra_keywords : dict, optional
dict of extra keyword arguments to pass to passed function
extra_arguments : sequence, optional
Sequence of extra positional arguments to pass to passed function
scipy.ndimage.filters.generic_laplace(input, derivative 2 , output=None, mode='reflect', cval=0.0, extra_arguments $=($ ), extra_keywords=None)
Calculate a multidimensional laplace filter using the provided second derivative function.

## Parameters

input : array-like
input array to filter
derivative2 : callable

## Callable with the following signature::

## derivative2(input, axis, output, mode, cval, *extra_arguments, **extra_keywords)

See extra_arguments, extra_keywords below
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap'\}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
extra_keywords : dict, optional
dict of extra keyword arguments to pass to passed function
extra_arguments : sequence, optional
Sequence of extra positional arguments to pass to passed function
scipy.ndimage.filters.laplace (input, output=None, mode='reflect', cval=0.0)
Calculate a multidimensional laplace filter using an estimation for the second derivative based on differences.

```
 Parameters
 input : array-like
 input array to filter
 output : array, optional
The output parameter passes an array in which to store the filter output.
 mode : { 'reflect','constant','nearest','mirror', 'wrap'}, optional
 The mode parameter determines how the array borders are handled, where cval is
 the value when mode is equal to 'constant'. Default is 'reflect'
 cval : scalar, optional
 Value to fill past edges of input if mode is 'constant'. Default is 0.0
scipy.ndimage.filters.maximum_filter(input, size=None, footprint=None, output=None,
 mode='reflect', cval=0.0, origin=0)
Calculates a multi-dimensional maximum filter.
```


## Parameters

```
input : array-like
input array to filter
size : scalar or tuple, optional
```

See footprint, below
footprint : array, optional
Either size or footprint must be defined. size gives the shape that is taken from the input array, at every element position, to define the input to the filter function. footprint is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus size $=(n, m)$ is equivalent to footprint $=n p$. ones $((n, m))$. We adjust size to the number of dimensions of the input array, so that, if the input array is shape $(10,10,10)$, and size is 2 , then the actual size used is $(2,2,2)$.
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap'\}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
origin : scalar, optional
The 'origin"' parameter controls the placement of the filter. Default 0 :
scipy.ndimage.filters.maximum_filter1d(input, size, axis=-1, output=None, mode='reflect',

$$
\text { cval }=0.0, \text { origin }=0)
$$

Calculate a one-dimensional maximum filter along the given axis.
The lines of the array along the given axis are filtered with a maximum filter of given size.

## Parameters

input : array-like
input array to filter
size : int
length along which to calculate 1D maximum
axis : integer, optional
axis of input along which to calculate. Default is -1
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap' \}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
origin : scalar, optional
The 'origin'" parameter controls the placement of the filter. Default 0 :
scipy.ndimage.filters.median_filter(input, size=None, footprint=None, output=None, mode $=$ 'reflect', cval $=0.0$, origin $=0$ )
Calculates a multi-dimensional median filter.

## Parameters

input : array-like
input array to filter
size : scalar or tuple, optional
See footprint, below
footprint : array, optional
Either size or footprint must be defined. size gives the shape that is taken from the input array, at every element position, to define the input to the filter function. footprint is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus size $=(n, m)$ is equivalent to footprint=np.ones $((n, m))$. We adjust size to the number of dimensions of the input array, so that, if the input array is shape $(10,10,10)$, and size is 2 , then the actual size used is $(2,2,2)$.
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect',' constant','nearest','mirror', 'wrap' \}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
origin : scalar, optional

The origin parameter controls the placement of the filter. Default 0
scipy.ndimage.filters.minimum_filter (input, size=None, footprint=None, output=None, mode $=$ 'reflect', cval $=0.0$, , rigin $=0$ )
Calculates a multi-dimensional minimum filter.
Parameters
input : array-like
input array to filter
size : scalar or tuple, optional
See footprint, below
footprint : array, optional
Either size or footprint must be defined. size gives the shape that is taken from the input array, at every element position, to define the input to the filter function. footprint is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus size $=(n, m)$ is equivalent to footprint=np.ones $((n, m))$. We adjust size to the number of dimensions of the input array, so that, if the input array is shape $(10,10,10)$, and size is 2 , then the actual size used is $(2,2,2)$.
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap' \}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
origin : scalar, optional
The 'origin" parameter controls the placement of the filter. Default 0 :
scipy.ndimage.filters.minimum_filter1d(input, size, axis=-1, output=None, mode='reflect', cval=0.0, origin=0)
Calculate a one-dimensional minimum filter along the given axis.
The lines of the array along the given axis are filtered with a minimum filter of given size.

## Parameters

input : array-like
input array to filter
size : int
length along which to calculate 1D minimum
axis : integer, optional
axis of input along which to calculate. Default is -1
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap' \}, optional

The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
origin : scalar, optional
The "origin" parameter controls the placement of the filter. Default 0 :
scipy.ndimage.filters.percentile_filter(input, percentile, size=None, footprint=None, output $=$ None, mode $=$ 'reflect', cval $=0.0$, origin $=0$ )
Calculates a multi-dimensional percentile filter.

## Parameters

input : array-like
input array to filter
percentile : scalar
The percentile parameter may be less then zero, i.e., percentile $=-20$ equals percentile $=80$
size : scalar or tuple, optional
See footprint, below
footprint : array, optional
Either size or footprint must be defined. size gives the shape that is taken from the input array, at every element position, to define the input to the filter function. footprint is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus size $=(n, m)$ is equivalent to footprint=np.ones $((n, m))$. We adjust size to the number of dimensions of the input array, so that, if the input array is shape $(10,10,10)$, and size is 2 , then the actual size used is $(2,2,2)$.
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap' \}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
origin : scalar, optional
The "origin" parameter controls the placement of the filter. Default $\mathbf{0}$ :
scipy.ndimage.filters.prewitt (input, axis=-1, output=None, mode='reflect', cval=0.0)
Calculate a Prewitt filter.
Parameters
input : array-like
input array to filter
axis : integer, optional
axis of input along which to calculate. Default is -1
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap' \}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
scipy.ndimage.filters.rank_filter(input, rank, size=None, footprint=None, output=None, mode $=$ 'reflect', cval $=0.0$, origin $=0$ )
Calculates a multi-dimensional rank filter.

## Parameters

input : array-like
input array to filter
rank: integer
The rank parameter may be less then zero, i.e., rank $=-1$ indicates the largest element.
size : scalar or tuple, optional
See footprint, below
footprint : array, optional
Either size or footprint must be defined. size gives the shape that is taken from the input array, at every element position, to define the input to the filter function. footprint is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus size $=(n, m)$ is equivalent to footprint=np.ones $((n, m))$. We adjust size to the number of dimensions of the input array, so that, if the input array is shape $(10,10,10)$, and size is 2 , then the actual size used is $(2,2,2)$.
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap' \}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
origin : scalar, optional
The 'origin"' parameter controls the placement of the filter. Default 0 :
scipy.ndimage.filters.sobel (input, axis=-1, output=None, mode='reflect', cval=0.0)
Calculate a Sobel filter.
Parameters
input : array-like
input array to filter
axis : integer, optional
axis of input along which to calculate. Default is -1
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap' \}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
scipy.ndimage.filters.uniform_filter(input, size $=3$, output=None, mode='reflect', cval=0.0, origin=0)
Multi-dimensional uniform filter.

## Parameters

input : array-like
input array to filter
size : int or sequence of ints
The sizes of the uniform filter are given for each axis as a sequence, or as a single number, in which case the size is equal for all axes.
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap' \}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
origin : scalar, optional
The 'origin'" parameter controls the placement of the filter. Default 0 :

## Notes

The multi-dimensional filter is implemented as a sequence of one-dimensional uniform filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the results may be imprecise because intermediate results may be stored with insufficient precision.

```
scipy.ndimage.filters.uniform_filterld(input, size, axis=-1, output=None, mode='reflect',
 cval=0.0, origin=0)
Calculate a one-dimensional uniform filter along the given axis.
```

The lines of the array along the given axis are filtered with a uniform filter of given size.

```
Parameters
 input : array-like
 input array to filter
 size : integer
 length of uniform filter
 axis : integer, optional
```

axis of input along which to calculate. Default is -1
output : array, optional
The output parameter passes an array in which to store the filter output.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap' \}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0
origin : scalar, optional
The 'origin"' parameter controls the placement of the filter. Default 0 :

### 3.10.2 Fourier filters scipy.ndimage.fourier

\[

\]

## Parameters

input : array_like
The input array.
size : float or sequence
The size of the box used for filtering. If a float, size is the same for all axes. If a sequence, size has to contain one value for each axis.
n : int, optional
If $n$ is negative (default), then the input is assumed to be the result of a complex fft. If $n$ is larger than or equal to zero, the input is assumed to be the result of a real fft , and $n$ gives the length of the array before transformation along the real transform direction.
axis : int, optional
The axis of the real transform.
output : ndarray, optional
If given, the result of filtering the input is placed in this array. None is returned in this case.

## Returns

return_value : ndarray or None
The filtered input. If output is given as a parameter, None is returned.

## Notes

This function is implemented for arrays of rank 1,2 , or 3 .
scipy.ndimage.fourier.fourier_gaussian (input, sigma, $n=-1$, axis=- 1 , output=None)
Multi-dimensional Gaussian fourier filter.
The array is multiplied with the fourier transform of a Gaussian kernel.

## Parameters

input : array_like
The input array.
sigma : float or sequence
The sigma of the Gaussian kernel. If a float, sigma is the same for all axes. If a sequence, sigma has to contain one value for each axis.
$\mathbf{n}$ : int, optional
If $n$ is negative (default), then the input is assumed to be the result of a complex fft. If $n$ is larger than or equal to zero, the input is assumed to be the result of a real fft, and $n$ gives the length of the array before transformation along the real transform direction.
axis : int, optional
The axis of the real transform.
output : ndarray, optional
If given, the result of filtering the input is placed in this array. None is returned in this case.

## Returns

return_value : ndarray or None
The filtered input. If output is given as a parameter, None is returned.

```
scipy.ndimage.fourier.fourier_shift(input, shift, n=-1, axis=-1, output=None)
```

Multi-dimensional fourier shift filter.
The array is multiplied with the fourier transform of a shift operation.

## Parameters <br> input : array_like

The input array.
shift : float or sequence
The size of the box used for filtering. If a float, shift is the same for all axes. If a sequence, shift has to contain one value for each axis.
$\mathbf{n}$ : int, optional
If $n$ is negative (default), then the input is assumed to be the result of a complex fft . If $n$ is larger than or equal to zero, the input is assumed to be the result of a real fft , and $n$ gives the length of the array before transformation along the real transform direction.
axis : int, optional
The axis of the real transform.
output : ndarray, optional

If given, the result of shifting the input is placed in this array. None is returned in this case.

## Returns

return_value : ndarray or None
The shifted input. If output is given as a parameter, None is returned.
scipy.ndimage.fourier.fourier_uniform(input, size, $n=-1$, axis=-1, output=None)
Multi-dimensional uniform fourier filter.
The array is multiplied with the fourier transform of a box of given size.
Parameters
input : array_like
The input array.
size : float or sequence
The size of the box used for filtering. If a float, size is the same for all axes. If a sequence, size has to contain one value for each axis.
n: int, optional
If $n$ is negative (default), then the input is assumed to be the result of a complex fft. If $n$ is larger than or equal to zero, the input is assumed to be the result of a real fft , and $n$ gives the length of the array before transformation along the real transform direction.
axis : int, optional
The axis of the real transform.
output : ndarray, optional
If given, the result of filtering the input is placed in this array. None is returned in this case.

## Returns

return_value : ndarray or None
The filtered input. If output is given as a parameter, None is returned.

### 3.10.3 Interpolation scipy.ndimage.interpolation

```
affine_transform(input, matrix[, offset, ...]) Apply an affine transformation.
geometric_transform(input, mapping[,...]) Apply an arbritrary geometric transform.
map_coordinates(input, coordinates[,..]) Map the input array to new coordinates by interpolation.
rotate(input, angle[, axes, reshape, ...]) Rotate an array.
shift(input, shift[, output, order, mode, ...]) Shift an array.
spline_filter(input[, order, output]) Multi-dimensional spline filter.
spline_filterld(input[, order, axis, output]) Calculates a one-dimensional spline filter along the given axis.
zoom(input, zoom[, output, order, mode, ...]) Zoom an array.
```

scipy.ndimage.interpolation.affine_transform(input, matrix, offset=0.0, out-
put_shape $=$ None, $\quad$ output $=$ None, or-
der=3, mode='constant', cval=0.0,
prefilter=True)

Apply an affine transformation.

The given matrix and offset are used to find for each point in the output the corresponding coordinates in the input by an affine transformation. The value of the input at those coordinates is determined by spline interpolation of the requested order. Points outside the boundaries of the input are filled according to the given mode.

## Parameters <br> input : ndarray

The input array.
matrix : ndarray
The matrix must be two-dimensional or can also be given as a one-dimensional sequence or array. In the latter case, it is assumed that the matrix is diagonal. A more efficient algorithms is then applied that exploits the separability of the problem.
offset : float or sequence, optional
The offset into the array where the transform is applied. If a float, offset is the same for each axis. If a sequence, offset should contain one value for each axis.
output_shape : tuple of ints, optional
Shape tuple.
output : ndarray or dtype, optional
The array in which to place the output, or the dtype of the returned array.
order : int, optional
The order of the spline interpolation, default is 3 . The order has to be in the range 0-5.
mode : str, optional
Points outside the boundaries of the input are filled according to the given mode ('constant', 'nearest', 'reflect' or 'wrap'). Default is 'constant'.
cval : scalar, optional
Value used for points outside the boundaries of the input if mode=' constant'. Default is 0.0
prefilter : bool, optional
The parameter prefilter determines if the input is pre-filtered with spline_filter before interpolation (necessary for spline interpolation of order > 1). If False, it is assumed that the input is already filtered. Default is True.

## Returns

return_value : ndarray or None
The transformed input. If output is given as a parameter, None is returned.

```
scipy.ndimage.interpolation.geometric_transform(input, mapping, output_shape=None,
 output=None, order=3,
 mode='constant', cval=0.0, pre-
 filter=True, extra_arguments=(),
 extra_keywords={})
```

Apply an arbritrary geometric transform.
The given mapping function is used to find, for each point in the output, the corresponding coordinates in the input. The value of the input at those coordinates is determined by spline interpolation of the requested order.

## Parameters

input : array_like

The input array.
mapping : callable
A callable object that accepts a tuple of length equal to the output array rank, and returns the corresponding input coordinates as a tuple of length equal to the input array rank.
output_shape : tuple of ints
Shape tuple.
output : ndarray or dtype, optional
The array in which to place the output, or the dtype of the returned array.
order : int, optional
The order of the spline interpolation, default is 3 . The order has to be in the range 0-5.
mode : str, optional
Points outside the boundaries of the input are filled according to the given mode ('constant', 'nearest', 'reflect' or 'wrap'). Default is 'constant'.
cval : scalar, optional
Value used for points outside the boundaries of the input if mode=' constant'. Default is 0.0
prefilter : bool, optional
The parameter prefilter determines if the input is pre-filtered with spline_filter before interpolation (necessary for spline interpolation of order > 1). If False, it is assumed that the input is already filtered. Default is True.
extra_arguments : tuple, optional
Extra arguments passed to mapping.
extra_keywords : dict, optional
Extra keywords passed to mapping.

## Returns

return_value : ndarray or None
The filtered input. If output is given as a parameter, None is returned.

## See Also:

map_coordinates, affine_transform, spline_filterld

## Examples

```
>>> a = np.arange(12.).reshape((4, 3))
>>> def shift_func(output_coords):
... return (output_coords[0] - 0.5, output_coords[1] - 0.5)
...
>>> sp.ndimage.geometric_transform(a, shift_func)
array([[0. , 0. , 0.],
 [0. , 1.362, 2.738],
 [0. , 4.812, 6.187],
 [0. , 8.263, 9.637]])
```

scipy.ndimage.interpolation.map_coordinates (input, coordinates, output=None, order=3,
Map the input array to new coordinates by interpolation.
The array of coordinates is used to find, for each point in the output, the corresponding coordinates in the input. The value of the input at those coordinates is determined by spline interpolation of the requested order.

The shape of the output is derived from that of the coordinate array by dropping the first axis. The values of the array along the first axis are the coordinates in the input array at which the output value is found.

## Parameters <br> input : ndarray

The input array.
coordinates : array_like
The coordinates at which input is evaluated.
output : ndarray or dtype, optional
The array in which to place the output, or the dtype of the returned array.
order : int, optional
The order of the spline interpolation, default is 3 . The order has to be in the range 0-5.
mode : str, optional
Points outside the boundaries of the input are filled according to the given mode ('constant', 'nearest', 'reflect' or 'wrap'). Default is 'constant'.
cval : scalar, optional
Value used for points outside the boundaries of the input if mode=' constant'. Default is 0.0
prefilter : bool, optional
The parameter prefilter determines if the input is pre-filtered with spline_filter before interpolation (necessary for spline interpolation of order > 1). If False, it is assumed that the input is already filtered. Default is True.

## Returns

return_value : ndarray
The result of transforming the input. The shape of the output is derived from that of coordinates by dropping the first axis.

## See Also:

```
spline_filter,geometric_transform, scipy.interpolate
Examples
>>> import scipy.ndimage
>>> a = np.arange(12.).reshape((4, 3))
>>> a
array([[0., 1., 2.],
 [3., 4., 5.],
 [6., 7., 8.],
 [9., 10., 11.]])
>>> sp.ndimage.map_coordinates(a, [[0.5, 2], [0.5, 1]], order=1)
[2. 7.]
```

Above, the interpolated value of $\mathrm{a}[0.5,0.5]$ gives output[0], while $\mathrm{a}[2,1]$ is output[1].

```
>>> inds = np.array([[0.5, 2], [0.5, 4]])
>>> sp.ndimage.map_coordinates(a, inds, order=1, cval=-33.3)
array([2. , -33.3])
>>> sp.ndimage.map_coordinates(a, inds, order=1, mode='nearest')
array([2., 8.])
>>> sp.ndimage.map_coordinates(a, inds, order=1, cval=0, output=bool)
array([True, False], dtype=bool
scipy.ndimage.interpolation.rotate (input, angle, axes=(1,0), reshape=True, output=None, or-
 der=3, mode = 'constant', cval=0.0, prefilter=True)
Rotate an array.
```

The array is rotated in the plane defined by the two axes given by the axes parameter using spline interpolation of the requested order.

## Parameters

input : ndarray
The input array.
angle : float
The rotation angle in degrees.
axes: tuple of 2 ints, optional
The two axes that define the plane of rotation. Default is the first two axes.
reshape : bool, optional
If reshape is true, the output shape is adapted so that the input array is contained completely in the output. Default is True.
output : ndarray or dtype, optional
The array in which to place the output, or the dtype of the returned array.
order : int, optional
The order of the spline interpolation, default is 3 . The order has to be in the range 0-5.
mode : str, optional
Points outside the boundaries of the input are filled according to the given mode ('constant', 'nearest', 'reflect' or 'wrap'). Default is 'constant'.
cval : scalar, optional
Value used for points outside the boundaries of the input if mode=' constant'. Default is 0.0
prefilter : bool, optional
The parameter prefilter determines if the input is pre-filtered with spline_filter before interpolation (necessary for spline interpolation of order $>1$ ). If False, it is assumed that the input is already filtered. Default is True.

## Returns

return_value : ndarray or None
The rotated input. If output is given as a parameter, None is returned.

```
scipy.ndimage.interpolation.shift(input, shift, output=None, order=3, mode='constant',
```

    cval \(=0.0\), prefilter \(=\) True)
    Shift an array.
The array is shifted using spline interpolation of the requested order. Points outside the boundaries of the input are filled according to the given mode.

Parameters
input : ndarray
The input array.
shift : float or sequence, optional
The shift along the axes. If a float, shift is the same for each axis. If a sequence, shift should contain one value for each axis.
output : ndarray or dtype, optional
The array in which to place the output, or the dtype of the returned array.
order : int, optional
The order of the spline interpolation, default is 3 . The order has to be in the range 0-5.
mode : str, optional
Points outside the boundaries of the input are filled according to the given mode ('constant', 'nearest', 'reflect' or 'wrap'). Default is 'constant'.
cval : scalar, optional
Value used for points outside the boundaries of the input if mode=' constant'. Default is 0.0
prefilter : bool, optional
The parameter prefilter determines if the input is pre-filtered with spline_filter before interpolation (necessary for spline interpolation of order $>1$ ). If False, it is assumed that the input is already filtered. Default is True.

## Returns

return_value : ndarray or None
The shifted input. If output is given as a parameter, None is returned.
scipy.ndimage.interpolation.spline_filter(input, order=3, output=<type ‘numpy:float64’>)
Multi-dimensional spline filter.
For more details, see spline_filterld.

## See Also:

spline_filterld

## Notes

The multi-dimensional filter is implemented as a sequence of one-dimensional spline filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the results may be imprecise because intermediate results may be stored with insufficient precision.

```
scipy.ndimage.interpolation.spline_filter1d(input, order=3, axis=-1, output=<type
```

    'numpy.float64'>)
    Calculates a one-dimensional spline filter along the given axis.

The lines of the array along the given axis are filtered by a spline filter. The order of the spline must be $>=2$ and $<=5$.

## Parameters

input : array_like
The input array.
order : int, optional
The order of the spline, default is 3 .
axis : int, optional
The axis along which the spline filter is applied. Default is the last axis.
output : ndarray or dtype, optional
The array in which to place the output, or the dtype of the returned array. Default is numpy.float 64.
Returns
return_value : ndarray or None
The filtered input. If output is given as a parameter, None is returned.

```
scipy.ndimage.interpolation.zoom(input, zoom, output=None, order=3, mode='constant',
 cval=0.0, prefilter=True)
Zoom an array.
```

The array is zoomed using spline interpolation of the requested order.

## Parameters

input : ndarray
The input array.
zoom : float or sequence, optional
The zoom factor along the axes. If a float, zoom is the same for each axis. If a sequence, zoom should contain one value for each axis.
output : ndarray or dtype, optional
The array in which to place the output, or the dtype of the returned array.
order : int, optional
The order of the spline interpolation, default is 3 . The order has to be in the range 0-5.
mode : str, optional
Points outside the boundaries of the input are filled according to the given mode ('constant', 'nearest', 'reflect' or 'wrap'). Default is 'constant'.
cval : scalar, optional
Value used for points outside the boundaries of the input if mode=' constant'. Default is 0.0
prefilter : bool, optional
The parameter prefilter determines if the input is pre-filtered with spline_filter before interpolation (necessary for spline interpolation of order > 1). If False, it is assumed that the input is already filtered. Default is True.

## Returns

return_value : ndarray or None
The zoomed input. If output is given as a parameter, None is returned.

### 3.10.4 Measurements scipy.ndimage.measurements

| center_of_mass(input[, labels, index]) | Calculate the center of mass of the values of an array at labels. |
| :---: | :---: |
| extrema(input[, labels, index]) | Calculate the minimums and maximums of the values of an array at labels, along with their positions. |
| find_objects(input[, max_label]) | Find objects in a labeled array. |
| histogram(input, min, max, bins[, labels, index]) | Calculate the histogram of the values of an array, optionally at labels. |
| label(input[, structure, output]) | Label features in an array. |
| maximum(input[, labels, index]) | Calculate the maximum of the values of an array over labeled regions. |
| maximum_position(input[, <br> labels, index]) | Find the positions of the maximums of the values of an array at labels. |
| mean(input[, labels, index]) | Calculate the mean of the values of an array at labels. |
| minimum(input[, labels, index]) | Calculate the minimum of the values of an array over labeled regions. |
| minimum_position(input[, <br> labels, index]) | Find the positions of the minimums of the values of an array at labels. |
| standard_deviation(input[, labels, index]) | Calculate the standard deviation of the values of an n-D image array, |
| sum(input[, labels, index]) | Calculate the sum of the values of the array. |
| variance(input[, labels, index]) | Calculate the variance of the values of an n-D image array, optionally at |
| ```watershed_ift(input, markers[, structure, ...])``` | Apply watershed from markers using a iterative forest transform algorithm. |

scipy.ndimage.measurements.center_of_mass (input, labels=None, index=None)
Calculate the center of mass of the values of an array at labels.
Parameters input : ndarray

Data from which to calculate center-of-mass.
labels : ndarray, optional
Labels for objects in input, as generated by ndimage. labels. Dimensions must be the same as input.
index : int or sequence of ints, optional
Labels for which to calculate centers-of-mass. If not specified, all labels greater than zero are used.

## Returns

centerofmass : tuple, or list of tuples
Co-ordinates of centers-of-masses.

## Examples

```
>>> a = np.array(([0,0,0,0],
 [0,1,1,0],
 [0,1,1,0],
```

$[0,1,1,0])$ )
>>> from scipy import ndimage
>>> ndimage.measurements.center_of_mass(a)
(2.0, 1.5)

Calculation of multiple objects in an image

```
>>> b = np.array(([0, 1,1,0],
 [0,1,0,0],
 [0,0,0,0],
 [0,0,1,1],
 [0,0,1,1]))
>>> lbl = ndimage.label(b) [0]
>>> ndimage.measurements.center_of_mass(b, lbl, [1,2])
[(0.33333333333333331, 1.3333333333333333), (3.5, 2.5)]
```

scipy.ndimage.measurements.extrema (input, labels=None, index=None)

Calculate the minimums and maximums of the values of an array at labels, along with their positions.

## Parameters

input : ndarray
Nd -image data to process.
labels : ndarray, optional
Labels of features in input. If not None, must be same shape as input.
index : int or sequence of ints, optional
Labels to include in output. If None (default), all values where non-zero labels are used.

## Returns

minimums, maximums : int or ndarray
Values of minimums and maximums in each feature.
min_positions, max_positions : tuple or list of tuples
Each tuple gives the n-D coordinates of the corresponding minimum or maximum.

## See Also:

```
maximum, minimum, maximum_position,minimum_position, center_of_mass
```


## Examples

```
>>> a = np.array([[1, 2, 0, 0],
 [5, 3, 0, 4],
 [0, 0, 0, 7],
 [9, 3, 0, 0]])
>>> from scipy import ndimage
>>> ndimage.extrema(a)
(0, 9, (0, 2), (3, 0))
```

Features to process can be specified using labels and index:

```
>>> lbl, nlbl = ndimage.label(a)
>>> ndimage.extrema(a, lbl, index=np.arange(1, nlbl+1))
(array([1, 4, 3]),
 array([5, 7, 9]),
```

```
[(0.0, 0.0), (1.0, 3.0), (3.0, 1.0)],
[(1.0, 0.0), (2.0, 3.0), (3.0, 0.0)])
```

If no index is given, non-zero labels are processed:

```
>>> ndimage.extrema(a, lbl)
(1, 9, (0, 0), (3, 0))
```

scipy.ndimage.measurements.find_objects (input, max_label=0)

Find objects in a labeled array.

## Parameters

input : ndarray of ints
Array containing objects defined by different labels.
max_label : int, optional
Maximum label to be searched for in input. If max_label is not given, the positions of all objects are returned.

## Returns

object_slices : list of slices
A list of slices, one for the extent of each labeled object. Slices correspond to the minimal parallelepiped that contains the object. If a number is missing, None is returned instead of a slice.

## See Also:

label, center_of_mass

## Notes

This function is very useful for isolating a volume of interest inside a 3-D array, that cannot be "seen through".

## Examples

```
>>> a = np.zeros((6,6), dtype=np.int)
>>> a[2:4, 2:4] = 1
>>> a[4, 4] = 1
>>> a[:2, :3] = 2
>>> a[0, 5] = 3
>>> a
array([[2, 2, 2, 0, 0, 3],
 [2, 2, 2, 0, 0, 0],
 [0, 0, 1, 1, 0, 0],
 [0, 0, 1, 1, 0, 0],
 [0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0]])
>>> ndimage.find_objects(a)
[(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None)), (slice(0, 1,
>>> ndimage.find_objects(a, max_label=2)
[(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None))]
>>> ndimage.find_objects(a == 1, max_label=2)
[(slice(2, 5, None), slice(2, 5, None)), None]
scipy.ndimage.measurements.histogram (input, min, max, bins, labels=None, index=None)
Calculate the histogram of the values of an array, optionally at labels.
Histogram calculates the frequency of values in an array within bins determined by min, max, and bins. Labels and index can limit the scope of the histogram to specified sub-regions within the array.
```


## Parameters

input : array_like
Data for which to calculate histogram.
min, max : int
Minimum and maximum values of range of histogram bins.
bins : int
Number of bins.
labels : array_like, optional
Labels for objects in input. If not None, must be same shape as input.
index : int or sequence of ints, optional
Label or labels for which to calculate histogram. If None, all values where label is greater than zero are used

## Returns

hist : ndarray
Histogram counts.

## Examples

```
>>> a = np.array([[0. , 0.2146, 0.5962, 0.],
 [0. , 0.7778, 0. , 0.],
 [0. , 0. , 0. , 0.],
 [0. , 0. , 0.7181, 0.2787],
 [0. , 0. , 0.6573, 0.3094]])
>>> from scipy import ndimage
>>> ndimage.measurements.histogram(a, 0, 1, 10)
array([13, 0, 2, 1, 0, 1, 1, 2, 0, 0])
```

With labels and no indices, non-zero elements are counted:

```
>>> lbl, nlbl = ndimage.label(a)
>>> ndimage.measurements.histogram(a, 0, 1, 10, lbl)
array([0, 0, 2, 1, 0, 1, 1, 2, 0, 0])
```

Indices can be used to count only certain objects:
>>> ndimage.measurements.histogram(a, 0, 1, 10, lbl, 2)
$\operatorname{array}([0,0,1,1,0,0,1,1,0,0])$
scipy.ndimage.measurements.label (input, structure=None, output=None)

Label features in an array.

## Parameters

input : array_like
An array-like object to be labeled. Any non-zero values in input are counted as features and zero values are considered the background.
structure : array_like, optional
A structuring element that defines feature connections. structure must be symmetric. If no structuring element is provided, one is automatically generated with a squared connectivity equal to one. That is, for a 2-D input array, the default structuring element is:

```
[[0, 1, 0],
 [1,1,1],
 [0,1,0]]
```

output : (None, data-type, array_like), optional
If output is a data type, it specifies the type of the resulting labeled feature array If output is an array-like object, then output will be updated with the labeled features from this function

## Returns

labeled_array : array_like
An array-like object where each unique feature has a unique value
num_features : int
How many objects were found
If 'output' is None or a data type, this function returns a tuple, :
('labeled_array', 'num_features'). :
If 'output' is an array, then it will be updated with values in :
'labeled_array' and only 'num_features' will be returned by this function. :

## See Also:

## find_objects

generate a list of slices for the labeled features (or objects); useful for finding features' position or dimensions

## Examples

Create an image with some features, then label it using the default (cross-shaped) structuring element:

```
>>> a = array([[0,0,1,1,0,0],
... [0,0,0,1,0,0],
\cdots [1,1,0,0,1,0],
\ldots [0,0,0,1,0,0]])
>>> labeled_array, num_features = label(a)
```

Each of the 4 features are labeled with a different integer:

```
>>> print num_features
4
>>> print labeled_array
array([[0, 0, 1, 1, 0, 0],
 [0, 0, 0, 1, 0, 0],
 [2, 2, 0, 0, 3, 0],
 [0, 0, 0, 4, 0, 0]])
```

Generate a structuring element that will consider features connected even if they touch diagonally:

```
>>> s = generate_binary_structure (2,2)
```

or,

```
>>> s = [[1,1,1],
 [1,1,1],
 [1,1,1]]
```

Label the image using the new structuring element:

```
>>> labeled_array, num_features = label(a, structure=s)
```

Show the 2 labeled features (note that features 1,3 , and 4 from above are now considered a single feature):

```
>>> print num_features
2
>>> print labeled_array
array([[0, 0, 1, 1, 0, 0],
 [0, 0, 0, 1, 0, 0],
 [2, 2, 0, 0, 1, 0],
 [0, 0, 0, 1, 0, 0]])
```

scipy.ndimage.measurements.maximum (input, labels=None, index=None)
Calculate the maximum of the values of an array over labeled regions.

## Parameters

input : array_like
Array_like of values. For each region specified by labels, the maximal values of input over the region is computed.
labels : array_like, optional
An array of integers marking different regions over which the maximum value of input is to be computed. labels must have the same shape as input. If labels is not specified, the maximum over the whole array is returned.
index : array_like, optional
A list of region labels that are taken into account for computing the maxima. If index is None, the maximum over all elements where labels is non-zero is returned.

## Returns

output : float or list of floats
List of maxima of input over the regions determined by labels and whose index is in index. If index or labels are not specified, a float is returned: the maximal value of input if labels is None, and the maximal value of elements where labels is greater than zero if index is None.

## See Also:

label, minimum, median, maximum_position, extrema, sum, mean, variance,
standard_deviation

## Notes

The function returns a Python list and not a Numpy array, use np.array to convert the list to an array.

## Examples

```
>>> a = np.arange(16).reshape((4,4))
>>> a
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15]])
>>> labels = np.zeros_like(a)
>>> labels[:2,:2] = 1
>>> labels[2:, 1:3] = 2
```

```
>>> labels
array([[1, 1, 0, 0],
 [1, 1, 0, 0],
 [0, 2, 2, 0],
 [0, 2, 2, 0]])
>>> from scipy import ndimage
>>> ndimage.maximum(a)
15.0
>>> ndimage.maximum(a, labels=labels, index=[1,2])
[5.0, 14.0]
>>> ndimage.maximum(a, labels=labels)
14.0
>>> b = np.array([[1, 2, 0, 0],
 [5, 3, 0, 4],
 [0, 0, 0, 7],
 [9, 3, 0, 0]])
>>> labels, labels_nb = ndimage.label(b)
>>> labels
array([[1, 1, 0, 0],
 [1, 1, 0, 2],
 [0, 0, 0, 2],
 [3, 3, 0, 0]])
>>> ndimage.maximum(b, labels=labels, index=np.arange(1, labels_nb + 1))
[5.0, 7.0, 9.0]
scipy.ndimage.measurements.maximum_position(input,labels=None, index=None)
```

Find the positions of the maximums of the values of an array at labels.
Labels must be None or an array of the same dimensions as the input.
Index must be None, a single label or sequence of labels. If none, all values where label is greater than zero are used.
scipy.ndimage.measurements.mean (input, labels=None, index=None)
Calculate the mean of the values of an array at labels.
Parameters
input : array_like
Array on which to compute the mean of elements over distinct regions.
labels : array_like, optional
Array of labels of same shape, or broadcastable to the same shape as input. All elements sharing the same label form one region over which the mean of the elements is computed.
index : int or sequence of ints, optional
Labels of the objects over which the mean is to be computed. Default is None, in which case the mean for all values where label is greater than 0 is calculated.

## Returns

out : list
Sequence of same length as index, with the mean of the different regions labeled by the labels in index.

## See Also:

```
ndimage.variance, ndimage.standard_deviation, ndimage.minimum,
```

ndimage.maximum, ndimage.sum, ndimage.label

## Examples

```
>>> a = np.arange(25).reshape((5,5))
>>> labels = np.zeros_like(a)
>>> labels[3:5,3:5] = 1
>>> index = np.unique(labels)
>>> labels
array([[0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 1, 1],
 [0, 0, 0, 1, 1]])
>>> index
array([0, 1])
>>> ndimage.mean(a, labels=labels, index=index)
[10.285714285714286, 21.0]
```

scipy.ndimage.measurements.minimum (input, labels=None, index=None)
Calculate the minimum of the values of an array over labeled regions.

## Parameters

input: array_like :
Array_like of values. For each region specified by labels, the minimal values of input over the region is computed.
labels: array_like, optional :
An array_like of integers marking different regions over which the minimum value of input is to be computed. labels must have the same shape as input. If labels is not specified, the minimum over the whole array is returned.
index: array_like, optional :
A list of region labels that are taken into account for computing the minima. If index is None, the minimum over all elements where labels is non-zero is returned.

## Returns

output : float or list of floats
List of minima of input over the regions determined by labels and whose index is in index. If index or labels are not specified, a float is returned: the minimal value of input if labels is None, and the minimal value of elements where labels is greater than zero if index is None.

## See Also:

label, maximum, median, minimum_position, extrema, sum, mean, variance, standard_deviation

## Notes

The function returns a Python list and not a Numpy array, use np.array to convert the list to an array.

## Examples

```
>>> a = np.array([[1, 2, 0, 0],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
```

```
 ... [9, 3, 0, 0]])
 >>> labels, labels_nb = ndimage.label(a)
 >>> labels
 array([[1, 1, 0, 0],
 [1, 1, 0, 2],
 [0, 0, 0, 2],
 [3, 3, 0, 0]])
>>> ndimage.minimum(a, labels=labels, index=np.arange(1, labels_nb + 1))
[1.0, 4.0, 3.0]
>>> ndimage.minimum(a)
0.0
>>> ndimage.minimum(a, labels=labels)
1.0
scipy.ndimage.measurements.minimum_position(input,labels=None, index=None)
Find the positions of the minimums of the values of an array at labels.
Labels must be None or an array of the same dimensions as the input.
```

Index must be None, a single label or sequence of labels. If none, all values where label is greater than zero are used.
scipy.ndimage.measurements.standard_deviation (input, labels=None, index=None)
Calculate the standard deviation of the values of an n-D image array, optionally at specified sub-regions.

## Parameters

input : array_like
Nd-image data to process.
labels : array_like, optional
Labels to identify sub-regions in input. If not None, must be same shape as input.
index : int or sequence of ints, optional
labels to include in output. If None (default), all values where labels is non-zero are used.

## Returns

std : float or ndarray
Values of standard deviation, for each sub-region if labels and index are specified.

## See Also:

label, variance, maximum, minimum, extrema

## Examples

```
>>> a = np.array([[1, 2, 0, 0],
 [5, 3, 0, 4],
 [0, 0, 0, 7],
 [9, 3, 0, 0]])
>>> from scipy import ndimage
>>> ndimage.standard_deviation(a)
2.7585095613392387
```

Features to process can be specified using labels and index:

```
>>> lbl, nlbl = ndimage.label(a)
>>> ndimage.standard_deviation(a, lbl, index=np.arange(1, nlbl+1))
array([1.479, 1.5 , 3.])
```

If no index is given, non-zero labels are processed:
>>> ndimage.standard_deviation(a, lbl)
2.4874685927665499
scipy.ndimage.measurements.sum (input, labels=None, index=None)
Calculate the sum of the values of the array.

## Parameters

input : array_like
Values of input inside the regions defined by labels are summed together.
labels : array_like of ints, optional
Assign labels to the values of the array. Has to have the same shape as input.
index : scalar or array_like, optional
A single label number or a sequence of label numbers of the objects to be measured.

## Returns

output : list
A list of the sums of the values of input inside the regions defined by labels.

## See Also:

mean, median
Examples

```
>>> input = [0,1,2,3]
>>> labels = [1,1,2,2]
>>> sum(input, labels, index=[1,2])
[1.0, 5.0]
```

scipy.ndimage.measurements.variance (input, labels=None, index=None)
Calculate the variance of the values of an n-D image array, optionally at specified sub-regions.

## Parameters

input : array_like
Nd -image data to process.
labels : array_like, optional
Labels defining sub-regions in input. If not None, must be same shape as input.
index : int or sequence of ints, optional
labels to include in output. If None (default), all values where labels is non-zero are used.

## Returns

vars : float or ndarray
Values of variance, for each sub-region if labels and index are specified.

## See Also:

[^4]
## Examples

```
>>> a = np.array([[1, 2, 0, 0],
 [5, 3, 0, 4],
 [0, 0, 0, 7],
 [9, 3, 0, 0]])
>>> from scipy import ndimage
>>> ndimage.variance(a)
7.609375
```

Features to process can be specified using labels and index:

```
>>> lbl, nlbl = ndimage.label(a)
>>> ndimage.variance(a, lbl, index=np.arange(1, nlbl+1))
array([2.1875, 2.25 , 9.])
```

If no index is given, all non-zero labels are processed:

```
>>> ndimage.variance(a, lbl)
6.1875
```

scipy.ndimage.measurements.watershed_ift (input, markers, structure=None, output=None)
Apply watershed from markers using a iterative forest transform algorithm.
Negative markers are considered background markers which are processed after the other markers. A structuring element defining the connectivity of the object can be provided. If none is provided an element is generated iwth a squared connecitiviy equal to one. An output array can optionally be provided.

### 3.10.5 Morphology scipy.ndimage.morphology

```
binary_closing(input[, Multi-dimensional binary closing with the given structuring element.
structure, ...])
binary_dilation(input[, Multi-dimensional binary dilation with the given structuring element.
structure, ...])
binary_erosion(input[, Multi-dimensional binary erosion with a given structuring element.
structure, ...])
binary_fill_holes(input[, Fill the holes in binary objects.
structure, ...])
binary_hit_or_miss(input[, Multi-dimensional binary hit-or-miss transform.
structure1,...])
binary_opening(input[, Multi-dimensional binary opening with the given structuring element.
structure, ...])
binary_propagation(input[, Multi-dimensional binary propagation with the given structuring element.
structure, mask, ...])
black_tophat(input[, size, Multi-dimensional black tophat filter.
footprint, ...])
distance_transform_bf(input[Distance transform function by a brute force algorithm.
metric, ...])
distance_transform_cdt(inputlistance transform for chamfer type of transforms.
metric, ...])
distance_transform_edt(inputExact euclidean distance transform.
sampling, ...])
generate_binary_structure(Gakerate a binary structure for binary morphological operations.
connectivity)
grey_closing(input[, size, Multi-dimensional greyscale closing.
footprint, ...])
grey_dilation(input[, size, Calculate a greyscale dilation, using either a structuring element, or a
footprint, ...])
grey_erosion(input[, size, Calculate a greyscale erosion, using either a structuring element, or a
footprint, ..]) footprint corresponding to a flat structuring element.
grey_opening(input[, size, Multi-dimensional greyscale opening.
footprint, ...])
iterate_structure(structure, Iterate a structure by dilating it with itself.
iterations[,..])
morphological_gradient(inputWulti-dimensional morphological gradient.
size, ...])
morphological_laplace(input[Multi-dimensional morphological laplace.
size, ...])
white_tophat(input[, size, Multi-dimensional white tophat filter.
footprint, ...])
```

scipy.ndimage.morphology.binary_closing (input, structure $=$ None, iterations $=1$, output=None,
origin=0)

Multi-dimensional binary closing with the given structuring element.
The closing of an input image by a structuring element is the erosion of the dilation of the image by the structuring element.

```
Parameters
 input : array_like
```

Binary array_like to be closed. Non-zero (True) elements form the subset to be closed.
structure : array_like, optional
Structuring element used for the closing. Non-zero elements are considered True. If no structuring element is provided an element is generated with a square connectivity equal to one (i.e., only nearest neighbors are connected to the center, diagonallyconnected elements are not considered neighbors).
iterations: \{int, float \}, optional
The dilation step of the closing, then the erosion step are each repeated iterations times (one, by default). If iterations is less than 1, each operations is repeated until the result does not change anymore.
output : ndarray, optional
Array of the same shape as input, into which the output is placed. By default, a new array is created.
origin : int or tuple of ints, optional
Placement of the filter, by default 0 .

## Returns

out : ndarray of bools
Closing of the input by the structuring element.

## See Also:

```
grey_closing, binary_opening, binary_dilation, binary_erosion,
generate_binary_structure
```


## Notes

Closing [R34] is a mathematical morphology operation [R35] that consists in the succession of a dilation and an erosion of the input with the same structuring element. Closing therefore fills holes smaller than the structuring element.

Together with opening (binary_opening), closing can be used for noise removal.

## References

[R34], [R35]

## Examples

```
>>> a = np.zeros((5,5), dtype=np.int)
>>> a[1:-1, 1:-1] = 1; a[2,2] = 0
>>> a
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 0, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])
>>> # Closing removes small holes
>>> ndimage.binary_closing(a).astype(np.int)
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])
>>> # Closing is the erosion of the dilation of the input
>>> ndimage.binary_dilation(a).astype(np.int)
```

```
array([[0, 1, 1, 1, 0],
 [1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1],
 [0, 1, 1, 1, 0]])
>>> ndimage.binary_erosion(ndimage.binary_dilation(a)).astype(np.int)
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])
>>> a = np.zeros((7,7), dtype=np.int)
>>> a[1:6, 2:5] = 1; a[1:3,3] = 0
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 1, 0, 0],
 [0, 0, 1, 0, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> # In addition to removing holes, closing can also
>>> # coarsen boundaries with fine hollows.
>>> ndimage.binary_closing(a).astype(np.int)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.binary_closing(a, structure=np.ones((2,2))).astype(np.int)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
```

scipy.ndimage.morphology.binary_dilation (input, structure=None, iterations $=1$, mask=None,
output=None, border_value $=0, \quad$ origin $=0$,
brute_force=False )

Multi-dimensional binary dilation with the given structuring element.

## Parameters

input : array_like
Binary array_like to be dilated. Non-zero (True) elements form the subset to be dilated.
structure : array_like, optional
Structuring element used for the dilation. Non-zero elements are considered True. If no structuring element is provided an element is generated with a square connectivity equal to one.
iterations: \{int, float\}, optional

The dilation is repeated iterations times (one, by default). If iterations is less than 1 , the dilation is repeated until the result does not change anymore.
mask : array_like, optional
If a mask is given, only those elements with a True value at the corresponding mask element are modified at each iteration.
output : ndarray, optional
Array of the same shape as input, into which the output is placed. By default, a new array is created.
origin : int or tuple of ints, optional
Placement of the filter, by default 0 .
border_value : int (cast to 0 or 1)
Value at the border in the output array.

## Returns

out : ndarray of bools
Dilation of the input by the structuring element.

## See Also:

```
grey_dilation, binary_erosion, binary_closing, binary_opening,
generate_binary_structure
```


## Notes

Dilation [R36] is a mathematical morphology operation [R37] that uses a structuring element for expanding the shapes in an image. The binary dilation of an image by a structuring element is the locus of the points covered by the structuring element, when its center lies within the non-zero points of the image.

## References

[R36], [R37]

## Examples

```
>>> a = np.zeros((5, 5))
>>> a[2, 2] = 1
>>> a
array([[0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.]])
>>> ndimage.binary_dilation(a)
array([[False, False, False, False, False],
 [False, False, True, False, False],
 [False, True, True, True, False],
 [False, False, True, False, False],
 [False, False, False, False, False]], dtype=bool)
>>> ndimage.binary_dilation(a).astype(a.dtype)
array([[0., 0., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 1., 1., 1., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 0., 0.]])
```

```
>>> # 3x3 structuring element with connectivity 1, used by default
>>> struct1 = ndimage.generate_binary_structure(2, 1)
>>> struct1
array([[False, True, False],
 [True, True, True],
 [False, True, False]], dtype=bool)
>>> # 3x3 structuring element with connectivity 2
>>> struct2 = ndimage.generate_binary_structure(2, 2)
>>> struct2
array([[True, True, True],
 [True, True, True],
 [True, True, True]], dtype=bool)
>>> ndimage.binary_dilation(a, structure=struct1).astype(a.dtype)
array([[0., 0., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 1., 1., 1., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 0., 0.]])
>>> ndimage.binary_dilation(a, structure=struct2).astype(a.dtype)
array([[0., 0., 0., 0., 0.],
 [0., 1., 1., 1., 0.],
 [0., 1., 1., 1., 0.],
 [0., 1., 1., 1., 0.],
 [0., 0., 0., 0., 0.]])
>>> ndimage.binary_dilation(a, structure=struct1,\
... iterations=2).astype(a.dtype)
array([[0., 0., 1., 0., 0.],
 [0., 1., 1., 1., 0.],
 [1., 1., 1., 1., 1.],
 [0., 1., 1., 1., 0.],
 [0., 0., 1., 0., 0.]])
```

scipy.ndimage.morphology.binary_erosion (input, structure=None, iterations=1, mask=None,
output $=$ None, border_value $=0, \quad$ origin $=0$,
brute_force=False )

Multi-dimensional binary erosion with a given structuring element.
Binary erosion is a mathematical morphology operation used for image processing.

## Parameters <br> input : array_like

Binary image to be eroded. Non-zero (True) elements form the subset to be eroded.
structure : array_like, optional
Structuring element used for the erosion. Non-zero elements are considered True. If no structuring element is provided, an element is generated with a square connectivity equal to one.
iterations: \{int, float \}, optional
The erosion is repeated iterations times (one, by default). If iterations is less than 1 , the erosion is repeated until the result does not change anymore.
mask : array_like, optional
If a mask is given, only those elements with a True value at the corresponding mask element are modified at each iteration.
output : ndarray, optional

Array of the same shape as input, into which the output is placed. By default, a new array is created.
origin: int or tuple of ints, optional :
Placement of the filter, by default 0 .
border_value: int (cast to 0 or 1) :
Value at the border in the output array.

## Returns

out: ndarray of bools :
Erosion of the input by the structuring element.

## See Also:

```
grey_erosion, binary_dilation, binary_closing, binary_opening,
generate_binary_structure
```


## Notes

Erosion [R38] is a mathematical morphology operation [R39] that uses a structuring element for shrinking the shapes in an image. The binary erosion of an image by a structuring element is the locus of the points where a superimposition of the structuring element centered on the point is entirely contained in the set of non-zero elements of the image.

## References

[R38], [R39]

## Examples

```
>>> a = np.zeros((7,7), dtype=np.int)
>>> a[1:6, 2:5] = 1
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.binary_erosion(a).astype(a.dtype)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> #Erosion removes objects smaller than the structure
>>> ndimage.binary_erosion(a, structure=np.ones((5,5))).astype(a.dtype)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
```

```
scipy.ndimage.morphology.binary_fill_holes(input, structure=None, output=None, ori-
```

Fill the holes in binary objects.

## Parameters

input: array_like :
n-dimensional binary array with holes to be filled
structure: array_like, optional :
Structuring element used in the computation; large-size elements make computations faster but may miss holes separated from the background by thin regions. The default element (with a square connectivity equal to one) yields the intuitive result where all holes in the input have been filled.
output: ndarray, optional :
Array of the same shape as input, into which the output is placed. By default, a new array is created.
origin: int, tuple of ints, optional :
Position of the structuring element.

## Returns

out: ndarray :
Transformation of the initial image input where holes have been filled.

## See Also:

binary_dilation, binary_propagation, label

## Notes

The algorithm used in this function consists in invading the complementary of the shapes in input from the outer boundary of the image, using binary dilations. Holes are not connected to the boundary and are therefore not invaded. The result is the complementary subset of the invaded region.

## References

[R40]

## Examples

```
>>> a = np.zeros((5, 5), dtype=int)
>>> a[1:4, 1:4] = 1
>>> a[2,2] = 0
>>> a
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 0, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])
>>> ndimage.binary_fill_holes(a).astype(int)
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])
>>> # Too big structuring element
>>> ndimage.binary_fill_holes(a, structure=np.ones((5,5))).astype(int)
```

```
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 0, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])
```

scipy.ndimage.morphology.binary_hit_or_miss (input, structurel=None, structure2=None,
output $=$ None, , origin $1=0$, origin $2=$ None )

Multi-dimensional binary hit-or-miss transform.
The hit-or-miss transform finds the locations of a given pattern inside the input image.

## Parameters

input : array_like (cast to booleans)
Binary image where a pattern is to be detected.
structure1 : array_like (cast to booleans), optional
Part of the structuring element to be fitted to the foreground (non-zero elements) of input. If no value is provided, a structure of square connectivity 1 is chosen.
structure2 : array_like (cast to booleans), optional
Second part of the structuring element that has to miss completely the foreground. If no value is provided, the complementary of structurel is taken.
output : ndarray, optional
Array of the same shape as input, into which the output is placed. By default, a new array is created.
origin1 : int or tuple of ints, optional
Placement of the first part of the structuring element structurel, by default 0 for a centered structure.
origin2 : int or tuple of ints, optional
Placement of the second part of the structuring element structure 2 , by default 0 for a centered structure. If a value is provided for origin1 and not for origin2, then origin2 is set to originl.

## Returns

output : ndarray
Hit-or-miss transform of input with the given structuring element (structurel, structure2).

## See Also:

ndimage.morphology, binary_erosion

## References

[R41]

## Examples

```
>>> a = np.zeros((7,7), dtype=np.int)
>>> a[1, 1] = 1; a[2:4, 2:4] = 1; a[4:6, 4:6] = 1
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 1, 0, 0, 0, 0, 0],
```

```
 [0, 0, 1, 1, 0, 0, 0],
 [0, 0, 1, 1, 0, 0, 0],
 [0, 0, 0, 0, 1, 1, 0],
 [0, 0, 0, 0, 1, 1, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> structure1 = np.array([[1, 0, 0], [0, 1, 1], [0, 1, 1]])
>>> structure1
array([[1, 0, 0],
 [0, 1, 1],
 [0, 1, 1]])
>>> # Find the matches of structurel in the array a
>>> ndimage.binary_hit_or_miss(a, structure1=structure1).astype(np.int)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> # Change the origin of the filter
>>> # originl=1 is equivalent to originl=(1,1) here
>>> ndimage.binary_hit_or_miss(a, structure1=structure1,\
... origin1=1).astype(np.int)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0, 0]])
scipy.ndimage.morphology.binary_opening(input, structure=None, iterations=1, output=None,
origin=0)
```

Multi-dimensional binary opening with the given structuring element.
The opening of an input image by a structuring element is the dilation of the erosion of the image by the structuring element.

## Parameters

input : array_like
Binary array_like to be opened. Non-zero (True) elements form the subset to be opened.
structure : array_like, optional
Structuring element used for the opening. Non-zero elements are considered True. If no structuring element is provided an element is generated with a square connectivity equal to one (i.e., only nearest neighbors are connected to the center, diagonallyconnected elements are not considered neighbors).
iterations: \{int, float \}, optional
The erosion step of the opening, then the dilation step are each repeated iterations times (one, by default). If iterations is less than 1, each operation is repeated until the result does not change anymore.
output : ndarray, optional
Array of the same shape as input, into which the output is placed. By default, a new array is created.
origin : int or tuple of ints, optional
Placement of the filter, by default 0 .

## Returns

out : ndarray of bools
Opening of the input by the structuring element.

## See Also:

```
grey_opening, binary_closing, binary_erosion, binary_dilation,
generate_binary_structure
```


## Notes

Opening [R42] is a mathematical morphology operation [R43] that consists in the succession of an erosion and a dilation of the input with the same structuring element. Opening therefore removes objects smaller than the structuring element.

Together with closing (binary_closing), opening can be used for noise removal.

## References

[R42], [R43]

## Examples

```
>>> a = np.zeros((5,5), dtype=np.int)
>>> a[1:4, 1:4] = 1; a[4, 4] = 1
>>> a
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 1]])
>>> # Opening removes small objects
>>> ndimage.binary_opening(a, structure=np.ones((3,3))).astype(np.int)
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])
>>> # Opening can also smooth corners
>>> ndimage.binary_opening(a).astype(np.int)
array([[0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0]])
>>> # Opening is the dilation of the erosion of the input
>>> ndimage.binary_erosion(a).astype(np.int)
array([[0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0]])
>>> ndimage.binary_dilation(ndimage.binary_erosion(a)).astype(np.int)
array([[0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0],
 [0, 1, 1, 1, 0],
```

$[0,0,1,0,0]$,
$[0,0,0,0,0]])$
scipy.ndimage.morphology.binary_propagation(input, structure=None, mask=None, output $=$ None, border_value $=0$, origin $=0$ )
Multi-dimensional binary propagation with the given structuring element.
Parameters
input : array_like
Binary image to be propagated inside mask.
structure : array_like
Structuring element used in the successive dilations. The output may depend on the structuring element, especially if mask has several connex components. If no structuring element is provided, an element is generated with a squared connectivity equal to one.
mask : array_like
Binary mask defining the region into which input is allowed to propagate.
output : ndarray, optional
Array of the same shape as input, into which the output is placed. By default, a new array is created.
origin : int or tuple of ints, optional
Placement of the filter, by default 0 .

## Returns

ouput : ndarray
Binary propagation of input inside mask.

## Notes

This function is functionally equivalent to calling binary_dilation with the number of iterations less then one: iterative dilation until the result does not change anymore.
The succession of an erosion and propagation inside the original image can be used instead of an opening for deleting small objects while keeping the contours of larger objects untouched.

## References

[R44], [R45]

## Examples

```
>>> input = np.zeros((8, 8), dtype=np.int)
>>> input[2, 2] = 1
>>> mask = np.zeros((8, 8), dtype=np.int)
>>> mask[1:4, 1:4] = mask[4, 4] = mask[6:8, 6:8] = 1
>>> input
array([[0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
```

```
 [0, 0, 0, 0, 0, 0, 0, 0]])
>>> mask
array([[0, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0, 0, 0, 0],
 [0, 1, 1, 1, 0, 0, 0, 0],
 [0, 1, 1, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 1, 1],
 [0, 0, 0, 0, 0, 0, 1, 1]])
```

>>> ndimage.binary_propagation(input, mask=mask).astype(np.int)
array ([[0, 0, 0, 0, 0, 0, 0, 0],
$[0,1,1,1,0,0,0,0]$,
$[0,1,1,1,0,0,0,0]$,
$[0,1,1,1,0,0,0,0]$,
$[0,0,0,0,0,0,0,0]$,
$[0,0,0,0,0,0,0,0]$,
$[0,0,0,0,0,0,0,0]$,
[0, 0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.binary_propagation(input, mask=mask, \}
... structure=np.ones ( $(3,3))$ ). astype (np.int)
array ([[0, 0, 0, 0, 0, 0, 0, 0],
$[0,1,1,1,0,0,0,0]$,
$[0,1,1,1,0,0,0,0]$,
$[0,1,1,1,0,0,0,0]$,
$[0,0,0,0,1,0,0,0]$,
$[0,0,0,0,0,0,0,0]$,
$[0,0,0,0,0,0,0,0]$,
$[0,0,0,0,0,0,0,0]])$
>>> \# Comparison between opening and erosion+propagation
>>> a = np.zeros( $(6,6)$, dtype=np.int)
>>> $a[2: 5,2: 5]=1 ; a[0,0]=1 ; a[5,5]=1$
>>> a
array ([[1, 0, 0, 0, 0, 0],
$[0,0,0,0,0,0]$,
$[0,0,1,1,1,0]$,
$[0,0,1,1,1,0]$,
$[0,0,1,1,1,0]$,
[0, 0, 0, 0, 0, 1]])
>>> ndimage.binary_opening(a).astype(np.int)
array ([[0, 0, 0, 0, 0, 0],
$[0,0,0,0,0,0]$,
$[0,0,0,1,0,0]$,
$[0,0,1,1,1,0]$,
$[0,0,0,1,0,0]$,
$[0,0,0,0,0,0]])$
>>> b = ndimage.binary_erosion(a)
>>> b.astype(int)
array ([ [0, 0, 0, 0, 0, 0],
$[0,0,0,0,0,0]$,
$[0,0,0,0,0,0]$,
$[0,0,0,1,0,0]$,
$[0, ~ 0, ~ 0, ~ 0, ~ 0, ~ 0]$,
$[0,0,0,0,0,0]])$
>>> ndimage.binary_propagation(b, mask=a).astype(np.int)
array ([[0, 0, 0, 0, 0, 0],
$[0,0,0,0,0,0]$,

```
[0, 0, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0]])
```

scipy.ndimage.morphology.black_tophat (input, size $=$ None, footprint $=$ None, structure $=$ None, output $=$ None, mode $=$ 'reflect', cval $=0.0$, origin $=0$ )
Multi-dimensional black tophat filter.
Either a size or a footprint, or the structure must be provided. An output array can optionally be provided. The origin parameter controls the placement of the filter. The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'.

## See Also:

grey_opening, grey_closing

## References

[R46], [R47]
scipy.ndimage.morphology.distance_transform_bf(input, metric='euclidean', sampling $=$ None, return_distances $=$ True, return_indices $=$ False, distances $=$ None, indices $=$ None)
Distance transform function by a brute force algorithm.
This function calculates the distance transform of the input, by replacing each background element (zero values), with its shortest distance to the foreground (any element non-zero). Three types of distance metric are supported: 'euclidean', 'taxicab' and 'chessboard'.

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest background element is returned along the first axis of the result.

The return_distances, and return_indices flags can be used to indicate if the distance transform, the feature transform, or both must be returned.

Optionally the sampling along each axis can be given by the sampling parameter which should be a sequence of length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes. This parameter is only used in the case of the euclidean distance transform.

This function employs a slow brute force algorithm, see also the function distance_transform_cdt for more efficient taxicab and chessboard algorithms.
the distances and indices arguments can be used to give optional output arrays that must be of the correct size and type (float64 and int32).

```
scipy.ndimage.morphology.distance_transform_cdt(input, metric='chessboard',
 return_distances=True, re-
 turn_indices=False, distances=None,
 indices=None)
```

Distance transform for chamfer type of transforms.
The metric determines the type of chamfering that is done. If the metric is equal to 'taxicab' a structure is generated using generate_binary_structure with a squared distance equal to 1 . If the metric is equal to 'chessboard', a metric is generated using generate_binary_structure with a squared distance equal to the rank of the array. These choices correspond to the common interpretations of the taxicab and the chessboard distance metrics in two dimensions.

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest background element is returned along the first axis of the result.

The return_distances, and return_indices flags can be used to indicate if the distance transform, the feature transform, or both must be returned.

The distances and indices arguments can be used to give optional output arrays that must be of the correct size and type (both int 32 ).

```
scipy.ndimage.morphology.distance_transform_edt(input, sampling=None, re-
 turn_distances=True, re-
 turn_indices=False, distances=None,
 indices=None)
```

Exact euclidean distance transform.
In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest background element is returned along the first axis of the result.

## Parameters input : array_like

Input data to transform. Can be any type but will be converted into binary: 1 wherever input equates to True, 0 elsewhere.
sampling : float or int, or sequence of same, optional
Spacing of elements along each dimension. If a sequence, must be of length equal to the input rank; if a single number, this is used for all axes. If not specified, a grid spacing of unity is implied.
return_distances : bool, optional
Whether to return distance matrix. At least one of return_distances/return_indices must be True. Default is True.
return_indices : bool, optional
Whether to return indices matrix. Default is False.
distance : ndarray, optional
Used for output of distance array, must be of type float64.
indices : ndarray, optional
Used for output of indices, must be of type int 32 .

## Returns

result : ndarray or list of ndarray
Either distance matrix, index matrix, or a list of the two, depending on return_x flags and distance and indices input parameters.

## Notes

The euclidean distance transform gives values of the euclidean distance:

$$
y_{-i}=\operatorname{sqrt}\left(\operatorname{sum}_{i}^{n}(x[i]-b[i]) \star * 2\right)
$$

where $\mathrm{b}[\mathrm{i}]$ is the background point (value 0 ) with the smallest Euclidean distance to input points $\mathrm{x}[\mathrm{i}]$, and n is the number of dimensions.

## Examples

```
>>> a = np.array(([0,1,1,1,1],
 [0,0,1,1,1],
 [0,1,1,1,1],
 [0,1,1,1,0],
 [0,1,1,0,0]))
>>> from scipy import ndimage
>>> ndimage.distance_transform_edt (a)
array([[0. , 1. , 1.4142, 2.2361, 3.],
 [0. , 0. , 1. , 2. , 2.],
 [0. , 1. , 1.4142, 1.4142, 1.],
 [0. , 1. , 1.4142, 1. , 0.],
 [0. , 1. , 1. , 0. , 0.]])
```

With a sampling of 2 units along $\mathrm{x}, 1$ along y :

```
>>> ndimage.distance_transform_edt(a, sampling=[2,1])
array([[0. , 1. , 2. , 2.8284, 3.6056],
 [0. , 0. , 1. , 2. , 3.],
 [0. , 1. , 2. , 2.2361, 2.],
 [0. , 1. , 2. , 1. , 0.],
 [0. , 1. , 1. , 0. , 0.]])
```

Asking for indices as well:

```
>>> edt, inds = ndimage.distance_transform_edt(a, return_indices=True)
>>> inds
array([[[0, 0, 1, 1, 3],
 [1, 1, 1, 1, 3],
 [2, 2, 1, 3, 3],
 [3, 3, 4, 4, 3],
 [4, 4, 4, 4, 4]],
 [[0, 0, 1, 1, 4],
 [0, 1, 1, 1, 4],
 [0, 0, 1, 4, 4],
 [0, 0, 3, 3, 4],
 [0, 0, 3, 3, 4]]])
```

With arrays provided for inplace outputs:

```
>>> indices = np.zeros(((np.rank(a),) + a.shape), dtype=np.int32)
>>> ndimage.distance_transform_edt(a, return_indices=True, indices=indices)
array([[0. , 1. , 1.4142, 2.2361, 3.],
 [0. , 0. , 1. , 2. , 2.],
 [0. , 1. , 1.4142, 1.4142, 1.],
 [0. , 1. , 1.4142, 1. , 0.],
 [0. , 1. , 1. , 0. , 0.]])
>>> indices
array([[[0, 0, 1, 1, 3],
 [1, 1, 1, 1, 3],
 [2, 2, 1, 3, 3],
 [3, 3, 4, 4, 3],
 [4, 4, 4, 4, 4]],
 [[0, 0, 1, 1, 4],
 [0, 1, 1, 1, 4],
 [0, 0, 1, 4, 4],
 [0, 0, 3, 3, 4],
 [0, 0, 3, 3, 4]]])
```

```
scipy.ndimage.morphology.generate_binary_structure(rank,connectivity)
```

Generate a binary structure for binary morphological operations.

## Parameters

rank: int
Number of dimensions of the array to which the structuring element will be applied, as returned by np.ndim.
connectivity : int
connectivity determines which elements of the output array belong to the structure, i.e. are considered as neighbors of the central element. Elements up to a squared distance of connectivity from the center are considered neighbors. connectivity may range from 1 (no diagonal elements are neighbors) to rank (all elements are neighbors).

## Returns

output : ndarray of bools
Structuring element which may be used for binary morphological operations, with rank dimensions and all dimensions equal to 3 .

## See Also:

```
iterate_structure, binary_dilation, binary__erosion
```


## Notes

generate_binary_structure can only create structuring elements with dimensions equal to 3 , i.e. minimal dimensions. For larger structuring elements, that are useful e.g. for eroding large objects, one may either use iterate_structure, or create directly custom arrays with numpy functions such as numpy. ones.

## Examples

```
>>> struct = ndimage.generate_binary_structure(2, 1)
>>> struct
array([[False, True, False],
 [True, True, True],
 [False, True, False]], dtype=bool)
>>> a = np.zeros((5,5))
>>> a[2, 2] = 1
>>> a
array([[0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.]])
>>> b = ndimage.binary_dilation(a, structure=struct).astype(a.dtype)
>>> b
array([[0., 0., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 1., 1., 1., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 0., 0.]])
>>> ndimage.binary_dilation(b, structure=struct).astype(a.dtype)
array([[0., 0., 1., 0., 0.],
 [0., 1., 1., 1., 0.],
 [1., 1., 1., 1., 1.],
 [0., 1., 1., 1., 0.],
 [0., 0., 1., 0., 0.]])
```

```
>>> struct = ndimage.generate_binary_structure(2, 2)
>>> struct
array([[True, True, True],
 [True, True, True],
 [True, True, True]], dtype=bool)
>>> struct = ndimage.generate_binary_structure(3, 1)
>>> struct # no diagonal elements
array([[[False, False, False],
 [False, True, False],
 [False, False, False]],
 [[False, True, False],
 [True, True, True],
 [False, True, False]],
 [[False, False, False],
 [False, True, False],
 [False, False, False]]], dtype=bool)
```

scipy.ndimage.morphology.grey_closing (input, size=None, footprint=None, structure $=$ None,
output $=$ None, mode $=$ 'reflect', cval $=0.0$, origin=0)

Multi-dimensional greyscale closing.
A greyscale closing consists in the succession of a greyscale dilation, and a greyscale erosion.

## Parameters

input : array_like
Array over which the grayscale closing is to be computed.
size : tuple of ints
Shape of a flat and full structuring element used for the grayscale closing. Optional if footprint is provided.
footprint : array of ints, optional
Positions of non-infinite elements of a flat structuring element used for the grayscale closing.
structure : array of ints, optional
Structuring element used for the grayscale closing. structure may be a non-flat structuring element.
output : array, optional
An array used for storing the ouput of the closing may be provided.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap'\}, optional
The mode parameter determines how the array borders are handled, where $c v a l$ is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0.
origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0

## Returns

output : ndarray
Result of the grayscale closing of input with structure.

## See Also:

```
binary_closing, grey_dilation, grey_erosion, grey_opening,
generate_binary_structure
```


## Notes

The action of a grayscale closing with a flat structuring element amounts to smoothen deep local minima, whereas binary closing fills small holes.

## References

[R48]

## Examples

```
>>> a = np.arange(36).reshape((6,6))
>>> a[3,3] = 0
>>> a
array([[0, 1, 2, 3, 4, 5],
 [6, 7, 8, 9, 10, 11],
 [12, 13, 14, 15, 16, 17],
 [18, 19, 20, 0, 22, 23],
 [24, 25, 26, 27, 28, 29],
 [30, 31, 32, 33, 34, 35]])
>>> ndimage.grey_closing(a, size=(3,3))
array([[7, 7, 8, 9, 10, 11],
 [7, 7, 8, 9, 10, 11],
 [13, 13, 14, 15, 16, 17],
 [19, 19, 20, 20, 22, 23],
 [25, 25, 26, 27, 28, 29],
 [31, 31, 32, 33, 34, 35]])
>>> # Note that the local minimum a[3,3] has disappeared
```

scipy.ndimage.morphology.grey_dilation (input, size=None, footprint=None, structure=None, output $=$ None, mode $=$ 'reflect', cval $=0.0$, origin=0)
Calculate a greyscale dilation, using either a structuring element, or a footprint corresponding to a flat structuring element.

Grayscale dilation is a mathematical morphology operation. For the simple case of a full and flat structuring element, it can be viewed as a maximum filter over a sliding window.

## Parameters <br> input : array_like

Array over which the grayscale dilation is to be computed.
size : tuple of ints
Shape of a flat and full structuring element used for the grayscale dilation. Optional if footprint is provided.
footprint : array of ints, optional
Positions of non-infinite elements of a flat structuring element used for the grayscale dilation. Non-zero values give the set of neighbors of the center over which the maximum is chosen.
structure : array of ints, optional
Structuring element used for the grayscale dilation. structure may be a non-flat structuring element.
output : array, optional
An array used for storing the ouput of the dilation may be provided.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap' \}, optional
The mode parameter determines how the array borders are handled, where $c v a l$ is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0.
origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0

## Returns

output : ndarray
Grayscale dilation of input.

## See Also:

binary_dilation, grey_erosion, grey_closing, grey_opening,
generate_binary_structure, ndimage.maximum_filter

## Notes

The grayscale dilation of an image input by a structuring element s defined over a domain $E$ is given by:

```
(input+s)(x)=max {input(y)+s(x-y), for y in E }
```

In particular, for structuring elements defined as $s(y)=0$ for $y$ in $E$, the grayscale dilation computes the maximum of the input image inside a sliding window defined by E .

Grayscale dilation [R49] is a mathematical morphology operation [R50].

## References

[R49], [R50]

## Examples

```
>>> a = np.zeros((7,7), dtype=np.int)
>>> a[2:5, 2:5] = 1
>>> a[4,4] = 2; a[2,3] = 3
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 3, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 2, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.grey_dilation(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 1, 3, 3, 3, 1, 0],
 [0, 1, 3, 3, 3, 1, 0],
 [0, 1, 3, 3, 3, 2, 0],
 [0, 1, 1, 2, 2, 2, 0],
 [0, 1, 1, 2, 2, 2, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.grey_dilation(a, footprint=np.ones((3,3)))
```

```
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 1, 3, 3, 3, 1, 0],
 [0, 1, 3, 3, 3, 1, 0],
 [0, 1, 3, 3, 3, 2, 0],
 [0, 1, 1, 2, 2, 2, 0],
 [0, 1, 1, 2, 2, 2, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> s = ndimage.generate_binary_structure (2,1)
>>> s
array([[False, True, False],
 [True, True, True],
 [False, True, False]], dtype=bool)
>>> ndimage.grey_dilation(a, footprint=s)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 3, 1, 0, 0],
 [0, 1, 3, 3, 3, 1, 0],
 [0, 1, 1, 3, 2, 1, 0],
 [0, 1, 1, 2, 2, 2, 0],
 [0, 0, 1, 1, 2, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.grey_dilation(a, size=(3,3), structure=np.ones((3,3)))
array([[1, 1, 1, 1, 1, 1, 1],
 [1, 2, 4, 4, 4, 2, 1],
 [1, 2, 4, 4, 4, 2, 1],
 [1, 2, 4, 4, 4, 3, 1],
 [1, 2, 2, 3, 3, 3, 1],
 [1, 2, 2, 3, 3, 3, 1],
 [1, 1, 1, 1, 1, 1, 1]])
```

scipy.ndimage.morphology.grey_erosion (input, size $=$ None, footprint=None, structure=None,
output $=$ None, mode $=$ 'reflect', cval $=0.0$, origin $=0$ )

Calculate a greyscale erosion, using either a structuring element, or a footprint corresponding to a flat structuring element.
Grayscale erosion is a mathematical morphology operation. For the simple case of a full and flat structuring element, it can be viewed as a minimum filter over a sliding window.

## Parameters <br> input : array_like

Array over which the grayscale erosion is to be computed.
size : tuple of ints
Shape of a flat and full structuring element used for the grayscale erosion. Optional if footprint is provided.
footprint : array of ints, optional
Positions of non-infinite elements of a flat structuring element used for the grayscale erosion. Non-zero values give the set of neighbors of the center over which the minimum is chosen.
structure : array of ints, optional
Structuring element used for the grayscale erosion. structure may be a non-flat structuring element.
output : array, optional
An array used for storing the ouput of the erosion may be provided.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap'\}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0 .
origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0

## Returns

output : ndarray
Grayscale erosion of input.

## See Also:

```
binary_erosion, grey_dilation, grey_opening, grey_closing,
generate_binary_structure, ndimage.minimum_filter
```


## Notes

The grayscale erosion of an image input by a structuring element $s$ defined over a domain $E$ is given by:
$(\operatorname{input}+s)(x)=\min \{\operatorname{input}(y)-s(x-y)$, for $y$ in $E\}$
In particular, for structuring elements defined as $s(y)=0$ for $y$ in $E$, the grayscale erosion computes the minimum of the input image inside a sliding window defined by E .
Grayscale erosion [R51] is a mathematical morphology operation [R52].

## References

[R51], [R52]

## Examples

```
>>> a = np.zeros((7,7), dtype=np.int)
>> a[1:6, 1:6] = 3
>>> a[4,4] = 2;a[2,3] = 1
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 3, 3, 3, 3, 3, 0],
 [0, 3, 3, 1, 3, 3, 0],
 [0, 3, 3, 3, 3, 3, 0],
 [0, 3, 3, 3, 2, 3, 0],
 [0, 3, 3, 3, 3, 3, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.grey_erosion(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 3, 2, 2, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> footprint = ndimage.generate_binary_structure(2, 1)
>>> footprint
array([[False, True, False],
 [True, True, True],
```

```
 [False, True, False]], dtype=bool)
>>> # Diagonally-connected elements are not considered neighbors
>>> ndimage.grey_erosion(a, size=(3,3), footprint=footprint)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 3, 1, 2, 0, 0],
 [0, 0, 3, 2, 2, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
```

scipy.ndimage.morphology.grey_opening (input, size=None, footprint=None, structure=None,
output $=$ None, mode $=$ 'reflect', cval $=0.0$, origin=0)

Multi-dimensional greyscale opening.
A greyscale opening consists in the succession of a greyscale erosion, and a greyscale dilation.

## Parameters

input : array_like
Array over which the grayscale opening is to be computed.
size : tuple of ints
Shape of a flat and full structuring element used for the grayscale opening. Optional if footprint is provided.
footprint : array of ints, optional
Positions of non-infinite elements of a flat structuring element used for the grayscale opening.
structure : array of ints, optional
Structuring element used for the grayscale opening. structure may be a non-flat structuring element.
output : array, optional
An array used for storing the ouput of the opening may be provided.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap'\}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0.
origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0

## Returns

output : ndarray
Result of the grayscale opening of input with structure.

## See Also:

binary_opening, grey_dilation, grey_erosion, grey_closing, generate_binary_structure

## Notes

The action of a grayscale opening with a flat structuring element amounts to smoothen high local maxima, whereas binary opening erases small objects.

## References

[R53]

## Examples

```
>>> a = np.arange(36).reshape((6,6))
>>> a[3, 3] = 50
>>> a
array([[0, 1, 2, 3, 4, 5],
 [6, 7, 8, 9, 10, 11],
 [12, 13, 14, 15, 16, 17],
 [18, 19, 20, 50, 22, 23],
 [24, 25, 26, 27, 28, 29],
 [30, 31, 32, 33, 34, 35]])
>>> ndimage.grey_opening(a, size=(3,3))
array([[0, 1, 2, 3, 4, 4],
 [6, 7, 8, 9, 10, 10],
 [12, 13, 14, 15, 16, 16],
 [18, 19, 20, 22, 22, 22],
 [24, 25, 26, 27, 28, 28],
 [24, 25, 26, 27, 28, 28]])
>>> # Note that the local maximum a[3,3] has disappeared
```

scipy.ndimage.morphology.iterate_structure (structure, iterations, origin=None)
Iterate a structure by dilating it with itself.

## Parameters

structure : array_like
Structuring element (an array of bools, for example), to be dilated with itself.
iterations : int
number of dilations performed on the structure with itself
origin : optional
If origin is None, only the iterated structure is returned. If not, a tuple of the iterated structure and the modified origin is returned.

## Returns

output: ndarray of bools :
A new structuring element obtained by dilating structure (iterations -1) times with itself.

See Also:

```
generate_binary_structure
```


## Examples

```
>>> struct = ndimage.generate_binary_structure(2, 1)
>>> struct.astype(int)
array([[0, 1, 0],
 [1, 1, 1],
 [0, 1, 0]])
```

```
 >>> ndimage.iterate_structure(struct, 2).astype(int)
 array([[0, 0, 1, 0, 0],
 [0, 1, 1, 1, 0],
 [1, 1, 1, 1, 1],
 [0, 1, 1, 1, 0],
 [0, 0, 1, 0, 0]])
>>> ndimage.iterate_structure(struct, 3).astype(int)
array([[0, 0, 0, 1, 0, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 1, 1, 1, 1, 1, 0],
 [1, 1, 1, 1, 1, 1, 1],
 [0, 1, 1, 1, 1, 1, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 0, 1, 0, 0, 0]])
```

scipy.ndimage.morphology.morphological_gradient (input, size=None, footprint=None,
structure=None, output=None,
mode $=$ 'reflect', cval $=0.0$, origin $=0$ )

Multi-dimensional morphological gradient.
The morphological gradient is calculated as the difference between a dilation and an erosion of the input with a given structuring element.

## Parameters

input : array_like
Array over which to compute the morphlogical gradient.
size : tuple of ints
Shape of a flat and full structuring element used for the mathematical morphology operations. Optional if footprint is provided. A larger size yields a more blurred gradient.
footprint : array of ints, optional
Positions of non-infinite elements of a flat structuring element used for the morphology operations. Larger footprints give a more blurred morphological gradient.
structure : array of ints, optional
Structuring element used for the morphology operations. structure may be a non-flat structuring element.
output : array, optional
An array used for storing the ouput of the morphological gradient may be provided.
mode : \{ 'reflect','constant','nearest','mirror', 'wrap'\}, optional
The mode parameter determines how the array borders are handled, where $c v a l$ is the value when mode is equal to 'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'. Default is 0.0.
origin : scalar, optional
The origin parameter controls the placement of the filter. Default 0

## Returns

output : ndarray
Morphological gradient of input.

## See Also:

```
grey_dilation,grey_erosion, ndimage.gaussian_gradient_magnitude
```


## Notes

For a flat structuring element, the morphological gradient computed at a given point corresponds to the maximal difference between elements of the input among the elements covered by the structuring element centered on the point.

## References

[R54]

## Examples

```
>>> a = np.zeros((7,7), dtype=np.int)
>>> a[2:5, 2:5] = 1
>>> ndimage.morphological_gradient(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 1, 1, 1, 1, 1, 0],
 [0, 1, 1, 1, 1, 1, 0],
 [0, 1, 1, 0, 1, 1, 0],
 [0, 1, 1, 1, 1, 1, 0],
 [0, 1, 1, 1, 1, 1, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> # The morphological gradient is computed as the difference
>>> # between a dilation and an erosion
>>> ndimage.grey_dilation(a, size=(3,3)) -\
... ndimage.grey_erosion(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 1, 1, 1, 1, 1, 0],
 [0, 1, 1, 1, 1, 1, 0],
 [0, 1, 1, 0, 1, 1, 0],
 [0, 1, 1, 1, 1, 1, 0],
 [0, 1, 1, 1, 1, 1, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> a = np.zeros((7,7), dtype=np.int)
>>> a[2:5, 2:5] = 1
>>> a[4,4] = 2; a[2,3] = 3
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 3, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 2, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.morphological_gradient(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 1, 3, 3, 3, 1, 0],
 [0, 1, 3, 3, 3, 1, 0],
 [0, 1, 3, 2, 3, 2, 0],
 [0, 1, 1, 2, 2, 2, 0],
 [0, 1, 1, 2, 2, 2, 0],
 [0, 0, 0, 0, 0, 0, 0]])
```

Multi-dimensional morphological laplace.
Either a size or a footprint, or the structure must be provided. An output array can optionally be provided. The origin parameter controls the placement of the filter. The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'.

```
scipy.ndimage.morphology.white_tophat (input, size=None, footprint=None, structure=None, output \(=\) None, mode \(=\) 'reflect', cval \(=0.0\), origin \(=0\))
```

Multi-dimensional white tophat filter.
Either a size or a footprint, or the structure must be provided. An output array can optionally be provided. The origin parameter controls the placement of the filter. The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'.

### 3.11 Orthogonal distance regression (scipy . odr)

### 3.11.1 Orthogonal Distance Regression (scipy .odr)

## Introduction

Why Orthogonal Distance Regression (ODR)? Sometimes one has measurement errors in the explanatory (a.k.a., "independent") variable(s), not just the response (a.k.a., "dependent") variable(s). Ordinary Least Squares (OLS) fitting procedures treat the data for explanatory variables as fixed, i.e., not subject to error of any kind. Furthermore, OLS procedures require that the response variables be an explicit function of the explanatory variables; sometimes making the equation explicit is impractical and/or introduces errors. ODR can handle both of these cases with ease, and can even reduce to the OLS case if that is sufficient for the problem.
ODRPACK is a FORTRAN-77 library for performing ODR with possibly non-linear fitting functions. It uses a modified trust-region Levenberg-Marquardt-type algorithm [R156] to estimate the function parameters. The fitting functions are provided by Python functions operating on NumPy arrays. The required derivatives may be provided by Python functions as well, or may be estimated numerically. ODRPACK can do explicit or implicit ODR fits, or it can do OLS. Input and output variables may be multi-dimensional. Weights can be provided to account for different variances of the observations, and even covariances between dimensions of the variables.
odr provides two interfaces: a single function, and a set of high-level classes that wrap that function; please refer to their docstrings for more information. While the docstring of the function odr does not have a full explanation of its arguments, the classes do, and arguments of the same name usually have the same requirements. Furthermore, the user is urged to at least skim the ODRPACK User's Guide - "Know Thy Algorithm."

## Use

See the docstrings of odr.odrpack and the functions and classes for usage instructions. The ODRPACK User's Guide (linked above) is also quite helpful.

## References

## Modules

| odrpack | Python wrappers for Orthogonal Distance Regression (ODRPACK). |
| :--- | :--- |
| models | Collection of Model instances for use with the odrpack fitting package. |

Python wrappers for Orthogonal Distance Regression (ODRPACK).

Classes Data - stores the data and weights to fit against
RealData - stores data with standard deviations and covariance matrices
Model - stores the model and its related information
Output - stores all of the output from an ODR run
ODR - collects all data and runs the fitting routine

## Exceptions

odr_error - error sometimes raised inside odr() and can be raised in the fitting functions to tell ODRPACK to halt the procedure
odr_stop - error to raise in fitting functions to tell ODRPACK that the data or parameters given are invalid

Use Basic use:

1) Define the function you want to fit against.
```
def f(B, x):
 \prime\prime\prime Linear function y = m*x + b ''\prime
 return B[0]*x + B[1]
 # B is a vector of the parameters.
 # x is an array of the current x values.
 # x is same format as the x passed to Data or RealData.
 # Return an array in the same format as y passed to Data or RealData.
```

2) Create a Model.
```
linear = Model(f)
```

3) Create a Data or RealData instance.
```
mydata = Data(x, y, wd=1./power(sx,2), we=1./power(sy,2))
```

or
mydata $=$ RealData( $x, y, s x=s x, s y=s y)$
4) Instantiate ODR with your data, model and initial parameter estimate.

```
myodr = ODR(mydata, linear, beta0=[1., 2.])
```

5) Run the fit.
```
myoutput = myodr.run()
```

6) Examine output.
```
myoutput.pprint()
```

Read the docstrings and the accompanying tests for more advanced usage.

## Notes

- Array formats - FORTRAN stores its arrays in memory column first, i.e. an array element $A(i, j, k)$ will be next to $A(i+1, j, k)$. In C and, consequently, NumPy, arrays are stored row first: $A[i, j, k]$ is next to $A[i, j, k+1]$. For efficiency and convenience, the input and output arrays of the fitting function (and its Jacobians) are passed to FORTRAN without transposition. Therefore, where the ODRPACK documentation says that the X array is of shape ( $N, M$ ), it will be passed to the Python function as an array of shape ( $M, N$ ). If $M==1$, the one-dimensional case, then nothing matters; if $\mathrm{M}>1$, then your Python functions will be dealing with arrays that are indexed in reverse of the ODRPACK documentation. No real biggie, but watch out for your indexing of the Jacobians: the $\mathrm{i}, \mathrm{j}$ 'th elements (@f_i/@x_j) evaluated at the n'th observation will be returned as jacd[j, i, n]. Except for the Jacobians, it really is easier to deal with $x[0]$ and $x[1]$ than $x[; 0]$ and $x[;, 1]$. Of course, you can always use the transpose() function from scipy explicitly.
- Examples - See the accompanying file test/test.py for examples of how to set up fits of your own. Some are taken from the User's Guide; some are from other sources.
- Models - Some common models are instantiated in the accompanying module models.py . Contributions are welcome.


## Credits

- Thanks to Arnold Moene and Gerard Vermeulen for fixing some killer bugs.

Robert Kern robert.kern@gmail.com
Functions

| odr(fcn, beta0, $y, x[, w e, w d, ~ f j a c b, ~ . .]) ~$. |  |
| :--- | :--- |
| report_error(info) | Interprets the return code of the odr routine. |

## Classes

| Data(x[, y, we, wd, fix, meta]) | The Data class stores the data to fit. |
| :--- | :--- |
| Model(fcn[, fjacb, fjacd, extra_args, ...]) | The Model class stores information about the function you wish to <br> fit. |
| ODR(data, model[, beta0, delta0, ifixb, ...]) | The ODR class gathers all information and coordinates the running <br> of the |
| Output(output) The Output class stores the output of an ODR run. <br> RealData(x[, y, sx, sy, covx, covy, fix, The RealData class stores the weightings as actual standard <br> meta] $)$ |  |

## Exceptions

| odr_error |
| :--- |
| odr_stop |

Collection of Model instances for use with the odrpack fitting package.

## Functions

polynomial(order) Factory function for a general polynomial model.

## Classes

[^5]
## Classes

\(\left.$$
\begin{array}{ll}\hline \text { ODR(data, model[, beta0, delta0, ifixb, ...]) }\end{array}
$$ \begin{array}{l}The ODR class gathers all information and coordinates the running <br>

of the\end{array}\right]\)| The Data class stores the data to fit. |
| :--- |

class scipy.odr.ODR (data, model, beta0=None, delta0=None, ifixb=None, ifixx=None, job=None, iprint $=$ None, errfile $=$ None, rptfile $=$ None, $n d i g i t=$ None, taufac $=$ None, , sstol $=$ None, partol=None, maxit=None, stpb=None, stpd=None, sclb=None, scld=None, work=None, iwork=None)
The ODR class gathers all information and coordinates the running of the main fitting routine.
Members of instances of the ODR class have the same names as the arguments to the initialization routine.

## Parameters

## data: :

instance of the Data class
model: :
instance of the Model class
beta0: :
a rank-1 sequence of initial parameter values. Optional if model provides an "estimate" function to estimate these values.
delta0: optional :
a (double-precision) float array to hold the initial values of the errors in the input variables. Must be same shape as data.x

## ifixb: optional :

sequence of integers with the same length as beta0 that determines which parameters are held fixed. A value of 0 fixes the parameter, a value $>0$ makes the parameter free.

## ifixx: optional :

an array of integers with the same shape as data.x that determines which input observations are treated as fixed. One can use a sequence of length $m$ (the dimensionality of the input observations) to fix some dimensions for all observations. A value of 0 fixes the observation, a value $>0$ makes it free.
job: optional :
an integer telling ODRPACK what tasks to perform. See p. 31 of the ODRPACK User's Guide if you absolutely must set the value here. Use the method set_job post-initialization for a more readable interface.

## iprint: optional :

an integer telling ODRPACK what to print. See pp. 33-34 of the ODRPACK User's Guide if you absolutely must set the value here. Use the method set_iprint postinitialization for a more readable interface.
errfile: optional :
string with the filename to print ODRPACK errors to. Do Not Open This File Yourself!
rptfile: optional :
string with the filename to print ODRPACK summaries to. Do Not Open This File Yourself!
ndigit: optional :
integer specifying the number of reliable digits in the computation of the function.

## taufac: optional :

float specifying the initial trust region. The default value is 1 . The initial trust region is equal to taufac times the length of the first computed Gauss-Newton step. taufac must be less than 1 .

## sstol: optional :

float specifying the tolerance for convergence based on the relative change in the sum-of-squares. The default value is eps** $(1 / 2)$ where eps is the smallest value such that $1+$ eps $>1$ for double precision computation on the machine. sstol must be less than 1.
partol: optional :
float specifying the tolerance for convergence based on the relative change in the estimated parameters. The default value is eps**(2/3) for explicit models and eps**(1/3) for implicit models. partol must be less than 1 .
maxit: optional :
integer specifying the maximum number of iterations to perform. For first runs, maxit is the total number of iterations performed and defaults to 50 . For restarts, maxit is the number of additional iterations to perform and defaults to 10 .

## stpb: optional :

sequence (len(stpb) $==\operatorname{len}($ beta0)) of relative step sizes to compute finite difference derivatives wrt the parameters.

## stpd: optional :

array (stpd.shape $==$ data.x.shape or stpd.shape $=(\mathrm{m}$,$) ) of relative step sizes to$ compute finite difference derivatives wrt the input variable errors. If stpd is a rank-1 array with length m (the dimensionality of the input variable), then the values are broadcast to all observations.

## sclb: optional :

sequence $(\operatorname{len}(\mathrm{stpb})==\operatorname{len}($ beta 0$))$ of scaling factors for the parameters. The purpose of these scaling factors are to scale all of the parameters to around unity. Normally appropriate scaling factors are computed if this argument is not specified. Specify them yourself if the automatic procedure goes awry.
scld: optional :
array (scld.shape $==$ data.x.shape or scld.shape $==(m$,$) ) of scaling factors for the$ errors in the input variables. Again, these factors are automatically computed if you do not provide them. If scld.shape $=(\mathrm{m}$,$) , then the scaling factors are broadcast to$ all observations.

## work: optional :

array to hold the double-valued working data for ODRPACK. When restarting, takes the value of self.output.work.

## iwork: optional :

array to hold the integer-valued working data for ODRPACK. When restarting, takes the value of self.output.iwork.

## output: :

an instance if the Output class containing all of the returned data from an invocation of ODR.run() or ODR.restart()

## Methods

```
restart
run
set_iprint
set_job
```

class scipy.odr.Data ( $x, y=$ None, we $=$ None, $w d=$ None, fix=None, meta $=\{ \}$ )
The Data class stores the data to fit.
Each argument is attached to the member of the instance of the same name. The structures of $x$ and $y$ are described in the Model class docstring. If y is an integer, then the Data instance can only be used to fit with implicit models where the dimensionality of the response is equal to the specified value of $y$. The structures of wd and we are described below. meta is an freeform dictionary for application-specific use.
we weights the effect a deviation in the response variable has on the fit. wd weights the effect a deviation in the input variable has on the fit. To handle multidimensional inputs and responses easily, the structure of these arguments has the n'th dimensional axis first. These arguments heavily use the structured arguments feature of ODRPACK to conveniently and flexibly support all options. See the ODRPACK User's Guide for a full explanation of how these weights are used in the algorithm. Basically, a higher value of the weight for a particular data point makes a deviation at that point more detrimental to the fit.

## we - if we is a scalar, then that value is used for all data points (and

all dimensions of the response variable).
If we is a rank-1 array of length $q$ (the dimensionality of the response variable), then this vector is the diagonal of the covariant weighting matrix for all data points.

If we is a rank-1 array of length $n$ (the number of data points), then the $i$ 'th element is the weight for the i'th response variable observation (single-dimensional only).

If we is a rank-2 array of shape ( $\mathrm{q}, \mathrm{q}$ ), then this is the full covariant weighting matrix broadcast to each observation.

If we is a rank-2 array of shape ( $\mathrm{q}, \mathrm{n}$ ), then we[:,i] is the diagonal of the covariant weighting matrix for the $i$ 'th observation.

If we is a rank- 3 array of shape ( $q, q, n$ ), then we[:,:,i] is the full specification of the covariant weighting matrix for each observation.

If the fit is implicit, then only a positive scalar value is used.

## wd - if wd is a scalar, then that value is used for all data points

(and all dimensions of the input variable). If $w d=0$, then the covariant weighting matrix for each observation is set to the identity matrix (so each dimension of each observation has the same weight).

If wd is a rank-1 array of length $m$ (the dimensionality of the input variable), then this vector is the diagonal of the covariant weighting matrix for all data points.
If wd is a rank-1 array of length $n$ (the number of data points), then the $i^{\prime}$ th element is the weight for the i'th input variable observation (single-dimensional only).
If wd is a rank-2 array of shape ( $\mathrm{m}, \mathrm{m}$ ), then this is the full covariant weighting matrix broadcast to each observation.

If wd is a rank-2 array of shape ( $\mathrm{m}, \mathrm{n}$ ), then wd[:,i] is the diagonal of the covariant weighting matrix for the i'th observation.

If wd is a rank-3 array of shape $(m, m, n)$, then $w d[:,: ; i]$ is the full specification of the covariant weighting matrix for each observation.

## fix - fix is the same as ifixx in the class ODR. It is an array of integers

with the same shape as data.x that determines which input observations are treated as fixed. One can use a sequence of length $m$ (the dimensionality of the input observations) to fix some dimensions for all observations. A value of 0 fixes the observation, a value $>0$ makes it free.
meta - optional, freeform dictionary for metadata

## Methods

set_meta
class scipy.odr.Model (fcn, fjacb=None, fjacd=None, extra_args=None, estimate=None, implicit=0, meta=None)
The Model class stores information about the function you wish to fit.
It stores the function itself, at the least, and optionally stores functions which compute the Jacobians used during fitting. Also, one can provide a function that will provide reasonable starting values for the fit parameters possibly given the set of data.
The initialization method stores these into members of the same name.

```
fen - fit function
 fcn(beta, \(x\)) -> y
fjacb - Jacobian of fcn wrt the fit parameters beta
 fjacb(beta, x) \(\rightarrow\) @f_i(x,B)/@B_j
```

fjacd - Jacobian of fen wrt the (possibly multidimensional) input
variable fjacd(beta, x) $->$ @f_i(x,B)/@x_j
extra_args - if specified, extra_args should be a tuple of extra
arguments to pass to fcn, fjacb, and fjacd. Each will be called like the following: apply(fcn,
(beta, x$)+$ extra_args)
estimate - provide estimates of the fit parameters from the data:
estimate(data) $\rightarrow$ estbeta
implicit - boolean variable which, if TRUE, specifies that the model
is implicit; i.e fcn(beta, $x) \sim=0$ and there is no $y$ data to fit against
meta - optional
freeform dictionary of metadata for the model

Note that the fcn, fjacb, and fjacd operate on NumPy arrays and return a NumPy array. The estimate object takes an instance of the Data class.

Here are the rules for the shapes of the argument and return arrays:
$\mathbf{x}$ - if the input data is single-dimensional, then x is rank- 1
array; i.e. $x=\operatorname{array}([1,2,3, \ldots])$; $x$.shape $=(n$,$) If the input data is multi-dimensional, then x$ is a rank-2 array; i.e., $x=\operatorname{array}([[1,2, \ldots],[2,4, \ldots]])$; x.shape $=(m, n)$ In all cases, it has the same shape as the input data array passed to odr(). m is the dimensionality of the input data, n is the number of observations.
$\mathbf{y}$ - if the response variable is single-dimensional, then $\mathbf{y}$ is a
rank-1 array, i.e., $y=\operatorname{array}([2,4, \ldots])$; y.shape $=(n$,$) If the response variable is multi-$ dimensional, then $y$ is a rank-2 array, i.e., $y=\operatorname{array}([[2,4, \ldots],[3,6, \ldots]]) ;$ y.shape $=(q$, $\mathrm{n})$ where q is the dimensionality of the response variable.

## beta - rank- 1 array of length $p$ where $p$ is the number of parameters;

i.e. $\operatorname{beta}=\operatorname{array}\left(\left[\mathrm{B} \_1, \mathrm{~B} \_2, \ldots, \mathrm{~B} \_\mathrm{p}\right]\right)$
fjacb - if the response variable is multi-dimensional, then the
return array's shape is ( $q, p, n$ ) such that fjacb(x,beta) $[1, k, i]=@ f \_1(X, B) / @ B \_k$ evaluated at the $i^{\prime}$ th data point. If $q==1$, then the return array is only rank-2 and with shape $(\mathrm{p}, \mathrm{n})$.
fjacd - as with fjacb, only the return array's shape is ( $\mathbf{q}, \mathbf{m}, \mathbf{n}$ )
such that $\operatorname{fjacd}(x, b e t a)[1, j, i]=@ f \_1(X, B) / @ X \_j$ at the $i ’$ th data point. If $q==1$, then the return array's shape is $(m, n)$. If $m==1$, the shape is $(q, n)$. If $m==q==1$, the shape is $(n$,$) .$

## Methods

set_meta
class scipy.odr.Output (output)
The Output class stores the output of an ODR run.
Takes one argument for initialization, the return value from the function odr.

## Notes

The attributes listed as "optional" above are only present if odr was run with full_output=1.

## Attributes

| beta | ndarray | Estimated parameter values, of shape (q,). |
| :--- | :--- | :--- |
| sd_beta | ndarray | Standard errors of the estimated parameters, of shape (p,). |
| cov_beta | ndarray | Covariance matrix of the estimated parameters, of shape (p,p). |
| delta | ndarray, optional | Array of estimated errors in input variables, of same shape as $x$. |
| eps | ndarray, optional | Array of estimated errors in response variables, of same shape as y. |
| xplus | ndarray, optional | Array of x + delta. |
| y | ndarray, optional | Array y = fcn (x + delta) . |
| res_var | float, optional | Residual variance. |
| sum_sqare | float, optional | Sum of squares error. |
| sum_square_delta | float, optional | Sum of squares of delta error. |
| sum_square_eps | float, optional | Sum of squares of eps error. |
| inv_condnum | float, optional | Inverse condition number (cf. ODRPACK UG p. 77). |
| rel_error | float, optional | Relative error in function values computed within fcn. |
| work | ndarray, optional | Final work array. |
| work_ind | dict, optional | Indices into work for drawing out values (cf. ODRPACK UG p. 83). |
| info | int, optional | Reason for returning, as output by ODRPACK (cf. ODRPACK UG p. 38). |
| stopreason | list of str, optional | info interpreted into English. |

## Methods

$$
\text { pprint } \quad \text { Support to pretty-print lists, tuples, \& dictionaries recursively. }
$$

class scipy.odr.RealData(x, $y=$ None, $s x=$ None, sy=None, covx=None, covy=None, fix=None, meta $=\{ \}$ ).
The RealData class stores the weightings as actual standard deviations and/or covariances.
The weights needed for ODRPACK are generated on-the-fly with __ getattr__ trickery.
sx and sy are standard deviations of x and y and are converted to weights by dividing 1.0 by their squares.
E.g. $w d=1 . /$ numpy.power(sx, 2)
covx and covy are arrays of covariance matrices and are converted to weights by performing a matrix inversion on each observation's covariance matrix.

```
E.g. we[i] = numpy.linalg.inv(covy[i]) \#i in range(len(covy))
 \# if covy.shape \(==(\mathrm{n}, \mathrm{q}, \mathrm{q})\)
```

These arguments follow the same structured argument conventions as wd and we only restricted by their natures: sx and sy can't be rank-3, but covx and covy can be.

Only set either sx or covx (not both). Setting both will raise an exception. Same with sy and covy.

## The argument and member fix is the same as Data.fix and ODR.ifixx:

It is an array of integers with the same shape as data.x that determines which input observations are treated as fixed. One can use a sequence of length $m$ (the dimensionality of the input observations) to fix some dimensions for all observations. A value of 0 fixes the observation, a value $>0$ makes it free.

## Methods

```
set_meta
```

exception scipy.odr.odr_error
exception scipy.odr.odr_stop

## Functions

class scipy.odr.Data ( $x, y=$ None, we $=$ None, $w d=$ None, $f i x=$ None, meta $=\{ \}$ )
The Data class stores the data to fit.
Each argument is attached to the member of the instance of the same name. The structures of $x$ and $y$ are described in the Model class docstring. If $y$ is an integer, then the Data instance can only be used to fit with implicit models where the dimensionality of the response is equal to the specified value of $y$. The structures of wd and we are described below. meta is an freeform dictionary for application-specific use.
we weights the effect a deviation in the response variable has on the fit. wd weights the effect a deviation in the input variable has on the fit. To handle multidimensional inputs and responses easily, the structure of these arguments has the n'th dimensional axis first. These arguments heavily use the structured arguments feature of ODRPACK to conveniently and flexibly support all options. See the ODRPACK User's Guide for a full explanation of how these weights are used in the algorithm. Basically, a higher value of the weight for a particular data point makes a deviation at that point more detrimental to the fit.

## we - if we is a scalar, then that value is used for all data points (and

 all dimensions of the response variable).If we is a rank-1 array of length q (the dimensionality of the response variable), then this vector is the diagonal of the covariant weighting matrix for all data points.
If we is a rank- 1 array of length $n$ (the number of data points), then the $i$ 'th element is the weight for the i'th response variable observation (single-dimensional only).

If we is a rank-2 array of shape ( $\mathrm{q}, \mathrm{q}$ ), then this is the full covariant weighting matrix broadcast to each observation.

If we is a rank-2 array of shape ( $\mathrm{q}, \mathrm{n}$ ), then we[:,i] is the diagonal of the covariant weighting matrix for the i'th observation.

If we is a rank- 3 array of shape ( $q, q, n$ ), then we $[:,:, i]$ is the full specification of the covariant weighting matrix for each observation.
If the fit is implicit, then only a positive scalar value is used.
wd - if wd is a scalar, then that value is used for all data points
(and all dimensions of the input variable). If $w d=0$, then the covariant weighting matrix for each observation is set to the identity matrix (so each dimension of each observation has the same weight).

If wd is a rank-1 array of length $m$ (the dimensionality of the input variable), then this vector is the diagonal of the covariant weighting matrix for all data points.

If wd is a rank-1 array of length $n$ (the number of data points), then the $i$ 'th element is the weight for the i'th input variable observation (single-dimensional only).
If wd is a rank-2 array of shape ( $\mathrm{m}, \mathrm{m}$ ), then this is the full covariant weighting matrix broadcast to each observation.

If wd is a rank-2 array of shape ( $\mathrm{m}, \mathrm{n}$ ), then wd[:,i] is the diagonal of the covariant weighting matrix for the $i$ 'th observation.

If wd is a rank-3 array of shape ( $\mathrm{m}, \mathrm{m}, \mathrm{n}$ ), then wd[:,:;i] is the full specification of the covariant weighting matrix for each observation.
fix - fix is the same as ifixx in the class ODR. It is an array of integers
with the same shape as data.x that determines which input observations are treated as fixed. One can use a sequence of length $m$ (the dimensionality of the input observations) to fix some dimensions for all observations. A value of 0 fixes the observation, a value $>0$ makes it free.
meta - optional, freeform dictionary for metadata

## Methods

## set_meta

set_meta $\left({ }^{* *} k w d s\right)$
Update the metadata dictionary with the keywords and data provided by keywords.
Examples
data.set_meta(lab="Ph 7; Lab 26", title="Ag110 + Ag108 Decay")
class scipy.odr.Model (fcn, fjacb=None, fjacd=None, extra_args=None, estimate=None, implicit=0, meta=None)
The Model class stores information about the function you wish to fit.

It stores the function itself, at the least, and optionally stores functions which compute the Jacobians used during fitting. Also, one can provide a function that will provide reasonable starting values for the fit parameters possibly given the set of data.
The initialization method stores these into members of the same name.

```
fcn - fit function
 fcn(beta, x) -> y
fjacb - Jacobian of fcn wrt the fit parameters beta
 fjacb(beta, x) -> @f_i(x,B)/@B_j
```

fjacd - Jacobian of fen wrt the (possibly multidimensional) input
variable fjacd(beta, x) $->$ @f_i(x,B)/@x_j
extra_args - if specified, extra_args should be a tuple of extra
arguments to pass to fcn, fjacb, and fjacd. Each will be called like the following: apply(fcn,
(beta, x) + extra_args)
estimate - provide estimates of the fit parameters from the data:
estimate(data) -> estbeta
implicit - boolean variable which, if TRUE, specifies that the model is implicit; i.e fcn(beta, $x) \sim=0$ and there is no $y$ data to fit against
meta - optional
freeform dictionary of metadata for the model
Note that the fcn, fjacb, and fjacd operate on NumPy arrays and return a NumPy array. The estimate object takes an instance of the Data class.
Here are the rules for the shapes of the argument and return arrays:
$\mathbf{x}$ - if the input data is single-dimensional, then x is rank-1
array; i.e. $x=\operatorname{array}([1,2,3, \ldots]) ; x$.shape $=(n$,$) If the input data is multi-dimensional, then x$ is a rank-2 array; i.e., $x=\operatorname{array}([[1,2, \ldots],[2,4, \ldots]])$; x.shape $=(m, n)$ In all cases, it has the same shape as the input data array passed to odr(). m is the dimensionality of the input data, n is the number of observations.
$\mathbf{y}$ - if the response variable is single-dimensional, then $\mathbf{y}$ is a
rank-1 array, i.e., $\mathrm{y}=\operatorname{array}([2,4, \ldots])$; y.shape $=(\mathrm{n}$,$) If the response variable is multi-$ dimensional, then $y$ is a rank-2 array, i.e., $y=\operatorname{array}([[2,4, \ldots],[3,6, \ldots]]) ;$ y.shape $=(q$, $\mathrm{n})$ where q is the dimensionality of the response variable.
beta - rank- 1 array of length $p$ where $p$ is the number of parameters;
i.e. $\operatorname{beta}=\operatorname{array}\left(\left[B \_1, B \_2, \ldots, B \_p\right]\right)$
fjacb - if the response variable is multi-dimensional, then the
return array's shape is ( $q, p, n$ ) such that fjacb(x,beta) $[1, k, i]=@ f \_1(X, B) / @ B \_k$ evaluated at the $i^{\prime}$ th data point. If $q==1$, then the return array is only rank-2 and with shape ( $\mathrm{p}, \mathrm{n}$ ).
fjacd - as with fjacb, only the return array's shape is ( $\mathbf{q}, \mathbf{m}, \mathbf{n}$ ) such that $\operatorname{fjacd}(x, b e t a)[1, j, i]=@ f \_1(X, B) / @ X \_j$ at the $i$ 'th data point. If $q==1$, then the return array's shape is $(m, n)$. If $m==1$, the shape is $(q, n)$. If $m==q==1$, the shape is $(n$,$) .$

## Methods

```
set_meta
set_meta (**kwds)
```

Update the metadata dictionary with the keywords and data provided here.

## Examples

set_meta(name="'Exponential", equation=" $y=a \exp (b x)+c ")$
class scipy.odr.ODR (data, model, beta $0=$ None, delta $0=$ None, ifix $b=$ None, ifixx=None, job=None, iprint $=$ None, errfile $=$ None, rptfile=None, ndigit $=$ None, taufac $=$ None, sstol $=$ None, partol=None, maxit=None, stpb=None, stpd=None, sclb=None, scld=None, work=None, iwork=None)
The ODR class gathers all information and coordinates the running of the main fitting routine.
Members of instances of the ODR class have the same names as the arguments to the initialization routine.

## Parameters

data: :
instance of the Data class
model: :
instance of the Model class
beta0: :
a rank-1 sequence of initial parameter values. Optional if model provides an "estimate" function to estimate these values.

## delta0: optional :

a (double-precision) float array to hold the initial values of the errors in the input variables. Must be same shape as data.x

## ifixb: optional :

sequence of integers with the same length as beta0 that determines which parameters are held fixed. A value of 0 fixes the parameter, a value $>0$ makes the parameter free.

## ifixx: optional :

an array of integers with the same shape as data.x that determines which input observations are treated as fixed. One can use a sequence of length $m$ (the dimensionality of the input observations) to fix some dimensions for all observations. A value of 0 fixes the observation, a value $>0$ makes it free.

## job: optional :

an integer telling ODRPACK what tasks to perform. See p. 31 of the ODRPACK User's Guide if you absolutely must set the value here. Use the method set_job post-initialization for a more readable interface.
iprint: optional :
an integer telling ODRPACK what to print. See pp. 33-34 of the ODRPACK User's Guide if you absolutely must set the value here. Use the method set_iprint postinitialization for a more readable interface.
errfile: optional :
string with the filename to print ODRPACK errors to. Do Not Open This File Yourself!
rptfile: optional :
string with the filename to print ODRPACK summaries to. Do Not Open This File Yourself!
ndigit: optional :
integer specifying the number of reliable digits in the computation of the function.

## taufac: optional :

float specifying the initial trust region. The default value is 1 . The initial trust region is equal to taufac times the length of the first computed Gauss-Newton step. taufac must be less than 1 .

## sstol: optional :

float specifying the tolerance for convergence based on the relative change in the sum-of-squares. The default value is eps**(1/2) where eps is the smallest value such that $1+$ eps $>1$ for double precision computation on the machine. sstol must be less than 1.

## partol: optional :

float specifying the tolerance for convergence based on the relative change in the estimated parameters. The default value is eps**(2/3) for explicit models and eps**(1/3) for implicit models. partol must be less than 1 .

## maxit: optional :

integer specifying the maximum number of iterations to perform. For first runs, maxit is the total number of iterations performed and defaults to 50 . For restarts, maxit is the number of additional iterations to perform and defaults to 10 .

## stpb: optional :

sequence $(\operatorname{len}(\operatorname{stpb})==$ len(beta0)) of relative step sizes to compute finite difference derivatives wrt the parameters.

## stpd: optional :

array $($ stpd.shape $==$ data.x.shape or stpd.shape $=(\mathrm{m}$,$) ) of relative step sizes to$ compute finite difference derivatives wrt the input variable errors. If stpd is a rank-1 array with length $m$ (the dimensionality of the input variable), then the values are broadcast to all observations.
sclb: optional :
sequence $(\operatorname{len}(\operatorname{stpb})==$ len $($ beta 0$))$ of scaling factors for the parameters. The purpose of these scaling factors are to scale all of the parameters to around unity. Normally appropriate scaling factors are computed if this argument is not specified. Specify them yourself if the automatic procedure goes awry.
scld: optional :
array $($ scld.shape $==$ data.x.shape or scld.shape $==(m)$,$) of scaling factors for the$ errors in the input variables. Again, these factors are automatically computed if you do not provide them. If scld.shape $==(\mathrm{m}$,$) , then the scaling factors are broadcast to$ all observations.

## work: optional :

array to hold the double-valued working data for ODRPACK. When restarting, takes the value of self.output.work.

## iwork: optional :

array to hold the integer-valued working data for ODRPACK. When restarting, takes the value of self.output.iwork.
output: :
an instance if the Output class containing all of the returned data from an invocation of ODR.run() or ODR.restart()

## Methods

```
 restart
```

run
set_iprint
set_job
restart (iter=None)
Restarts the run with iter more iterations.

## Parameters

iter : int, optional
ODRPACK's default for the number of new iterations is 10 .

## Returns <br> output : Output instance

This object is also assigned to the attribute .output .
run ()
Run the fitting routine with all of the information given.

## Returns <br> output : Output instance

This object is also assigned to the attribute .output .
set_iprint (init=None, so_init=None, iter=None, so_iter=None, iter_step=None, final=None, so_final=None)
Set the iprint parameter for the printing of computation reports.
If any of the arguments are specified here, then they are set in the iprint member. If iprint is not set manually or with this method, then ODRPACK defaults to no printing. If no filename is specified with the member rptfile, then ODRPACK prints to stdout. One can tell ODRPACK to print to stdout in addition to the specified filename by setting the so_* arguments to this function, but one cannot specify to print to stdout but not a file since one can do that by not specifying a rptfile filename.
There are three reports: initialization, iteration, and final reports. They are represented by the arguments init, iter, and final respectively. The permissible values are 0,1 , and 2 representing "no report", "short report", and "long report" respectively.

The argument iter_step ( $0<=$ iter_step $<=9$ ) specifies how often to make the iteration report; the report will be made for every iter_step'th iteration starting with iteration one. If iter_step $==0$, then no iteration report is made, regardless of the other arguments.

If the rptfile is None, then any so_* arguments supplied will raise an exception.
set_job (fit_type=None, deriv=None, var_calc=None, del_init=None, restart=None)
Sets the "job" parameter is a hopefully comprehensible way.
If an argument is not specified, then the value is left as is. The default value from class initialization is for all of these options set to 0 .

```
Parameters
 fit_type : {0, 1, 2} int
 0 -> explicit ODR
 1-> implicit ODR
```

$2->$ ordinary least-squares

$$
\text { deriv: }\{0,1,2,3\} \mathrm{int}
$$

0 -> forward finite differences
$1->$ central finite differences
2 -> user-supplied derivatives (Jacobians) with results checked by ODRPACK

3 -> user-supplied derivatives, no checking var_calc : $\{0,1,2\}$ int

0 -> calculate asymptotic covariance matrix and fit parameter uncertainties (V_B, s_B) using derivatives recomputed at the final solution

1 -> calculate V_B and s_B using derivatives from last iteration
$2->$ do not calculate V_B and s_B
del_init : $\{0,1\}$ int
$0->$ initial input variable offsets set to 0
$1->$ initial offsets provided by user in variable "work"
restart : $\{0,1\}$ int
$0->$ fit is not a restart
$1->$ fit is a restart

## Notes

The permissible values are different from those given on pg. 31 of the ODRPACK User's Guide only in that one cannot specify numbers greater than the last value for each variable.

If one does not supply functions to compute the Jacobians, the fitting procedure will change deriv to 0 , finite differences, as a default. To initialize the input variable offsets by yourself, set del_init to 1 and put the offsets into the "work" variable correctly.
class scipy.odr. Output (output)
The Output class stores the output of an ODR run.
Takes one argument for initialization, the return value from the function $o d r$.

## Notes

The attributes listed as "optional" above are only present if $o d r$ was run with full_output=1.

## Attributes

| beta | ndarray | Estimated parameter values, of shape (q,). |
| :--- | :--- | :--- |
| sd_beta | ndarray | Standard errors of the estimated parameters, of shape (p,). |
| cov_beta | ndarray | Covariance matrix of the estimated parameters, of shape (p,p). |
| delta | ndarray, optional | Array of estimated errors in input variables, of same shape as $x$. |
| eps | ndarray, optional | Array of estimated errors in response variables, of same shape as $y$. |
| xplus | ndarray, optional | Array of $x+$ delta. |
| y | ndarray, optional | Array y = fcn (x + delta). |
| res_var | float, optional | Residual variance. |
| sum_sqare | float, optional | Sum of squares error. |
| sum_square_delta | float, optional | Sum of squares of delta error. |
| sum_square_eps | float, optional | Sum of squares of eps error. |
| inv_condnum | float, optional | Inverse condition number (cf. ODRPACK UG p. 77). |
| rel_error | float, optional | Relative error in function values computed within fcn. |
| work | ndarray, optional | Final work array. |
| work_ind | dict, optional | Indices into work for drawing out values (cf. ODRPACK UG p. 83). |
| info | int, optional | Reason for returning, as output by ODRPACK (cf. ODRPACK UG p. 38). |
| stopreason | list of str, optional | info interpreted into English. |

## Methods

pprint Support to pretty-print lists, tuples, \& dictionaries recursively.
pprint()
Pretty-print important results.

```
exception scipy.odr.odr_error
```

exception scipy.odr.odr_stop
scipy.odr.odr (fcn, beta0, y, x, we=None, wd=None, fjacb=None, fjacd=None, extra_args=None, ifixx=None, ifixb=None, job=0, iprint=0, errfile=None, rptfile=None, ndigit=0, taufac=0.0, sstol=-1.0, partol=-1.0, maxit=-1, stpb=None, stpd=None, sclb=None, scld $=$ None, work=None, iwork $=$ None, full_output=0)

### 3.12 Optimization and root finding (scipy .optimize)

### 3.12.1 Optimization

## General-purpose

```
fmin(func, x0[, args, xtol, ftol, maxiter, ...]) Minimize a function using the downhill simplex algorithm.
fmin_powell(func, x0[, args, xtol, ftol, ...]) Minimize a function using modified Powell's method.
fmin_cg(f, x0[, fprime, args, gtol, norm, ...]) Minimize a function using a nonlinear conjugate gradient
algorithm.
fmin_bfgs(f,x0[, fprime, args, gtol, norm, Minimize a function using the BFGS algorithm.
...])
fmin_ncg(f, x0, fprime[, fhess_p, fhess, ...]) Minimize a function using the Newton-CG method.
leastsq(func, x0[, args, Dfun, full_output, Minimize the sum of squares of a set of equations.
...])
```

scipy.optimize.fmin (func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output $=0$, disp $=1$, retall $=0$, callback $=$ None )
Minimize a function using the downhill simplex algorithm.

## Parameters

func : callable func (x, ${ }^{*}$ args)
The objective function to be minimized.
$\mathbf{x 0}$ : ndarray
Initial guess.
args : tuple
Extra arguments passed to func, i.e. $f(x, * \operatorname{args})$.
callback : callable
Called after each iteration, as callback(xk), where xk is the current parameter vector.

## Returns

xopt : ndarray
Parameter that minimizes function.
fopt : float
Value of function at minimum: fopt $=$ func (xopt).
iter : int
Number of iterations performed.
funcalls : int
Number of function calls made.
warnflag : int
1 : Maximum number of function evaluations made. 2 : Maximum number of iterations reached.
allvecs : list
Solution at each iteration.

## Other Parameters

xtol : float
Relative error in xopt acceptable for convergence.
ftol : number
Relative error in func(xopt) acceptable for convergence.
maxiter : int
Maximum number of iterations to perform.
maxfun : number
Maximum number of function evaluations to make.
full_output : bool
Set to True if fopt and warnflag outputs are desired.
disp : bool

Set to True to print convergence messages.
retall : bool
Set to True to return list of solutions at each iteration.

## Notes

Uses a Nelder-Mead simplex algorithm to find the minimum of function of one or more variables.
scipy.optimize.fmin_powell (func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp $=1$, retall=0, callback=None, direc=None)
Minimize a function using modified Powell's method.

## Parameters

func : callable $\mathrm{f}(\mathrm{x}, * \operatorname{args})$
Objective function to be minimized.
$\mathbf{x 0}$ : ndarray
Initial guess.
args : tuple
Extra arguments passed to func.
callback : callable
An optional user-supplied function, called after each iteration. Called as callback ( $x k$ ), where $x k$ is the current parameter vector.
direc : ndarray
Initial direction set.

## Returns

xopt : ndarray
Parameter which minimizes func.
fopt : number
Value of function at minimum: fopt $=$ func (xopt).
direc : ndarray
Current direction set.
iter : int
Number of iterations.
funcalls : int
Number of function calls made.
warnflag : int
Integer warning flag:
1: Maximum number of function evaluations. 2: Maximum number of iterations.
allvecs : list
List of solutions at each iteration.

## Other Parameters

xtol : float
Line-search error tolerance.
ftol : float
Relative error in func (xopt) acceptable for convergence.
maxiter : int
Maximum number of iterations to perform.
maxfun : int
Maximum number of function evaluations to make.
full_output : bool
If True, fopt, xi, direc, iter, funcalls, and warnflag are returned.
disp : bool
If True, print convergence messages.
retall : bool
If True, return a list of the solution at each iteration.

## Notes

Uses a modification of Powell's method to find the minimum of a function of N variables.
scipy.optimize.fmin_cg (f,x0,fprime=None, args=(), gtol=1.0000000000000001e-05, norm=inf, epsilon $=1.4901161193847656 e-08$, maxiter $=$ None, full_output $=0$, disp $=1$, retall=0, callback=None)
Minimize a function using a nonlinear conjugate gradient algorithm.

## Parameters

f: callable $\mathrm{f}\left(\mathrm{x},{ }^{*}\right.$ args $)$
Objective function to be minimized.
$\mathbf{x 0}$ : ndarray
Initial guess.
fprime : callable $f^{\prime}(x, * \operatorname{args})$
Function which computes the gradient of f.
args : tuple
Extra arguments passed to f and fprime.
gtol : float
Stop when norm of gradient is less than gtol.
norm : float
Order of vector norm to use. -Inf is min, $\operatorname{Inf}$ is max.
epsilon : float or ndarray
If fprime is approximated, use this value for the step size (can be scalar or vector).
callback : callable

An optional user-supplied function, called after each iteration. Called as callback(xk), where xk is the current parameter vector.

## Returns

xopt : ndarray
Parameters which minimize f, i.e. $f(x o p t)==$ fopt.
fopt : float
Minimum value found, f (xopt).
func_calls : int
The number of function_calls made.
grad_calls : int
The number of gradient calls made.
warnflag : int
1: Maximum number of iterations exceeded. 2 : Gradient and/or function calls not changing.
allvecs : ndarray
If retall is True (see other parameters below), then this vector containing the result at each iteration is returned.

## Other Parameters

maxiter : int
Maximum number of iterations to perform.
full_output : bool
If True then return fopt, func_calls, grad_calls, and warnflag in addition to xopt.
disp : bool
Print convergence message if True.
retall : bool
Return a list of results at each iteration if True.

## Notes

Optimize the function, f , whose gradient is given by fprime using the nonlinear conjugate gradient algorithm of Polak and Ribiere. See Wright \& Nocedal, 'Numerical Optimization', 1999, pg. 120-122.

$$
\begin{aligned}
\text { scipy.optimize.fmin_bfgs }( & f, \text {, x0, fprime }=\text { None, } \text { args }=(), \text { gtol }=1.0000000000000001 e-05, \text { norm }=\text { inf }, \\
& \text { epsilon }=1.4901161193847656 e-08, \quad \text { maxiter }=\text { None, } \quad \text { full_output }=0,
\end{aligned}
$$

Minimize a function using the BFGS algorithm.

## Parameters

$\mathbf{f}$ : callable $\mathrm{f}(\mathrm{x}, *$ args $)$
Objective function to be minimized.
$\mathbf{x 0}$ : ndarray
Initial guess.
fprime : callable $f^{\prime}\left(x,{ }^{*} \operatorname{args}\right)$

Gradient of $f$.
args : tuple
Extra arguments passed to f and fprime.
gtol : float
Gradient norm must be less than gtol before succesful termination.
norm : float
Order of norm (Inf is max, - $\operatorname{Inf}$ is min)
epsilon : int or ndarray
If fprime is approximated, use this value for the step size.
callback : callable
An optional user-supplied function to call after each iteration. Called as callback(xk), where xk is the current parameter vector.

## Returns

xopt : ndarray
Parameters which minimize $f$, i.e. $f(x o p t)==$ fopt.
fopt : float
Minimum value.
gopt : ndarray
Value of gradient at minimum, $\mathrm{f}^{\prime}$ (xopt), which should be near 0 .
Bopt : ndarray
Value of $1 / \mathrm{f}$ ' '(xopt), i.e. the inverse hessian matrix.
func_calls : int
Number of function_calls made.
grad_calls : int
Number of gradient calls made.
warnflag : integer
1: Maximum number of iterations exceeded. 2 : Gradient and/or function calls not changing.
allvecs : list
Results at each iteration. Only returned if retall is True.

## Other Parameters

maxiter : int
Maximum number of iterations to perform.
full_output : bool
If True,return fopt, func_calls, grad_calls, and warnflag in addition to xopt.
disp : bool
Print convergence message if True.
retall : bool
Return a list of results at each iteration if True.

## Notes

Optimize the function, f , whose gradient is given by fprime using the quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) See Wright, and Nocedal 'Numerical Optimization', 1999, pg. 198.
scipy.optimize.fmin_ncg $f, \quad x 0, \quad$ fprime, fhess_p=None, fhess=None, args=(), avextol $=1.0000000000000001 e-05, \quad$ epsilon $=1.4901161193847656 e-08$, maxiter $=$ None, full_output $=0$, disp $=1$, retall $=0$, callback=None)
Minimize a function using the Newton-CG method.

## Parameters

f: callable $\mathrm{f}(\mathrm{x}$, *args)
Objective function to be minimized.
$\mathbf{x 0}$ : ndarray
Initial guess.
fprime : callable $f^{\prime}(x, * \operatorname{args})$
Gradient of $f$.
fhess_p : callable fhess_p(x,p,*args)
Function which computes the Hessian of f times an arbitrary vector, p .
fhess : callable fhess(x,*args)
Function to compute the Hessian matrix of $f$.
args : tuple
Extra arguments passed to f, fprime, fhess_p, and fhess (the same set of extra arguments is supplied to all of these functions).
epsilon : float or ndarray
If fhess is approximated, use this value for the step size.
callback : callable
An optional user-supplied function which is called after each iteration. Called as callback(xk), where xk is the current parameter vector.

## Returns

xopt : ndarray
Parameters which minimizer f, i.e. $f(x o p t)==$ fopt.
fopt : float
Value of the function at xopt, i.e. fopt $=f($ xopt $)$.
fcalls : int
Number of function calls made.
gcalls : int
Number of gradient calls made.
hcalls : int
Number of hessian calls made.
warnflag : int
Warnings generated by the algorithm. 1 : Maximum number of iterations exceeded.
allvecs : list
The result at each iteration, if retall is True (see below).

## Other Parameters

avextol : float
Convergence is assumed when the average relative error in the minimizer falls below this amount.
maxiter : int
Maximum number of iterations to perform.
full_output : bool
If True, return the optional outputs.
disp : bool
If True, print convergence message.
retall : bool
If True, return a list of results at each iteration.

## Notes

Only one of fhess $p$ or fhess need to be given. If fhess is provided, then fhess $p$ will be ignored. If neither fhess nor fhess_p is provided, then the hessian product will be approximated using finite differences on fprime. fhess_p must compute the hessian times an arbitrary vector. If it is not given, finite-differences on fprime are used to compute it. See Wright \& Nocedal, 'Numerical Optimization', 1999, pg. 140.
scipy.optimize.leastsq (func, x0, args=(), Dfun=None, full_output=0, col_deriv=0, ftol=1.49012e-
08, xtol=1.49012e-08, gtol=0.0, maxfev=0, epsfcn=0.0, factor=100, diag $=$ None)
Minimize the sum of squares of a set of equations.

```
x = arg min(sum(func(y)**2,axis=0))
 y
```


## Parameters

func : callable
should take at least one (possibly length N vector) argument and returns M floating point numbers.
$\mathbf{x 0}$ : ndarray
The starting estimate for the minimization.
args : tuple
Any extra arguments to func are placed in this tuple.
Dfun : callable
A function or method to compute the Jacobian of func with derivatives across the rows. If this is None, the Jacobian will be estimated.
full_output : bool
non-zero to return all optional outputs.
col_deriv : bool
non-zero to specify that the Jacobian function computes derivatives down the columns (faster, because there is no transpose operation).
ftol : float
Relative error desired in the sum of squares.
xtol : float
Relative error desired in the approximate solution.
gtol : float
Orthogonality desired between the function vector and the columns of the Jacobian.
maxfev : int
The maximum number of calls to the function. If zero, then $100 *(N+1)$ is the maximum where N is the number of elements in x 0 .
epsfen : float
A suitable step length for the forward-difference approximation of the Jacobian (for Dfun=None). If epsfen is less than the machine precision, it is assumed that the relative errors in the functions are of the order of the machine precision.
factor : float
A parameter determining the initial step bound (factor * \| \| diag * x||). Should be in interval (0.1, 100).
diag : sequence
N positive entries that serve as a scale factors for the variables.

## Returns

$\mathbf{x}$ : ndarray
The solution (or the result of the last iteration for an unsuccessful call).
$\operatorname{cov}_{-}$x : ndarray
Uses the fjac and ipvt optional outputs to construct an estimate of the jacobian around the solution. None if a singular matrix encountered (indicates very flat curvature in some direction). This matrix must be multiplied by the residual standard deviation to get the covariance of the parameter estimates - see curve_fit.
infodict : dict
a dictionary of optional outputs with the key s:

```
- 'nfev' : the number of function calls
- 'fvec' : the function evaluated at the output
- 'fjac' : A permutation of the R matrix of a QR
 factorization of the final approximate
 Jacobian matrix, stored column wise.
 Together with ipvt, the covariance of the
 estimate can be approximated.
- 'ipvt' : an integer array of length N which defines
 a permutation matrix, p, such that
 fjac*p = q*r, where r is upper triangular
```

```
 with diagonal elements of nonincreasing
 magnitude. Column j of p is column ipvt(j)
 of the identity matrix.
- 'qtf' : the vector (transpose(q) * fvec).
```

mesg : str
A string message giving information about the cause of failure.
ier : int
An integer flag. If it is equal to $1,2,3$ or 4 , the solution was found. Otherwise, the solution was not found. In either case, the optional output variable 'mesg' gives more information.

## Notes

"leastsq" is a wrapper around MINPACK's lmdif and lmder algorithms.
cov_x is a Jacobian approximation to the Hessian of the least squares objective function. This approximation assumes that the objective function is based on the difference between some observed target data (ydata) and a (non-linear) function of the parameters $f$ (xdata, params)

```
func(params) = ydata - f(xdata, params)
```

so that the objective function is

```
 min sum((ydata - f(xdata, params))**2, axis=0)
params
```


## Constrained (multivariate)

```
 fmin_l_bfgs_b(func, x0[, fprime, Minimize a function func using the L-BFGS-B algorithm.
 args, ...])
 fmin_tnc(func, x0[, fprime, args, ...]) Minimize a function with variables subject to bounds, using gradient
 information.
 fmin_cobyla(func, x0, cons[, args, Minimize a function using the Constrained Optimization BY Linear
 ...])
 fmin_slsqp(func, x0[, eqcons, Minimize a function using Sequential Least SQuares Programming
 f_eqcons, ...])
nnls(A, b) Solve argmin_x || Ax - b ||_2 for x>=0.
scipy.optimize.fmin_l_bfgs_b (func, x0, fprime=None, args=(), approx_grad=0, bounds=None,
 m=10, factr=10000000.0, pgtol=1.0000000000000001e-05,
 epsilon=1e-08, iprint=-1, maxfun=15000, disp=None)
Minimize a function func using the L-BFGS-B algorithm.
```

```
Parameters
```

Parameters
func : callable f(x, *args)
func : callable f(x, *args)
Function to minimise.
$\mathbf{x 0}$ : ndarray
Initial guess.
fprime : callable fprime ( $\mathrm{x}, *$ *args)

```

The gradient of func. If None, then func returns the function value and the gradient (f, g \(=\) func (x, *args)), unless approx_grad is True in which case func returns only \(f\).
args : tuple
Arguments to pass to func and fprime.
approx_grad : bool
Whether to approximate the gradient numerically (in which case func returns only the function value).
bounds : list
(min, max) pairs for each element in \(x\), defining the bounds on that parameter. Use None for one of min or max when there is no bound in that direction.
m : int
The maximum number of variable metric corrections used to define the limited memory matrix. (The limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it.)
factr : float
The iteration stops when \(\left(f^{\wedge} k-f^{\wedge}\{k+1\}\right) / \max \left\{\left|f^{\wedge} k\right|,\left|f^{\wedge}\{k+1\}\right|, 1\right\}\) \(<=\) factr * eps, where eps is the machine precision, which is automatically generated by the code. Typical values for factr are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy.
pgtol : float
The iteration will stop when \(\max \{\mid p r o j\) g_i \(\mid i=1, \ldots, n\}<=\) pgtol where pg_i is the i-th component of the projected gradient.
epsilon : float
Step size used when approx_grad is True, for numerically calculating the gradient iprint : int

Controls the frequency of output. iprint < 0 means no output.
disp : int, optional
If zero, then no output. If positive number, then this over-rides iprint.
maxfun : int
Maximum number of function evaluations.

\section*{Returns}
\(\mathbf{x}\) : ndarray
Estimated position of the minimum.
f: float
Value of func at the minimum.
d : dict
Information dictionary.
- d['warnflag'] is - 0 if converged, -1 if too many function evaluations, -2 if stopped for another reason, given in d['task']
- d['grad'] is the gradient at the minimum (should be 0 ish)
- d['funcalls'] is the number of function calls made.

\section*{Notes}

License of L-BFGS-B (Fortran code):
The version included here (in fortran code) is 2.1 (released in 1997). It was written by Ciyou Zhu, Richard Byrd, and Jorge Nocedal <nocedal@ece.nwu.edu>. It carries the following condition for use:

This software is freely available, but we expect that all publications describing work using this software , or all commercial products using it, quote at least one of the references given below.

\section*{References}
-R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound Constrained Optimization, (1995), SIAM Journal on Scientific and Statistical Computing, 16, 5, pp. 1190-1208.
-C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization (1997), ACM Transactions on Mathematical Software, Vol 23, Num. 4, pp. 550-560.
scipy.optimize.fmin_tnc (func, x0, fprime=None, args=(), approx_grad=0, bounds=None, epsilon=1e-08, scale=None, offset=None, messages=15, maxCGit=1, maxfun=None, eta=-1, stepmx=0, accuracy=0, fmin=0, ftol=-1, xtol \(=-1\), pgtol \(=-1\), rescale \(=-1\), disp \(=\) None)
Minimize a function with variables subject to bounds, using gradient information.

\section*{Parameters}
func : callable func (\(x\), *args)
Function to minimize. Should return \(f\) and \(g\), where \(f\) is the value of the function and \(g\) its gradient (a list of floats). If the function returns None, the minimization is aborted.
\(\mathbf{x 0}\) : list of floats
Initial estimate of minimum.
fprime: callable fprime (x, *args)
Gradient of func. If None, then func must return the function value and the gradient (f,g \(=\) func (x, *args)).
args : tuple
Arguments to pass to function.
approx_grad : bool
If true, approximate the gradient numerically.
bounds : list
(min, max) pairs for each element in \(x\), defining the bounds on that parameter. Use None or \(+/\)-inf for one of min or max when there is no bound in that direction.
scale : list of floats
Scaling factors to apply to each variable. If None, the factors are up-low for interval bounded variables and \(1+[x]\) fo the others. Defaults to None
offset : float

Value to substract from each variable. If None, the offsets are (up+low)/2 for interval bounded variables and x for the others.
messages : :
Bit mask used to select messages display during minimization values defined in the MSGS dict. Defaults to MGS_ALL.
disp : int
Integer interface to messages. \(0=\) no message, \(5=\) all messages
maxCGit : int
Maximum number of hessian*vector evaluations per main iteration. If maxCGit \(==0\), the direction chosen is -gradient if maxCGit \(<0\), maxCGit is set to \(\max (1, \min (50, \mathrm{n} / 2)\)). Defaults to -1 .
maxfun : int
Maximum number of function evaluation. if None, maxfun is set to \(\max (100\), \(10 * \operatorname{len}(x 0))\). Defaults to None.
eta : float
Severity of the line search. if \(<0\) or \(>1\), set to 0.25 . Defaults to -1 .
stepmx : float
Maximum step for the line search. May be increased during call. If too small, it will be set to 10.0 . Defaults to 0 .
accuracy : float
Relative precision for finite difference calculations. If \(<=\) machine_precision, set to sqrt(machine_precision). Defaults to 0 .
fmin : float
Minimum function value estimate. Defaults to 0 .
ftol : float
Precision goal for the value of f in the stoping criterion. If \(\mathrm{ftol}<0.0, \mathrm{ftol}\) is set to 0.0 defaults to -1 .
xtol : float
Precision goal for the value of x in the stopping criterion (after applying x scaling factors). If xtol \(<0.0\), xtol is set to sqrt(machine_precision). Defaults to -1 .
pgtol : float
Precision goal for the value of the projected gradient in the stopping criterion (after applying \(x\) scaling factors). If pgtol \(<0.0\), pgtol is set to \(1 \mathrm{e}-2 * \operatorname{sqrt}\) (accuracy). Setting it to 0.0 is not recommended. Defaults to -1 .
rescale : float
Scaling factor \((\) in \(\log 10)\) used to trigger f value rescaling. If 0 , rescale at each iteration. If a large value, never rescale. If \(<0\), rescale is set to 1.3 .

\section*{Returns}
\(\mathbf{x}\) : list of floats
The solution.
nfeval : int
The number of function evaluations.
rc: int
Return code as defined in the RCSTRINGS dict.
scipy.optimize.fmin_cobyla (func, x0, cons, args=(), consargs=None, rhobeg=1.0, rhoend=0.0001, iprint=1, maxfun=1000, disp=None)
Minimize a function using the Constrained Optimization BY Linear Approximation (COBYLA) method.

\section*{Parameters}
func : callable
Function to minimize. In the form func(x, *args).
\(\mathbf{x 0}\) : ndarray
Initial guess.
cons : sequence
Constraint functions; must all be \(>=0\) (a single function if only 1 constraint). Each function takes the parameters \(x\) as its first argument.
args : tuple
Extra arguments to pass to function.
consargs : tuple
Extra arguments to pass to constraint functions (default of None means use same extra arguments as those passed to func). Use () for no extra arguments.

\section*{rhobeg : :}

Reasonable initial changes to the variables.

\section*{rhoend : :}

Final accuracy in the optimization (not precisely guaranteed).
iprint : \(\{0,1,2,3\}\)
Controls the frequency of output; 0 implies no output. Deprecated.
disp : \(\{0,1,2,3\}\)
Over-rides the iprint interface. Preferred.
maxfun : int
Maximum number of function evaluations.

\section*{Returns}
\(\mathbf{x}\) : ndarray
The argument that minimises \(f\).

\section*{Examples}

Minimize the objective function \(\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x} * \mathrm{y}\) subject to the constraints \(\mathrm{x} * * 2+\mathrm{y}^{* *} 2<1\) and \(\mathrm{y}>0\) :
```

>>> def objective(x):
... return x[0]*x[1]
...
>>> def constrl(x):

```
```

... return 1-(x[0]**2 + x[1]**2)
>>> def constr2(x):
... return x[1]
>>> fmin_cobyla(objective, [0.0, 0.1], [constr1, constr2], rhoend=1e-7)
Normal return from subroutine COBYLA
NFVALS = 64 F =-5.000000E-01 MAXCV = 1.998401E-14
X =-7.071069E-01 7.071067E-01
array([-0.70710685, 0.70710671])

```

The exact solution is \((-\operatorname{sqrt}(2) / 2, \operatorname{sqrt}(2) / 2)\).
scipy.optimize.fmin_slsqp (func, x0, eqcons=[], f_eqcons=None, ieqcons=[], f_ieqcons=None, bounds=[], fprime=None, fprime_eqcons=None, fprime_ieqcons=None, args=(), iter=100, acc \(=9.9999999999999995 e-07\), iprint \(=1\), disp \(=\) None, full_output \(=0\), epsilon \(=1.4901161193847656 e-08\))
Minimize a function using Sequential Least SQuares Programming
Python interface function for the SLSQP Optimization subroutine originally implemented by Dieter Kraft.

\section*{Parameters}
func : callable \(\mathrm{f}(\mathrm{x}, * \operatorname{args})\)
Objective function.
\(\mathbf{x 0}\) : 1-D ndarray of float
Initial guess for the independent variable(s).
eqcons : list
A list of functions of length \(n\) such that eqcons \([j](x 0, * \operatorname{args})==0.0\) in a successfully optimized problem.
f_eqcons : callable \(f(x, * \operatorname{args})\)
Returns a 1-D array in which each element must equal 0.0 in a successfully optimized problem. If f_eqcons is specified, eqcons is ignored.
ieqcons : list
A list of functions of length \(n\) such that ieqcons \([j](x 0, * \operatorname{args})>=0.0\) in a successfully optimized problem.
f_ieqcons : callable \(\mathrm{f}\left(\mathrm{x} 0,{ }^{*} \operatorname{args}\right)\)
Returns a 1-D ndarray in which each element must be greater or equal to 0.0 in a successfully optimized problem. If \(f\) _ieqcons is specified, ieqcons is ignored.
bounds : list
A list of tuples specifying the lower and upper bound for each independent variable [(xl0, xu0),(xl1, xu1),...]
fprime : callable \(f(x, * \operatorname{args})\)
A function that evaluates the partial derivatives of func.
fprime_eqcons : callable \(f(x, * \operatorname{args})\)

A function of the form \(f(x\), *args) that returns the \(m\) by \(n\) array of equality constraint normals. If not provided, the normals will be approximated. The array returned by fprime_eqcons should be sized as (len(eqcons), len(x0)).
fprime_ieqcons : callable \(f\left(x,{ }^{*} \operatorname{args}\right)\)
A function of the form \(f(x, * \operatorname{args})\) that returns the m by n array of inequality constraint normals. If not provided, the normals will be approximated. The array returned by fprime_ieqcons should be sized as (len(ieqcons), len(x0)).
args : sequence
Additional arguments passed to func and fprime.
iter : int
The maximum number of iterations.
acc : float
Requested accuracy.
iprint : int
The verbosity of fmin_slsqp :
- iprint <= 0 : Silent operation
- iprint \(=1:\) Print summary upon completion (default)
- iprint \(>=2\) : Print status of each iterate and summary
disp : int
Over-rides the iprint interface (preferred).
full_output : bool
If False, return only the minimizer of func (default). Otherwise, output final objective function and summary information.
epsilon : float
The step size for finite-difference derivative estimates.

\section*{Returns}
\(\mathbf{x}\) : ndarray of float
The final minimizer of func.
\(\mathbf{f x}\) : ndarray of float, if full_output is true
The final value of the objective function.
its : int, if full_output is true
The number of iterations.
imode : int, if full_output is true
The exit mode from the optimizer (see below).
smode : string, if full_output is true
Message describing the exit mode from the optimizer.

\section*{Notes}

Exit modes are defined as follows
```

-1 : Gradient evaluation required (g \& a)
0 ~ : ~ O p t i m i z a t i o n ~ t e r m i n a t e d ~ s u c c e s s f u l l y .
1 : Function evaluation required (f \& c)
2 : More equality constraints than independent variables
3 : More than 3*n iterations in LSQ subproblem
4 : Inequality constraints incompatible
5 ~ : ~ S i n g u l a r ~ m a t r i x ~ E ~ i n ~ L S Q ~ s u b p r o b l e m
6 : Singular matrix C in LSQ subproblem
7 : Rank-deficient equality constraint subproblem HFTI
8 : Positive directional derivative for linesearch
9 : Iteration limit exceeded

```

\section*{Examples}

Examples are given in the tutorial.
```

scipy.optimize.nnls}(A,b
Solve argmin_x | | Ax - b ||_2 for x>=0.

```

\section*{Parameters}

A: ndarray
Matrix A as shown above.
b: ndarray
Right-hand side vector.

\section*{Returns}
x: ndarray
Solution vector.
rnorm : float
The residual, || Ax-b ||_2.

\section*{Notes}

This is a wrapper for NNLS.F.

\section*{Global}

Minimize a function using simulated annealing.
Schedule is a schedule class implementing the annealing schedule. Available ones are 'fast', 'cauchy', 'boltzmann'

\section*{Parameters}
func : callable \(\mathrm{f}(\mathrm{x}, * \operatorname{args})\)
Function to be optimized.
\(\mathbf{x 0}\) : ndarray
Initial guess.
args : tuple
Extra parameters to func.
schedule : base_schedule
Annealing schedule to use (a class).
full_output : bool
Whether to return optional outputs.
T0 : float
Initial Temperature (estimated as 1.2 times the largest cost-function deviation over random points in the range).
Tf : float
Final goal temperature.
maxeval : int
Maximum function evaluations.
maxaccept : int
Maximum changes to accept.
maxiter : int
Maximum cooling iterations.
learn_rate : float
Scale constant for adjusting guesses.
boltzmann : float
Boltzmann constant in acceptance test (increase for less stringent test at each temperature).
feps : float
Stopping relative error tolerance for the function value in last four coolings.
quench, \(\mathbf{m}, \mathbf{n}\) : float
Parameters to alter fast_sa schedule.
lower, upper : float or ndarray
Lower and upper bounds on \(x\).
dwell : int
The number of times to search the space at each temperature.

\section*{Returns}
xmin : ndarray
Point giving smallest value found.
retval : int
Flag indicating stopping condition:
```

0 : Cooled to global optimum
1 : Cooled to final temperature
2 : Maximum function evaluations
3 : Maximum cooling iterations reached
4 ~ : ~ M a x i m u m ~ a c c e p t e d ~ q u e r y ~ l o c a t i o n s ~ r e a c h e d

```

Jmin : float
Minimum value of function found.
T: float
Final temperature.
feval : int
Number of function evaluations.
iters : int
Number of cooling iterations.
accept : int
Number of tests accepted.
scipy.optimize.brute(func, ranges, args=(), Ns=20, full_output=0, finish=<function fmin at Ox45f79b0>)
Minimize a function over a given range by brute force.
Parameters
func : callable \(f(x, * a r g s)\)
Objective function to be minimized.
ranges: tuple
Each element is a tuple of parameters or a slice object to be handed to numpy.mgrid.
args : tuple
Extra arguments passed to function.
Ns : int
Default number of samples, if those are not provided.
full_output : bool
If True, return the evaluation grid.

\section*{Returns}
\(\mathbf{x 0}\) : ndarray
Value of arguments to \(f u n c\), giving minimum over the grid.
fval : int
Function value at minimum.
grid : tuple
Representation of the evaluation grid. It has the same length as x 0 .
Jout : ndarray
Function values over grid: Jout \(=\) func (*grid).

\section*{Notes}

Find the minimum of a function evaluated on a grid given by the tuple ranges.

\section*{Scalar function minimizers}
fminbound(func, \(x\), Bounded minimization for scalar functions.
x2[, args, xtol, ...]) golden(func[, args, brack, tol, full_output]) bracket(func[, xa, xb, args, grow_limit, ...])
brent(func[, args, brack, tol, full_output,

Given a function of one-variable and a possible bracketing interval, return the minimum of the function isolated to a fractional precision of tol.
Given a function and distinct initial points, search in the downhill direction (as defined by the initital points) and return new points \(\mathrm{xa}, \mathrm{xb}, \mathrm{xc}\) that bracket the minimum of the function \(f(x a)>f(x b)<f(x c)\).
Given a function of one-variable and a possible bracketing interval, return the minimum of the function isolated to a fractional precision of tol. ...])
scipy.optimize.fminbound(func, x1, x2, args=(), xtol=1.0000000000000001e-05, maxfun=500, full_output=0, \(\operatorname{disp=1)}\)
Bounded minimization for scalar functions.

\section*{Parameters}
func : callable \(\mathrm{f}(\mathrm{x}, * \operatorname{args})\)
Objective function to be minimized (must accept and return scalars).
\(\mathbf{x 1}, \mathbf{x 2}\) : float or array scalar
The optimization bounds.
args : tuple
Extra arguments passed to function.
xtol : float
The convergence tolerance.
maxfun : int
Maximum number of function evaluations allowed.
full_output : bool
If True, return optional outputs.
disp : int

\section*{If non-zero, print messages.}

0 : no message printing. 1 : non-convergence notification messages only. 2 :
print a message on convergence too. 3 : print iteration results.

\section*{Returns}
xopt : ndarray
Parameters (over given interval) which minimize the objective function.
fval : number
The function value at the minimum point.
ierr : int
An error flag (0 if converged, 1 if maximum number of function calls reached).
numfunc : int
The number of function calls made.

\section*{Notes}

Finds a local minimizer of the scalar function func in the interval \(\mathrm{x} 1<\mathrm{xopt}<\mathrm{x} 2\) using Brent's method. (See brent for auto-bracketing).
scipy.optimize.golden (func, args=(), brack=None, tol=1.4901161193847656e-08, full_output=0)
Given a function of one-variable and a possible bracketing interval, return the minimum of the function isolated to a fractional precision of tol.

\section*{Parameters}
func : callable func (\(\mathrm{x},{ }^{*}\) args)
Objective function to minimize.
args : tuple
Additional arguments (if present), passed to func.
brack : tuple
Triple (\(\mathrm{a}, \mathrm{b}, \mathrm{c}\)), where \((\mathrm{a}<\mathrm{b}<\mathrm{c}\)) and func(b\()<\) func \((\mathrm{a})\), func(c). If bracket consists of two numbers (\(\mathrm{a}, \mathrm{c}\)), then they are assumed to be a starting interval for a downhill bracket search (see bracket); it doesn't always mean that obtained solution will satisfy \(\mathrm{a}<=\mathrm{x}<=\mathrm{c}\).
tol : float
\(x\) tolerance stop criterion
full_output : bool
If True, return optional outputs.

\section*{Notes}

Uses analog of bisection method to decrease the bracketed interval.
scipy.optimize.bracket (func, \(x a=0.0, x b=1.0\), args=(), grow_limit=110.0, maxiter=1000)
Given a function and distinct initial points, search in the downhill direction (as defined by the initital points) and return new points \(x a, x b\), \(x c\) that bracket the minimum of the function \(f(x a)>f(x b)<f(x c)\). It doesn't always mean that obtained solution will satisfy \(\mathrm{xa}<=\mathrm{x}<=\mathrm{xb}\)

\section*{Parameters}
func : callable \(f(x, * \operatorname{args})\)
Objective function to minimize.
\(\mathbf{x a}, \mathbf{x b}\) : float
Bracketing interval.
args : tuple
Additional arguments (if present), passed to func.
grow_limit : float
Maximum grow limit.
maxiter : int
Maximum number of iterations to perform.

\section*{Returns}
\(\mathbf{x a}, \mathbf{x b}, \mathbf{x c}\) : float
Bracket.
\(\mathbf{f a}, \mathbf{f b}, \mathbf{f c}\) : float
Objective function values in bracket.
funcalls : int
Number of function evaluations made.
scipy.optimize.brent (func, args=(), brack=None, tol=1.48e-08, full_output=0, maxiter=500)
Given a function of one-variable and a possible bracketing interval, return the minimum of the function isolated to a fractional precision of tol.

\section*{Parameters}
func : callable \(\mathrm{f}(\mathrm{x}, * \operatorname{args})\)
Objective function.
args :
Additional arguments (if present).
brack : tuple
Triple (\(a, b, c\)) where \((a<b<c)\) and func \((b)<\) func \((a)\), func \((c)\). If bracket consists of two numbers (\(\mathrm{a}, \mathrm{c}\)) then they are assumed to be a starting interval for a downhill bracket search (see bracket); it doesn't always mean that the obtained solution will satisfy \(\mathrm{a}<=\mathrm{x}<=\mathrm{c}\).
full_output : bool
If True, return all output args (xmin, fval, iter, funcalls).

\section*{Returns}
xmin : ndarray
Optimum point.
fval: float
Optimum value.
iter : int
Number of iterations.
funcalls : int
Number of objective function evaluations made.

\section*{Notes}

Uses inverse parabolic interpolation when possible to speed up convergence of golden section method.

\subsection*{3.12.2 Fitting}
```

curve_fit(f, xdata, ydata, **kw[, p0, sigma]) Use non-linear least squares to fit a function, f, to data.
scipy.optimize.curve_fit (f,xdata, ydata,p0=None, sigma=None,**kw)
Use non-linear least squares to fit a function, f , to data.
Assumes ydata $=f(x d a t a, * p a r a m s)+e p s$

```

\section*{Parameters}
f: callable
The model function, \(\mathrm{f}(\mathrm{x}, \ldots)\). It must take the independent variable as the first argument and the parameters to fit as separate remaining arguments.
xdata : An N -length sequence or an \((\mathrm{k}, \mathrm{N})\)-shaped array
for functions with k predictors. The independent variable where the data is measured.
ydata : N-length sequence
The dependent data - nominally \(f(x d a t a, . .\).
p0 : None, scalar, or M-length sequence
Initial guess for the parameters. If None, then the initial values will all be 1 (if the number of parameters for the function can be determined using introspection, otherwise a ValueError is raised).
sigma : None or N-length sequence
If not None, it represents the standard-deviation of ydata. This vector, if given, will be used as weights in the least-squares problem.

\section*{Returns}
popt : array
Optimal values for the parameters so that the sum of the squared error of \(f(x d a t a\), *popt) - ydata is minimized
pcov : 2d array
The estimated covariance of popt. The diagonals provide the variance of the parameter estimate.

\section*{Notes}

The algorithm uses the Levenburg-Marquardt algorithm: scipy.optimize.leastsq. Additional keyword arguments are passed directly to that algorithm.

\section*{Examples}
```

>>> import numpy as np
>>> from scipy.optimize import curve_fit
>>> def func(x, a, b, c):
... return a*np.exp (-b*x) + c
>>> x = np.linspace (0,4,50)
>>> y = func(x, 2.5, 1.3, 0.5)
>>> yn = y + 0.2*np.random.normal(size=len(x))
>>> popt, pcov = curve_fit(func, x, yn)

```

\subsection*{3.12.3 Root finding}

\section*{Scalar functions}
```

brentq(f, a, b[, args, xtol, rtol, maxiter, ...]) Find a root of a function in given interval.
brenth(f, a, b[, args, xtol, rtol, maxiter, ...]) Find root of f in [a,b].
ridder(f, a, b[, args, xtol, rtol, maxiter, ...]) Find a root of a function in an interval.
bisect(f, a, b[, args, xtol, rtol, maxiter, ...]) Find root of f in [a,b].
newton(func, x0[, fprime, args, tol, maxiter]) Find a zero using the Newton-Raphson or secant method.
scipy.optimize.brentq (f, a, b, args=(), xtol=9.9999999999999998e-13, rtol=4.4408920985006262e-
16, maxiter=100, full_output=False, disp=True)

```

Find a root of a function in given interval.
Return float, a zero of \(f\) between \(a\) and \(b . f\) must be a continuous function, and \([\mathrm{a}, \mathrm{b}]\) must be a sign changing interval.

Description: Uses the classic Brent (1973) method to find a zero of the function \(f\) on the sign changing interval [a , b]. Generally considered the best of the rootfinding routines here. It is a safe version of the secant method that uses inverse quadratic extrapolation. Brent's method combines root bracketing, interval bisection, and inverse quadratic interpolation. It is sometimes known as the van Wijngaarden-Deker-Brent method. Brent (1973) claims convergence is guaranteed for functions computable within [a,b].
[Brent1973] provides the classic description of the algorithm. Another description can be found in a recent edition of Numerical Recipes, including [PressEtal1992]. Another description is at http://mathworld.wolfram.com/BrentsMethod.html. It should be easy to understand the algorithm just by reading our code. Our code diverges a bit from standard presentations: we choose a different formula for the extrapolation step.

\section*{Parameters}
f: function
Python function returning a number. \(f\) must be continuous, and \(f(a)\) and \(f(b)\) must have opposite signs.
a: number
One end of the bracketing interval \([\mathrm{a}, \mathrm{b}]\).
b : number
The other end of the bracketing interval \([a, b]\).
xtol : number, optional
The routine converges when a root is known to lie within xtol of the value return. Should be \(>=0\). The routine modifies this to take into account the relative precision of doubles.
maxiter : number, optional
if convergence is not achieved in maxiter iterations, and error is raised. Must be \(>=\) 0 .
args : tuple, optional
containing extra arguments for the function \(f . \quad f\) is called by apply(f, (x) +args).
full_output : bool, optional
If full_output is False, the root is returned. If full_output is True, the return value is \((\mathrm{x}, \mathrm{r})\), where \(x\) is the root, and \(r\) is a RootResults object.
disp : bool, optional
If True, raise RuntimeError if the algorithm didn't converge.

\section*{Returns}
\(\mathbf{x 0}\) : float
Zero of \(f\) between \(a\) and \(b\).
\(\mathbf{r}\) : RootResults (present if full_output = True)
Object containing information about the convergence. In particular, r. converged is True if the routine converged.

\section*{See Also:}

\section*{multivariate}
fmin, fmin_powell, fmin_cg, fmin_bfgs, fmin_ncg
nonlinear
leastsq
constrained
fmin_l_bfgs_b,fmin_tnc, fmin_cobyla
global
anneal, brute
local
fminbound, brent, golden, bracket
n -dimensional
fsolve
one-dimensional
brentq, brenth, ridder, bisect, newton
scalar
fixed_point

\section*{Notes}
\(f\) must be continuous. \(\mathrm{f}(\mathrm{a})\) and \(\mathrm{f}(\mathrm{b})\) must have opposite signs.

\section*{References}
[Brent1973], [PressEtal1992]
scipy.optimize.brenth (f, a, b, args=(), xtol=9.9999999999999998e-13, rtol=4.4408920985006262e-
16, maxiter \(=100\), full_output=False, disp=True)
Find root of \(f\) in \([a, b]\).
A variation on the classic Brent routine to find a zero of the function \(f\) between the arguments \(a\) and \(b\) that uses hyperbolic extrapolation instead of inverse quadratic extrapolation. There was a paper back in the 1980's ... f(a) and \(f(b)\) can not have the same signs. Generally on a par with the brent routine, but not as heavily tested. It is a safe version of the secant method that uses hyperbolic extrapolation. The version here is by Chuck Harris.

\section*{Parameters}
f: function
Python function returning a number. \(f\) must be continuous, and \(f(a)\) and \(f(b)\) must have opposite signs.
a : number

One end of the bracketing interval \([a, b]\).
b : number
The other end of the bracketing interval \([a, b]\).
xtol : number, optional
The routine converges when a root is known to lie within xtol of the value return. Should be \(>=0\). The routine modifies this to take into account the relative precision of doubles.
maxiter : number, optional
if convergence is not achieved in maxiter iterations, and error is raised. Must be \(>=\) 0.
args : tuple, optional
containing extra arguments for the function \(f . \quad f\) is called by apply(f, (x) +args).
full_output : bool, optional
If full_output is False, the root is returned. If full_output is True, the return value is (\(\mathrm{x}, r\)), where \(x\) is the root, and \(r\) is a RootResults object.
disp : bool, optional
If True, raise RuntimeError if the algorithm didn't converge.

\section*{Returns}
x0 : float
Zero of \(f\) between \(a\) and \(b\).
\(\mathbf{r}\) : RootResults (present if full_output \(=\) True)
Object containing information about the convergence. In particular, r. converged is True if the routine converged.

\section*{See Also:}
```

fmin, fmin_powell, fmin_cg

```
leastsq
nonlinear least squares minimizer
```

fmin_l_bfgs_b, fmin_tnc, fmin_cobyla, anneal, brute, fminbound, brent, golden,

```
bracket
fsolve
n -dimensional root-finding
brentq, brenth, ridder, bisect, newton
fixed_point
scalar fixed-point finder
scipy.optimize.ridder (f, \(a, b\), args \(=()\), xtol=9.9999999999999998e-13, rtol=4.4408920985006262e-
16, maxiter \(=100\), full_output \(=\) False, disp \(=\) True)
Find a root of a function in an interval.
Parameters
f: function

Python function returning a number. \(f\) must be continuous, and \(f(a)\) and \(f(b)\) must have opposite signs.
a : number
One end of the bracketing interval \([\mathrm{a}, \mathrm{b}]\).
b : number
The other end of the bracketing interval \([\mathrm{a}, \mathrm{b}]\).
xtol : number, optional
The routine converges when a root is known to lie within xtol of the value return. Should be \(>=0\). The routine modifies this to take into account the relative precision of doubles.
maxiter : number, optional
if convergence is not achieved in maxiter iterations, and error is raised. Must be \(>=\) 0 .
args : tuple, optional
containing extra arguments for the function \(f . \quad f\) is called by apply(f, (x) +args).
full_output : bool, optional
If full_output is False, the root is returned. If full_output is True, the return value is \((\mathrm{x}, r)\), where \(x\) is the root, and \(r\) is a RootResults object.
disp : bool, optional
If True, raise RuntimeError if the algorithm didn't converge.

\section*{Returns}
\(\mathbf{x 0}\) : float
Zero of \(f\) between \(a\) and \(b\).
\(\mathbf{r}\) : RootResults (present if full_output = True)
Object containing information about the convergence. In particular, r. converged is True if the routine converged.

\section*{See Also:}
```

brentq, brenth, bisect, newton

```
fixed_point
scalar fixed-point finder

\section*{Notes}

Uses [Ridders1979] method to find a zero of the function \(f\) between the arguments \(a\) and \(b\). Ridders' method is faster than bisection, but not generally as fast as the Brent rountines. [Ridders1979] provides the classic description and source of the algorithm. A description can also be found in any recent edition of Numerical Recipes.

The routine used here diverges slightly from standard presentations in order to be a bit more careful of tolerance.

\section*{References}
[Ridders1979]
scipy.optimize.bisect (\(f, a, b\), args \(=()\), xtol \(=9.9999999999999998 e-13\), rtol \(=4.4408920985006262 e\) -
16, maxiter \(=100\), full_output \(=\) False, disp \(=\) True)
Find root of \(f\) in \([a, b]\).
Basic bisection routine to find a zero of the function \(f\) between the arguments a and b. \(f(a)\) and \(f(b)\) can not have the same signs. Slow but sure.

\section*{Parameters}
f: function
Python function returning a number. \(f\) must be continuous, and \(f(a)\) and \(f(b)\) must have opposite signs.
a : number
One end of the bracketing interval \([\mathrm{a}, \mathrm{b}]\).
b : number
The other end of the bracketing interval \([a, b]\).
xtol : number, optional
The routine converges when a root is known to lie within xtol of the value return. Should be \(>=0\). The routine modifies this to take into account the relative precision of doubles.
maxiter : number, optional
if convergence is not achieved in maxiter iterations, and error is raised. Must be \(>=\) 0.
args : tuple, optional
containing extra arguments for the function \(f . \quad f\) is called by apply(f, (x) +args).
full_output : bool, optional
If full_output is False, the root is returned. If full_output is True, the return value is \((\mathrm{x}, \mathrm{r})\), where \(x\) is the root, and \(r\) is a RootResults object.
disp : bool, optional
If True, raise RuntimeError if the algorithm didn't converge.
Returns
\(\mathbf{x 0}\) : float
Zero of \(f\) between \(a\) and \(b\).
\(\mathbf{r}\) : RootResults (present if full_output = True)
Object containing information about the convergence. In particular, r. converged is True if the routine converged.

\section*{See Also:}
brentq, brenth, bisect, newton
fixed_point
scalar fixed-point finder
fsolve
n -dimensional root-finding
scipy.optimize.newton (func, x0, fprime \(=\) None, args \(=(\)), tol \(=1.48 e-08\), maxiter \(=50\))
Find a zero using the Newton-Raphson or secant method.
Find a zero of the function func given a nearby starting point \(x 0\). The Newton-Rapheson method is used if the derivative fprime of func is provided, otherwise the secant method is used.

\section*{Parameters}
func : function
The function whose zero is wanted. It must be a function of a single variable of the form \(\mathrm{f}(\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{c} \ldots)\), where \(\mathrm{a}, \mathrm{b}, \mathrm{c} .\). are extra arguments that can be passed in the args parameter.
\(\mathbf{x 0}\) : float
An initial estimate of the zero that should be somewhere near the actual zero.
fprime : function, optional
The derivative of the function when available and convenient. If it is None (default), then the secant method is used.
args : tuple, optional
Extra arguments to be used in the function call.
tol : float, optional
The allowable error of the zero value.
maxiter : int, optional
Maximum number of iterations.

\section*{Returns}
zero : float
Estimated location where function is zero.

\section*{See Also:}
brentq, brenth, ridder, bisect
fsolve
find zeroes in n dimensions.

\section*{Notes}

The convergence rate of the Newton-Rapheson method is quadratic while that of the secant method is somewhat less. This means that if the function is well behaved the actual error in the estimated zero is approximatly the square of the requested tolerance up to roundoff error. However, the stopping criterion used here is the step size and there is no quarantee that a zero has been found. Consequently the result should be verified. Safer algorithms are brentq, brenth, ridder, and bisect, but they all require that the root first be bracketed in an interval where the function changes sign. The brentq algorithm is recommended for general use in one dimemsional problems when such an interval has been found.
Fixed point finding:
```

    fixed_point(func, x0[, args, xtol, maxiter]) Find the point where func(x) == x
    scipy.optimize.fixed_point(func, x0, args=(), xtol=1e-08, maxiter=500)
Find the point where func(x)== x

```

Given a function of one or more variables and a starting point, find a fixed-point of the function: i.e. where func \((x)=x\).
Uses Steffensen's Method using Aitken's Del^2 convergence acceleration. See Burden, Faires, "Numerical Analysis", 5th edition, pg. 80

\section*{Examples}
```

>>> from numpy import sqrt, array
>>> from scipy.optimize import fixed_point
>>> def func(x, c1, c2):
return sqrt(c1/(x+c2))
>>> c1 = array([10,12.])
>>> c2 = array([3, 5.])
>>> fixed_point(func, [1.2, 1.3], args=(c1,c2))
array([ 1.4920333 , 1.37228132])

```

\section*{Multidimensional}

\section*{Nonlinear solvers}

This is a collection of general-purpose nonlinear multidimensional solvers. These solvers find \(x\) for which \(F(x)=0\). Both \(x\) and \(F\) can be multidimensional.

Routines Large-scale nonlinear solvers:
\begin{tabular}{ll}
\hline newt on_krylov(F, xin, \(* * \mathrm{kw}[\), iter, rdiff, & \begin{tabular}{l}
Find a root of a function, using Krylov approximation for inverse \\
Jacobian.
\end{tabular} \\
...]) \\
anderson(F, xin, \(* * \mathrm{kw}[\), iter, alpha, w0, & Find a root of a function, using (extended) Anderson mixing. \\
\(\mathrm{M}, \ldots]\)) & \\
\hline
\end{tabular}

General nonlinear solvers:
broyden1(F, xin, **kw[, iter, alpha, ...]) Find a root of a function, using Broyden's first Jacobian approximation.
broyden2(F, xin, **kw[, iter, alpha, ...]) Find a root of a function, using Broyden's second Jacobian approximation.
Simple iterations:
\begin{tabular}{|c|c|}
\hline excitingmixing(F, xin, **kw[, iter, alpha, ...]) & Find a root of a function, using a tuned diagonal Jacobian approximation. \\
\hline linearmixing(F, xin, **kw[, iter, alpha, ...]) & Find a root of a function, using a scalar Jacobian approximation. \\
\hline diagbroyden(F, xin, **kw[, iter, alpha, ...]) & Find a root of a function, using diagonal Broyden Jacobian approximation. \\
\hline
\end{tabular}

\section*{Examples}

\section*{Small problem}
```

>>> def F(x):
... return np.cos(x) + x[::-1] - [1, 2, 3, 4]
>>> import scipy.optimize
>>> x = scipy.optimize.broyden1(F, [1,1,1,1], f_tol=1e-14)
>>> x
array([ 4.04674914, 3.91158389, 2.71791677, 1.61756251])
>>> np.cos(x) + x[::-1]
array([ 1., 2., 3., 4.])

```

Large problem Suppose that we needed to solve the following integrodifferential equation on the square \([0,1] \times\) \([0,1]\) :
\[
\nabla^{2} P=10\left(\int_{0}^{1} \int_{0}^{1} \cosh (P) d x d y\right)^{2}
\]
with \(P(x, 1)=1\) and \(P=0\) elsewhere on the boundary of the square.
The solution can be found using the newton_krylov solver:
```

import numpy as np
from scipy.optimize import newton_krylov
from numpy import cosh, zeros_like, mgrid, zeros

# parameters

nx, ny = 75, 75
hx, hy = 1./(nx-1), 1./(ny-1)
P_left, P_right = 0, 0
P_top, P_bottom = 1, 0
def residual(P):
d2x = zeros_like(P)
d2y = zeros_like(P)
d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2]) / hx/hx
d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx
d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx
d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy
d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy
d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy
return d2x + d2y - 10*cosh(P).mean()**2

# solve

guess = zeros((nx, ny), float)
sol = newton_krylov(residual, guess, method='lgmres', verbose=1)
print 'Residual', abs(residual(sol)).max()

# visualize

import matplotlib.pyplot as plt
x, y = mgrid[0:1:(nx*1j), 0:1:(ny*1j)]
plt.pcolor(x, y, sol)
plt.colorbar()
plt.show()

```


General nonlinear solvers:
```

fsolve(func, x0[, args, fprime, ...]) Find the roots of a function.
broyden1(F, xin, **kw[, iter, alpha, ...]) Find a root of a function, using Broyden's first Jacobian approximation.
broyden2(F, xin, **kw[, iter, alpha, ...]) Find a root of a function, using Broyden's second Jacobian approximation.
scipy.optimize.fsolve (func, x0, args=(), fprime=None, full_output=0, col_deriv=0, xtol=1.49012e-
08, maxfev=0, band=None, epsfcn=0.0, factor=100, diag=None)
Find the roots of a function.
Return the roots of the (non-linear) equations defined by func $(x)=0$ given a starting estimate.

```

\section*{Parameters}
```

func : callable $\mathrm{f}(\mathrm{x}, * \operatorname{args})$
A function that takes at least one (possibly vector) argument.
$\mathbf{x 0}$ : ndarray
The starting estimate for the roots of func $(x)=0$.
args : tuple

```

Any extra arguments to func.
fprime : callable(x)
A function to compute the Jacobian of func with derivatives across the rows. By default, the Jacobian will be estimated.
full_output : bool
If True, return optional outputs.
col_deriv : bool
Specify whether the Jacobian function computes derivatives down the columns (faster, because there is no transpose operation).

\section*{Returns}
\(\mathbf{x}\) : ndarray
The solution (or the result of the last iteration for an unsuccessful call).
infodict : dict

A dictionary of optional outputs with the keys:
```

* 'nfev': number of function calls
* 'njev': number of Jacobian calls
* 'fvec': function evaluated at the output
* 'fjac': the orthogonal matrix, q, produced by the QR
factorization of the final approximate Jacobian
matrix, stored column wise
* 'r': upper triangular matrix produced by QR factorization of same
matrix
* 'qtf': the vector (transpose(q) * fvec)

```
ier : int
An integer flag. Set to 1 if a solution was found, otherwise refer to mesg for more information.
mesg : str
If no solution is found, mesg details the cause of failure.

\section*{Other Parameters}
xtol : float
The calculation will terminate if the relative error between two consecutive iterates is at most \(x t o l\).
maxfev : int
The maximum number of calls to the function. If zero, then \(100 *(N+1)\) is the maximum where N is the number of elements in \(x 0\).
band : tuple
If set to a two-sequence containing the number of sub- and super-diagonals within the band of the Jacobi matrix, the Jacobi matrix is considered banded (only for fprime=None).
epsfen : float
A suitable step length for the forward-difference approximation of the Jacobian (for fprime=None). If epsfcn is less than the machine precision, it is assumed that the relative errors in the functions are of the order of the machine precision.
factor : float
A parameter determining the initial step bound (factor * || diag * \(\mathrm{x}|\mid\)). Should be in the interval (0.1, 100).
diag : sequence
N positive entries that serve as a scale factors for the variables.

\section*{Notes}
fsolve is a wrapper around MINPACK's hybrd and hybrj algorithms.
scipy.optimize.broyden1 \((F, \quad x i n, \quad i t e r=N o n e, \quad\) alpha=None, reduction_method='restart', max_rank=None, verbose=False, maxiter=None, f_tol=None, f_rtol=None, \(\quad x_{-} t o l=N o n e, \quad x _r t o l=N o n e, \quad t o l _n o r m=N o n e\), line_search='armijo', callback=None, \({ }^{* *} k w\))
Find a root of a function, using Broyden's first Jacobian approximation.
This method is also known as "Broyden's good method".

\section*{Parameters}

F: function(x) -> f
Function whose root to find; should take and return an array-like object.
\(\mathbf{x 0}\) : array-like
Initial guess for the solution
alpha : float, optional
Initial guess for the Jacobian is (\(-1 /\) alpha).
reduction_method : str or tuple, optional
Method used in ensuring that the rank of the Broyden matrix stays low. Can either be a string giving the name of the method, or a tuple of the form (method, param1, param2, ...) that gives the name of the method and values for additional parameters.

\section*{Methods available:}
- restart: drop all matrix columns. Has no extra parameters.
- simple: drop oldest matrix column. Has no extra parameters.
- svd: keep only the most significant SVD components. Extra parameters:
```

- to_retain': number of SVD components to
retain when rank reduction is done. Default is
`'max_rank - 2.

```
max_rank : int, optional
Maximum rank for the Broyden matrix. Default is infinity (ie., no rank reduction).
iter : int, optional
Number of iterations to make. If omitted (default), make as many as required to meet tolerances.
verbose : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to meet convergence, NoConvergence is raised.
f_tol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.
f_rtol : float, optional
Relative tolerance for the residual. If omitted, not used.
\(\mathbf{x}\) _tol : float, optional
Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.
x_rtol : float, optional
Relative minimum step size. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : \{None, 'armijo' (default), 'wolfe'\}, optional
Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to 'armijo'.
callback : function, optional
Optional callback function. It is called on every iteration as callback (\(\mathrm{x}, \mathrm{f}\)) where \(x\) is the current solution and \(f\) the corresponding residual.

\section*{Returns}
sol : array-like
An array (of similar array type as \(x 0\)) containing the final solution.

\section*{Raises}

NoConvergence :
When a solution was not found.

\section*{Notes}

This algorithm implements the inverse Jacobian Quasi-Newton update
\[
H_{+}=H+(d x-H d f) d x^{\dagger} H /\left(d x^{\dagger} H d f\right)
\]
which corresponds to Broyden's first Jacobian update
\[
J_{+}=J+(d f-J d x) d x^{\dagger} / d x^{\dagger} d x
\]

\section*{References}
[vR]
scipy.optimize.broyden2 \((F, \quad x i n, \quad\) iter \(=\) None, alpha=None, reduction_method='restart', max_rank=None, verbose=False, maxiter=None, f_tol=None, f_rtol=None, \(\quad x _t o l=N o n e, \quad x _r t o l=N o n e, \quad t o l _n o r m=N o n e, ~\) line_search='armijo', callback=None, **kw)
Find a root of a function, using Broyden's second Jacobian approximation.
This method is also known as "Broyden's bad method".

\section*{Parameters}

F : function(x) ->f
Function whose root to find; should take and return an array-like object.
\(\mathbf{x 0}\) : array-like
Initial guess for the solution
alpha : float, optional
Initial guess for the Jacobian is (-1/alpha).
reduction_method : str or tuple, optional

Method used in ensuring that the rank of the Broyden matrix stays low. Can either be a string giving the name of the method, or a tuple of the form (method, param1, param2, ...) that gives the name of the method and values for additional parameters.

\section*{Methods available:}
- restart: drop all matrix columns. Has no extra parameters.
- simple: drop oldest matrix column. Has no extra parameters.
- svd: keep only the most significant SVD components. Extra parameters:
```

- to_retain': number of SVD components to
retain when rank reduction is done. Default is
``max_rank - 2.

```
max_rank : int, optional
Maximum rank for the Broyden matrix. Default is infinity (ie., no rank reduction).
iter : int, optional
Number of iterations to make. If omitted (default), make as many as required to meet tolerances.
verbose : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to meet convergence, NoConvergence is raised.
f_tol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.
f_rtol : float, optional
Relative tolerance for the residual. If omitted, not used.
\(\mathbf{x}\) _tol : float, optional
Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.
x_rtol : float, optional
Relative minimum step size. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : \{None, 'armijo’ (default), 'wolfe'\}, optional
Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to 'armijo'.
callback : function, optional
Optional callback function. It is called on every iteration as callback (x, f) where \(x\) is the current solution and \(f\) the corresponding residual.

\section*{Returns}
sol : array-like
An array (of similar array type as \(x 0\)) containing the final solution.

\section*{Raises}

\section*{NoConvergence :}

When a solution was not found.

\section*{Notes}

This algorithm implements the inverse Jacobian Quasi-Newton update
\[
H_{+}=H+(d x-H d f) d f^{\dagger} /\left(d f^{\dagger} d f\right)
\]
corresponding to Broyden's second method.

\section*{References}
[vR]
Large-scale nonlinear solvers:
\begin{tabular}{|c|c|}
\hline ```
newton_krylov(F, xin, **kw[, iter, rdiff,
...])
anderson(F, xin, **kw[, iter, alpha, w0,
M, ...])
``` & \begin{tabular}{l}
Find a root of a function, using Krylov approximation for inverse Jacobian. \\
Find a root of a function, using (extended) Anderson mixing.
\end{tabular} \\
\hline py.optimize. newton_krylov & xin, iter=None, rdiff=None, method='lgmres', innaxiter \(=20\), inner_M \(=\) None, outer_k \(=10\), verbose \(=\) False, er=None, \(\quad f_{-}\)tol=None, f_rtol=None, \(\quad x_{-} t o l=N o n e\), \(=\) None, tol_norm=None, line_search='armijo', callNone, **kw) \\
\hline
\end{tabular}

Find a root of a function, using Krylov approximation for inverse Jacobian.
This method is suitable for solving large-scale problems.

\section*{Parameters}

F: function(x) -> f
Function whose root to find; should take and return an array-like object.
\(\mathbf{x 0}\) : array-like
Initial guess for the solution
rdiff : float, optional
Relative step size to use in numerical differentiation.
method : \{'lgmres', 'gmres', 'bicgstab', 'cgs', 'minres'\} or function
Krylov method to use to approximate the Jacobian. Can be a string, or a function implementing the same interface as the iterative solvers in scipy.sparse. linalg.
The default is scipy.sparse.linalg.lgmres.
inner_M : LinearOperator or InverseJacobian
Preconditioner for the inner Krylov iteration. Note that you can use also inverse Jacobians as (adaptive) preconditioners. For example,
```

>>> jac = BroydenFirst()
>>> kjac = KrylovJacobian(inner_M=jac.inverse).

```

If the preconditioner has a method named 'update', it will be called as update ( x , f) after each nonlinear step, with \(x\) giving the current point, and \(f\) the current function value.
inner_tol, inner_maxiter, ... :
Parameters to pass on to the "inner" Krylov solver. See scipy.sparse.linalg.gmres for details.
outer_k : int, optional
Size of the subspace kept across LGMRES nonlinear iterations. See scipy.sparse.linalg.lgmres for details.
iter : int, optional
Number of iterations to make. If omitted (default), make as many as required to meet tolerances.
verbose : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to meet convergence, NoConvergence is raised.
f_tol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is \(6 \mathrm{e}-6\).
f_rtol : float, optional
Relative tolerance for the residual. If omitted, not used.
x_tol : float, optional
Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.
x_rtol : float, optional
Relative minimum step size. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : \{None, 'armijo' (default), 'wolfe'\}, optional
Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to 'armijo'.
callback : function, optional
Optional callback function. It is called on every iteration as callback ( \(\mathrm{x}, \mathrm{f}\) ) where \(x\) is the current solution and \(f\) the corresponding residual.

\section*{Returns}
sol : array-like

An array (of similar array type as \(x 0\) ) containing the final solution.

\section*{Raises}

\section*{NoConvergence :}

When a solution was not found.

\section*{See Also:}
scipy.sparse.linalg.gmres, scipy.sparse.linalg.lgmres

\section*{Notes}

This function implements a Newton-Krylov solver. The basic idea is to compute the inverse of the Jacobian with an iterative Krylov method. These methods require only evaluating the Jacobian-vector products, which are conveniently approximated by numerical differentiation:
\[
J v \approx(f(x+\omega * v /|v|)-f(x)) / \omega
\]

Due to the use of iterative matrix inverses, these methods can deal with large nonlinear problems.
Scipy's scipy.sparse.linalg module offers a selection of Krylov solvers to choose from. The default here is lgmres, which is a variant of restarted GMRES iteration that reuses some of the information obtained in the previous Newton steps to invert Jacobians in subsequent steps.
For a review on Newton-Krylov methods, see for example [KK], and for the LGMRES sparse inverse method, see [BJM].

\section*{References}
[KK], [BJM]
scipy.optimize.anderson \((F\), xin, iter \(=\) None, alpha \(=\) None, \(w 0=0.01, \quad M=5\), verbose \(=\) False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None, **kw)
Find a root of a function, using (extended) Anderson mixing.
The Jacobian is formed by for a 'best' solution in the space spanned by last \(M\) vectors. As a result, only a MxM matrix inversions and MxN multiplications are required. [Ey]

\section*{Parameters}

F: function(x) ->f
Function whose root to find; should take and return an array-like object.
\(\mathbf{x 0}\) : array-like
Initial guess for the solution
alpha: float, optional
Initial guess for the Jacobian is (-1/alpha).
M : float, optional
Number of previous vectors to retain. Defaults to 5 .
\(\mathbf{w 0}\) : float, optional
Regularization parameter for numerical stability. Compared to unity, good values of the order of 0.01 .
iter : int, optional

Number of iterations to make. If omitted (default), make as many as required to meet tolerances.
verbose : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to meet convergence, NoConvergence is raised.
f_tol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.
f_rtol : float, optional
Relative tolerance for the residual. If omitted, not used.
x_tol : float, optional
Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.
x_rtol : float, optional
Relative minimum step size. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : \{None, 'armijo' (default), 'wolfe'\}, optional
Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to 'armijo'.
callback : function, optional
Optional callback function. It is called on every iteration as callback ( \(x, f\) ) where \(x\) is the current solution and \(f\) the corresponding residual.

\section*{Returns}
sol : array-like
An array (of similar array type as \(x 0\) ) containing the final solution.

\section*{Raises}

NoConvergence :
When a solution was not found.

\section*{References}
[Ey]
Simple iterations:
```

excitingmixing(F, xin, **kw[, iter, Find a root of a function, using a tuned diagonal Jacobian
alpha,...]) approximation.
linearmixing(F, xin, **kw[, iter, alpha, Find a root of a function, using a scalar Jacobian approximation.
...])
diagbroyden(F, xin, **kw[, iter, alpha, Find a root of a function, using diagonal Broyden Jacobian
...]) approximation.

```
scipy.optimize.excitingmixing ( \(F\), xin, iter=None, alpha=None, alphamax=1.0, verbose=False, maxiter=None, f_tol=None, f_rtol=None, \(\quad x_{-} t o l=N o n e\), x_rtol=None, tol_norm=None, line_search='armijo', callback=None, **kw)
Find a root of a function, using a tuned diagonal Jacobian approximation.
The Jacobian matrix is diagonal and is tuned on each iteration.
Warning: This algorithm may be useful for specific problems, but whether it will work may depend strongly on the problem.

\section*{Parameters}

F : function(x) ->f
Function whose root to find; should take and return an array-like object.
\(\mathbf{x 0}\) : array-like
Initial guess for the solution
alpha: float, optional
Initial Jacobian approximation is ( \(-1 /\) alpha).
alphamax : float, optional
The entries of the diagonal Jacobian are kept in the range [alpha, alphamax].
iter : int, optional
Number of iterations to make. If omitted (default), make as many as required to meet tolerances.
verbose : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to meet convergence, NoConvergence is raised.
f_tol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is \(6 \mathrm{e}-6\).
f_rtol : float, optional
Relative tolerance for the residual. If omitted, not used.
\(\mathbf{x}\) _tol : float, optional
Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.
x_rtol : float, optional
Relative minimum step size. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : \{None, 'armijo' (default), 'wolfe'\}, optional

Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to 'armijo'.
callback : function, optional
Optional callback function. It is called on every iteration as callback ( \(\mathrm{x}, \mathrm{f}\) ) where \(x\) is the current solution and \(f\) the corresponding residual.

\section*{Returns}
sol : array-like
An array (of similar array type as \(x 0\) ) containing the final solution.

\section*{Raises}

\section*{NoConvergence :}

When a solution was not found.
scipy.optimize.linearmixing( \(F, \quad\) xin, iter \(=\) None, alpha=None, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm \(=\) None, line_search='armijo', callback \(=\) None, \({ }^{* *} k w\) )
Find a root of a function, using a scalar Jacobian approximation.
Warning: This algorithm may be useful for specific problems, but whether it will work may depend strongly on the problem.

\section*{Parameters}

F: function(x) \(->\mathrm{f}\)
Function whose root to find; should take and return an array-like object.
\(\mathbf{x 0}\) : array-like
Initial guess for the solution
alpha : float, optional
The Jacobian approximation is (-1/alpha).
iter : int, optional
Number of iterations to make. If omitted (default), make as many as required to meet tolerances.
verbose : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to meet convergence, NoConvergence is raised.
f_tol : float, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is \(6 \mathrm{e}-6\).
f_rtol : float, optional
Relative tolerance for the residual. If omitted, not used.
\(\mathbf{x}\) _tol : float, optional
Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.
x_rtol : float, optional
Relative minimum step size. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : \{None, 'armijo' (default), 'wolfe'\}, optional
Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to 'armijo'.
callback : function, optional
Optional callback function. It is called on every iteration as callback (x, f) where \(x\) is the current solution and \(f\) the corresponding residual.

\section*{Returns}
sol : array-like
An array (of similar array type as \(x 0\) ) containing the final solution.

\section*{Raises}

NoConvergence :
When a solution was not found.
scipy.optimize.diagbroyden \((F\), xin, iter \(=\) None, alpha=None, verbose=False, maxiter=None, f_tol=None, \(f_{-}\)rtol=None, \(x_{-}\)tol=None, \(x_{-}\)rtol=None, tol_norm=None, line_search='armijo', callback=None, **kw)
Find a root of a function, using diagonal Broyden Jacobian approximation.
The Jacobian approximation is derived from previous iterations, by retaining only the diagonal of Broyden matrices.

Warning: This algorithm may be useful for specific problems, but whether it will work may depend strongly on the problem.

\section*{Parameters}

F: function(x) \(->f\)
Function whose root to find; should take and return an array-like object.

\section*{\(\mathbf{x 0}\) : array-like}

Initial guess for the solution
alpha : float, optional
Initial guess for the Jacobian is ( \(-1 /\) alpha).
iter : int, optional
Number of iterations to make. If omitted (default), make as many as required to meet tolerances.
verbose : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to meet convergence, NoConvergence is raised.
f_tol : float, optional

Absolute tolerance (in max-norm) for the residual. If omitted, default is \(6 \mathrm{e}-6\).
f_rtol : float, optional
Relative tolerance for the residual. If omitted, not used.
\(\mathbf{x}\) _tol : float, optional
Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.
x_rtol : float, optional
Relative minimum step size. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : \{None, 'armijo' (default), 'wolfe'\}, optional
Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to 'armijo'.
callback : function, optional
Optional callback function. It is called on every iteration as callback ( \(\mathrm{x}, \mathrm{f}\) ) where \(x\) is the current solution and \(f\) the corresponding residual.

\section*{Returns}
sol : array-like
An array (of similar array type as \(x 0\) ) containing the final solution.

\section*{Raises}

NoConvergence :
When a solution was not found.

\subsection*{3.12.4 Utility Functions}
line_search(f, myfprime, xk, pk[, gfk, ...]) Find alpha that satisfies strong Wolfe conditions.
check_grad(func, grad, x0, *args)
scipy.optimize.line_search ( \(f\), myfprime, \(x k, p k\), gfk=None, old_fval=None, old_old_fval=None, \(\arg s=(), c 1=0.0001, c 2=0.90000000000000002\), \(\operatorname{amax}=50\) )
Find alpha that satisfies strong Wolfe conditions.
Parameters
f: callable \(\mathrm{f}(\mathrm{x}\), *args)
Objective function.
myfprime : callable \(\mathrm{f}^{\prime}(\mathrm{x}, * \operatorname{args})\)
Objective function gradient (can be None).
xk: ndarray
Starting point.
pk: ndarray
Search direction.
gfk : ndarray, optional
Gradient value for \(\mathrm{x}=\mathrm{xk}\) ( xk being the current parameter estimate). Will be recomputed if omitted.
old_fval : float, optional
Function value for \(\mathrm{x}=\mathrm{xk}\). Will be recomputed if omitted.
old_old_fval : float, optional
Function value for the point preceding \(\mathrm{x}=\mathrm{xk}\)
args : tuple, optional
Additional arguments passed to objective function.
c1 : float, optional
Parameter for Armijo condition rule.
c2 : float, optional
Parameter for curvature condition rule.

\section*{Returns}
alpha0 : float
Alpha for which \(\mathrm{x} \_\)new \(=\mathrm{x} 0+\mathrm{alpha} * \mathrm{pk}\).
fc: int
Number of function evaluations made.
gc: int
Number of gradient evaluations made.

\section*{Notes}

Uses the line search algorithm to enforce strong Wolfe conditions. See Wright and Nocedal, 'Numerical Optimization', 1999, pg. 59-60.

For the zoom phase it uses an algorithm by [...].
```

scipy.optimize.check_grad(func,grad, x0, *args)

```

\subsection*{3.13 Signal processing (scipy.signal)}

\subsection*{3.13.1 Convolution}
\begin{tabular}{ll}
\hline convolve(in1, in2[, mode]) & Convolve two N-dimensional arrays. \\
correlate(in1, in2[, mode]) & Cross-correlate two N-dimensional arrays. \\
fftconvolve(in1, in2[, mode]) & Convolve two N-dimensional arrays using FFT. See convolve. \\
convolve2d(in1, in2[, mode, boundary, fillvalue]) & Convolve two 2-dimensional arrays. \\
correlate2d(in1, in2[, mode, boundary, ...]) & \begin{tabular}{l} 
Cross-correlate two 2-dimensional arrays. \\
sepfir2d
\end{tabular} \\
\hline
\end{tabular}
scipy.signal. convolve (in1, in2, mode='full')
Convolve two N -dimensional arrays.
Convolve in 1 and in 2 with output size determined by mode.

\section*{Parameters}
in1: array :
first input.
in2: array :
second input. Should have the same number of dimensions as in1.
mode: str \{'valid', 'same', 'full'\} :
a string indicating the size of the output:
valid
[the output consists only of those elements that do not] rely on the zero-padding.
same
[the output is the same size as the largest input centered] with respect to the 'full' output.
full
[the output is the full discrete linear cross-correlation] of the inputs. (Default)

\section*{Returns}
out: array :
an N -dimensional array containing a subset of the discrete linear cross-correlation of in1 with in2.
scipy.signal.correlate (in1, in2, mode='full')
Cross-correlate two N -dimensional arrays.
Cross-correlate in 1 and in 2 with the output size determined by the mode argument.

\section*{Parameters}
in1: array :
first input.
in2: array :
second input. Should have the same number of dimensions as in 1 .
mode: str \{'valid', 'same', 'full'\} :
a string indicating the size of the output:
- 'valid': the output consists only of those elements that do not
rely on the zero-padding. - 'same': the output is the same size as the largest input centered
with respect to the 'full' output.
- 'full': the output is the full discrete linear cross-correlation of the inputs. (Default)

\section*{Returns}
out: array :
an N -dimensional array containing a subset of the discrete linear cross-correlation of in1 with in2.

\section*{Notes}

The correlation z of two arrays x and y of rank d is defined as
\[
\mathrm{z}[. . ., \mathbf{k}, . . .]=\operatorname{sum}\left[. . ., \mathbf{i} \_\mathbf{l}, . . .\right]
\]
\[
\mathrm{x}\left[\ldots, i_{\_} 1, \ldots\right] * \operatorname{conj}\left(y\left[\ldots, i_{\_} 1+\mathrm{k}, \ldots\right]\right)
\]
scipy.signal.fftconvolve (in1, in2, mode='full')
Convolve two N-dimensional arrays using FFT. See convolve.
scipy.signal.convolve2d (in1, in2, mode='full', boundary='fill', fillvalue=0)
Convolve two 2 -dimensional arrays.
Convolve inl and in 2 with output size determined by mode and boundary conditions determined by boundary and fillvalue.

\section*{Parameters}
in1, in2 : ndarray
Two-dimensional input arrays to be convolved.
mode: str, optional :
A string indicating the size of the output:
valid
[the output consists only of those elements that do not] rely on the zero-padding.
same
[the output is the same size as the largest input centered] with respect to the 'full' output.

\section*{full}
[the output is the full discrete linear cross-correlation] of the inputs. (Default)
boundary : str, optional
A flag indicating how to handle boundaries:
- 'fill' : pad input arrays with fillvalue. (default)
- 'wrap' : circular boundary conditions.
- ‘symm’ : symmetrical boundary conditions.
fillvalue : scalar, optional
Value to fill pad input arrays with. Default is 0 .

\section*{Returns}
out : ndarray
A 2-dimensional array containing a subset of the discrete linear convolution of in 1 with in2.
```

scipy.signal.correlate2d(in1, in2, mode='full', boundary='fill', fillvalue=0)

```

Cross-correlate two 2-dimensional arrays.
Cross correlate in 1 and in 2 with output size determined by mode and boundary conditions determined by boundary and fillvalue.

\section*{Parameters}
in1, in2 : ndarray
Two-dimensional input arrays to be convolved.
mode: str, optional :

A string indicating the size of the output:

\section*{valid}
[the output consists only of those elements that do not] rely on the zero-padding.

\section*{same}
[the output is the same size as the largest input centered] with respect to the 'full' output.
full
[the output is the full discrete linear cross-correlation] of the inputs. (Default)
boundary : str, optional
A flag indicating how to handle boundaries:
- 'fill' : pad input arrays with fillvalue. (default)
- 'wrap' : circular boundary conditions.
- 'symm' : symmetrical boundary conditions.
fillvalue : scalar, optional
Value to fill pad input arrays with. Default is 0 .

\section*{Returns}
out : ndarray
A 2-dimensional array containing a subset of the discrete linear cross-correlation of inl with in2.
scipy.signal.sepfir2d()
sepfir2d(input, hrow, hcol) -> output

\section*{Description:}

Convolve the rank-2 input array with the separable filter defined by the rank-1 arrays hrow, and hcol. Mirror symmetric boundary conditions are assumed. This function can be used to find an image given its B-spline representation.

\subsection*{3.13.2 B-splines}
```

bspline(x, n) B-spline basis function of order n.
gauss_spline(x, n) Gaussian approximation to B-spline basis function of order n.
csplineld(signal[, lamb]) Compute cubic spline coefficients for rank-1 array.
qspline1d(signal[, lamb]) Compute quadratic spline coefficients for rank-1 array.
cspline2d cspline2d(input {, lambda, precision}) -> ck
qspline2d qspline2d(input {, lambda, precision}) -> qk
spline_filter(Iin[, lmbda]) Smoothing spline (cubic) filtering of a rank-2 array.
scipy.signal.bspline (}x,n\mathrm{)
B-spline basis function of order n.

```

\section*{Notes}
```

Uses numpy.piecewise and automatic function-generator.
scipy.signal.gauss_spline (x, n)
Gaussian approximation to B-spline basis function of order n .

```
scipy.signal.cspline1d(signal, lamb=0.0)
Compute cubic spline coefficients for rank-1 array.
Find the cubic spline coefficients for a 1-D signal assuming mirror-symmetric boundary conditions. To obtain the signal back from the spline representation mirror-symmetric-convolve these coefficients with a length 3 FIR window [1.0, 4.0, 1.0]/ 6.0 .

\section*{Parameters}
signal : ndarray
A rank-1 array representing samples of a signal.
lamb : float, optional
Smoothing coefficient, default is 0.0 .

\section*{Returns}
c : ndarray
Cubic spline coefficients.
scipy.signal. qspline1d (signal, lamb=0.0)
Compute quadratic spline coefficients for rank-1 array.
Find the quadratic spline coefficients for a 1-D signal assuming mirror-symmetric boundary conditions. To obtain the signal back from the spline representation mirror-symmetric-convolve these coefficients with a length 3 FIR window [1.0, 6.0, 1.0]/ 8.0 .

\section*{Parameters}
signal : ndarray
A rank-1 array representing samples of a signal.
lamb : float, optional
Smoothing coefficient (must be zero for now).

\section*{Returns}
c : ndarray
Cubic spline coefficients.
scipy.signal.cspline2d()
cspline2d(input \{, lambda, precision\}) -> ck
Description:
Return the third-order B-spline coefficients over a regularly spacedi input grid for the twodimensional input image. The lambda argument specifies the amount of smoothing. The precision argument allows specifying the precision used when computing the infinite sum needed to apply mirror- symmetric boundary conditions.
scipy.signal.qspline2d()
qspline2d(input \{, lambda, precision\}) \(->\mathrm{qk}\)
Description:
Return the second-order B-spline coefficients over a regularly spaced input grid for the twodimensional input image. The lambda argument specifies the amount of smoothing. The precision argument allows specifying the precision used when computing the infinite sum needed to apply mirror- symmetric boundary conditions.
scipy.signal.spline_filter(Iin, lmbda=5.0)
Smoothing spline (cubic) filtering of a rank-2 array.

Filter an input data set, Iin, using a (cubic) smoothing spline of fall-off \(\operatorname{lmb} d a\).

\subsection*{3.13.3 Filtering}
```

order_filter(a, domain, rank) Perform an order filter on an N-dimensional array.
medfilt(volume[, kernel_size]) Perform a median filter on an N-dimensional array.
medfilt2d(input[, kernel_size]) Median filter a 2-dimensional array.
wiener(im[, mysize, noise]) Perform a Wiener filter on an N-dimensional array.
symiirorder1 symiirorder1(input, c0, z1 {, precision}) -> output
symiirorder2 symiirorder2(input, r, omega {, precision}) -> output
lfilter(b, a, x[, axis, zi]) Filter data along one-dimension with an IIR or FIR filter.
lfiltic(b,a,y[, x]) Construct initial conditions for lfilter
deconvolve(signal, divisor) Deconvolves divisor out of signal.
hilbert(x[,N, axis]) Compute the analytic signal.
get_window(window, Nx[, fftbins]) Return a window of length Nx and type window.
decimate(x, q[, n, ftype, axis]) downsample the signal x by an integer factor q, using an order n filter
detrend(data[, axis, type,bp]) Remove linear trend along axis from data.
resample(x, num[, t, axis, window]) Resample }x\mathrm{ to num samples using Fourier method along the given axis.
scipy.signal.order_filter(a,domain, rank)
Perform an order filter on an N -dimensional array.
Perform an order filter on the array in. The domain argument acts as a mask centered over each pixel. The non-zero elements of domain are used to select elements surrounding each input pixel which are placed in a list. The list is sorted, and the output for that pixel is the element corresponding to rank in the sorted list.

```

\section*{Parameters}
a : ndarray
The N-dimensional input array.
domain : array_like
A mask array with the same number of dimensions as in. Each dimension should have an odd number of elements.
rank: int
A non-negative integer which selects the element from the sorted list ( 0 corresponds to the smallest element, 1 is the next smallest element, etc.).

\section*{Returns}
out : ndarray
The results of the order filter in an array with the same shape as in.

\section*{Examples}
```

>>> import scipy.signal
>>> x = np.arange(25).reshape(5, 5)
>>> domain = np.identity(3)
>>> x
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
>>> sp.signal.order_filter(x, domain, 0)
array([[0., 0., 0., 0., 0.],

```
```

 [0., 0., 1., 2., 0.],
 [0., 5., 6., 7., 0.],
 [0., 10., 11., 12., 0.],
 [0., 0., 0., 0., 0.]])
 >>> sp.signal.order_filter(x, domain, 2)
array([[6., 7., 8., 9., 4.],
[11., 12., 13., 14., 9.],
[16., 17., 18., 19., 14.],
[21., 22., 23., 24., 19.],
[20., 21., 22., 23., 24.]])

```
scipy.signal.medfilt (volume, kernel_size=None)
Perform a median filter on an N -dimensional array.
Apply a median filter to the input array using a local window-size given by kernel_size.

\section*{Parameters}
volume : array_like
An N -dimensional input array.
kernel_size : array_like, optional
A scalar or an N -length list giving the size of the median filter window in each dimension. Elements of kernel_size should be odd. If kernel_size is a scalar, then this scalar is used as the size in each dimension. Default size is 3 for each dimension.

\section*{Returns}
out : ndarray
An array the same size as input containing the median filtered result.
scipy.signal.medfilt2d(input, kernel_size=3)
Median filter a 2-dimensional array.
Apply a median filter to the input array using a local window-size given by kernel_size (must be odd).

\section*{Parameters}
input : array_like
A 2-dimensional input array.
kernel_size : array_like, optional
A scalar or a list of length 2, giving the size of the median filter window in each dimension. Elements of kernel_size should be odd. If kernel_size is a scalar, then this scalar is used as the size in each dimension. Default is a kernel of size \((3,3)\).

\section*{Returns}
out : ndarray
An array the same size as input containing the median filtered result.
scipy.signal.wiener (im, mysize \(=\) None, noise \(=\) None)
Perform a Wiener filter on an N-dimensional array.
Apply a Wiener filter to the N -dimensional array im .

\section*{Parameters}
im : ndarray
An N-dimensional array.
mysize : int or arraylike, optional

A scalar or an N -length list giving the size of the Wiener filter window in each dimension. Elements of mysize should be odd. If mysize is a scalar, then this scalar is used as the size in each dimension.
noise : float, optional
The noise-power to use. If None, then noise is estimated as the average of the local variance of the input.

\section*{Returns}
out : ndarray
Wiener filtered result with the same shape as im.
```

scipy.signal.symiirorder1()

```
symiirorder1(input, c0, z1 \{, precision\}) -> output
Description:
Implement a smoothing IIR filter with mirror-symmetric boundary conditions using a cascade of first-order sections. The second section uses a reversed sequence. This implements a system with the following transfer function and mirror-symmetric boundary conditions.
c0
\[
\mathbf{H}(\mathbf{z})=\frac{(1-z 1 / z)(1-z 1 z)}{}
\]

The resulting signal will have mirror symmetric boundary conditions as well.
Inputs:
input - the input signal. c0, z1 - parameters in the transfer function. precision - specifies the precision for calculating initial conditions
of the recursive filter based on mirror-symmetric input.
Output:
output - filtered signal.
scipy.signal.symiirorder2()
symiirorder2(input, r, omega \{, precision\}) \(->\) output
Description:
Implement a smoothing IIR filter with mirror-symmetric boundary conditions using a cascade of second-order sections. The second section uses a reversed sequence. This implements the following transfer function:
\(\mathrm{cs}^{\wedge} 2\)
\[
\mathbf{H}(\mathbf{z})=\overline{\left(1-a 2 / z-a 3 / z^{\wedge} 2\right)\left(1-a 2 z-a 3 z^{\wedge} 2\right)}
\]

\section*{where \(\mathbf{a} 2=(2 r \cos\) omega) \()\)}
\[
\mathrm{a} 3=-\mathrm{r}^{\wedge} 2 \mathrm{cs}=1-2 \mathrm{r} \cos \text { omega }+\mathrm{r}^{\wedge} 2
\]

Inputs:
input - the input signal. r, omega - parameters in the transfer function. precision - specifies the precision for calculating initial conditions
of the recursive filter based on mirror-symmetric input.
Output:
output - filtered signal.
scipy.signal.lfilter ( \(b, a, x\), axis \(=-1, z i=\) None \()\)
Filter data along one-dimension with an IIR or FIR filter.
Filter a data sequence, \(x\), using a digital filter. This works for many fundamental data types (including Object type). The filter is a direct form II transposed implementation of the standard difference equation (see Notes).

\section*{Parameters}
b: array_like
The numerator coefficient vector in a 1-D sequence.
a: array_like
The denominator coefficient vector in a 1-D sequence. If \(\mathrm{a}[0]\) is not 1 , then both a and b are normalized by \(\mathrm{a}[0]\).
\(\mathbf{x}\) : array_like
An N -dimensional input array.
axis : int
The axis of the input data array along which to apply the linear filter. The filter is applied to each subarray along this axis ( Default \(=-1\) )
zi : array_like (optional)
Initial conditions for the filter delays. It is a vector (or array of vectors for an N -
 initial rest is assumed. SEE signal.lfiltic for more information.

\section*{Returns}
\(\mathbf{y}\) : array
The output of the digital filter.
zf : array (optional)
If zi is None, this is not returned, otherwise, zf holds the final filter delay values.

\section*{Notes}

The filter function is implemented as a direct II transposed structure. This means that the filter implements
```

a[0]*y[n] = b[0]*x[n] + b[1]*x[n-1] + ... + b[nb]*x[n-nb]
- a[1]*y[n-1] - ... - a[na]*y[n-na]

```
using the following difference equations:
```

y[m] = b[0]*x[m] + z[0,m-1]
z[0,m] = b[1]*x[m] + z[1,m-1] - a[1]*y[m]
...
z[n-3,m] = b[n-2]*x[m] + z[n-2,m-1] - a[n-2]*y[m]
z[n-2,m] = b[n-1]*x[m] - a[n-1]*y[m]

```
where \(m\) is the output sample number and \(n=\max (\operatorname{len}(a), \operatorname{len}(b))\) is the model order.
The rational transfer function describing this filter in the z-transform domain is:
\[
\begin{aligned}
& \mathrm{b}[0]+\mathrm{b}[1] \mathrm{z}^{-1}+\ldots+\mathrm{b}[\mathrm{nb}] \mathrm{z}^{-\mathrm{nb}} \\
& Y(\mathrm{z})=---\infty \mathrm{X}(\mathrm{z}) \\
& \mathrm{a}[0]+\mathrm{a}[1] \mathrm{z}^{-1}+\ldots+\mathrm{a}[\mathrm{na}] \mathrm{z}^{-\mathrm{na}}
\end{aligned}
\]
scipy.signal.lfiltic ( \(b, a, y, x=\) None)
Construct initial conditions for lfilter
Given a linear filter \((b, a)\) and initial conditions on the output \(y\) and the input \(x\), return the inital conditions on the state vector zi which is used by lfilter to generate the output given the input.
If \(\mathrm{M}=\operatorname{len}(\mathrm{b})-1\) and \(\mathrm{N}=\operatorname{len}(\mathrm{a})-1\). Then, the initial conditions are given in the vectors x and y as:
```

x = {x[-1],x[-2],···,x[-M]}
y}={y[-1],y[-2],···,y[-N]

```

If x is not given, its inital conditions are assumed zero. If either vector is too short, then zeros are added to achieve the proper length.

The output vector zi contains:
\[
\mathrm{zi}=\left\{\mathrm{z} \_0[-1], \quad \mathrm{z} \_1[-1], \ldots, \quad \mathrm{z} \_\mathrm{K}-1[-1]\right\} \quad \text { where } \mathrm{K}=\max (\mathrm{M}, \mathrm{~N}) .
\]
```

scipy.signal.deconvolve (signal, divisor)

```

Deconvolves divisor out of signal.
scipy.signal.hilbert ( \(x, N=N o n e\), axis=- 1 )
Compute the analytic signal.
The transformation is done along the last axis by default.

\section*{Parameters}
\(\mathbf{x}\) : array_like
Signal data
\(\mathbf{N}\) : int, optional
Number of Fourier components. Default: x.shape[axis]
axis : int, optional
Axis along which to do the transformation. Default: -1 .

\section*{Returns}
xa : ndarray
Analytic signal of \(x\), of each 1-D array along axis

\section*{Notes}

The analytic signal \(x_{-} a(t)\) of \(x(t)\) is:
\[
x \_a=F^{\wedge}\{-1\}(F(x) 2 U)=x+i y
\]
where \(F\) is the Fourier transform, \(U\) the unit step function, and \(y\) the Hilbert transform of \(x\). [R57]
axis argument is new in scipy 0.8 .0 .

\section*{References}
[R57]
scipy.signal.get_window(window, \(N x\), fftbins=True)
Return a window of length \(N x\) and type window.

\section*{Parameters}
window : string, float, or tuple
The type of window to create. See below for more details.
\(\mathbf{N x}\) : int
The number of samples in the window.
fftbins : bool, optional
If True, create a "periodic" window ready to use with ifftshift and be multiplied by the result of an fft (SEE ALSO fftfreq).

\section*{Notes}

Window types:
boxcar, triang, blackman, hamming, hanning, bartlett, parzen, bohman, blackmanharris, nuttall, barthann, kaiser (needs beta), gaussian (needs std), general_gaussian (needs power, width), slepian (needs width), chebwin (needs attenuation)

If the window requires no parameters, then window can be a string.
If the window requires parameters, then window must be a tuple with the first argument the string name of the window, and the next arguments the needed parameters.

If window is a floating point number, it is interpreted as the beta parameter of the kaiser window.
Each of the window types listed above is also the name of a function that can be called directly to create a window of that type.

\section*{Examples}
```

>>> get_window('triang', 7)
array([0.25, 0.5 , 0.75, 1. , 0.75, 0.5 , 0.25])
>>> get_window(('kaiser', 4.0), 9)
array([0.08848053, 0.32578323, 0.63343178, 0.89640418, 1.
0.89640418, 0.63343178, 0.32578323, 0.08848053])
>>> get_window(4.0, 9)
array([0.08848053, 0.32578323, 0.63343178, 0.89640418, 1.
0.89640418, 0.63343178, 0.32578323, 0.08848053])

```
scipy.signal. decimate ( \(x, q, n=N o n e, f t y p e=\) 'iir', axis=- 1 )
downsample the signal x by an integer factor q , using an order n filter
By default an order 8 Chebyshev type I filter is used or a 30 point FIR filter with hamming window if ftype is 'fir'.

\section*{Parameters}
\(\mathbf{x}\) : N-d array
the signal to be downsampled
\(\mathbf{q}\) : int
the downsampling factor
\(\mathbf{n}\) : int or None
the order of the filter (1 less than the length for 'fir')
ftype : \{'iir' or 'fir'\}
the type of the lowpass filter
axis: int
the axis along which to decimate

\section*{Returns}
\(\mathbf{y}: \mathrm{N}-\mathrm{d}\) array
the down-sampled signal

\section*{See Also:}
resample
scipy.signal.detrend (data, axis=-1, type='linear', \(b p=0\) )
Remove linear trend along axis from data.

\section*{Parameters}
data : array_like
The input data.
axis : int, optional
The axis along which to detrend the data. By default this is the last axis (-1).
type : \{ 'linear', 'constant'\}, optional
The type of detrending. If type == 'linear' (default), the result of a linear least-squares fit to data is subtracted from data. If type \(==\) ' constant', only the mean of data is subtracted.
bp : array_like of ints, optional
A sequence of break points. If given, an individual linear fit is performed for each part of data between two break points. Break points are specified as indices into data.

\section*{Returns}
ret : ndarray
The detrended input data.

\section*{Examples}
```

>>> randgen = np.random.RandomState (9)
>>> npoints = 1e3
>>> noise = randgen.randn(npoints)
>>> x = 3 + 2*np.linspace(0, 1, npoints) + noise
>>> (sp.signal.detrend(x) - noise).max() < 0.01
True

```
scipy.signal.resample ( \(x\), num, \(t=\) None, axis \(=0\), window=None)
Resample \(x\) to num samples using Fourier method along the given axis.
The resampled signal starts at the same value as \(x\) but is sampled with a spacing of len \((x) /\) num * (spacing of x ). Because a Fourier method is used, the signal is assumed to be periodic.

\section*{Parameters}
\[
\mathbf{x} \text { : array_like }
\]

The data to be resampled.
num : int
The number of samples in the resampled signal.
t : array_like, optional
If \(t\) is given, it is assumed to be the sample positions associated with the signal data in \(x\).
axis : int, optional
The axis of \(x\) that is resampled. Default is 0 .
window : array_like, callable, string, float, or tuple, optional
Specifies the window applied to the signal in the Fourier domain. See below for details.

\section*{Returns}
resampled_x or (resampled_x, resampled_t) :
Either the resampled array, or, if \(t\) was given, a tuple containing the resampled array and the corresponding resampled positions.

\section*{Notes}

The argument window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to alleviate ringing in the resampled values for sampled signals you didn't intend to be interpreted as bandlimited.

If window is a function, then it is called with a vector of inputs indicating the frequency bins (i.e. fftfreq(x.shape[axis]) ).

If window is an array of the same length as \(x\).shape[axis] it is assumed to be the window to be applied directly in the Fourier domain (with dc and low-frequency first).

For any other type of window, the function scipy.signal.get_window is called to generate the window.
The first sample of the returned vector is the same as the first sample of the input vector. The spacing between samples is changed from dx to:
\[
\mathrm{dx} * \operatorname{len}(\mathrm{x}) / \mathrm{num}
\]

If \(t\) is not None, then it represents the old sample positions, and the new sample positions will be returned as well as the new samples.

\subsection*{3.13.4 Filter design}
\begin{tabular}{|c|c|}
\hline bilinear(b, a[, fs]) & Return a digital filter from an analog filter using the bilinear transform. \\
\hline firwin(numtaps, cutoff[, width, window, ...]) & FIR filter design using the window method. \\
\hline firwin2(numtaps, freq, gain[, nfreqs, ...]) & FIR filter design using the window method. \\
\hline freqs(b, a[, worN, plot]) & Compute frequency response of analog filter. \\
\hline freqz(b[, a, worN, whole, plot]) & Compute the frequency response of a digital filter. \\
\hline iirdesign(wp, ws, gpass, gstop[, analog, ...]) & Complete IIR digital and analog filter design. \\
\hline iirfilter(N, Wn[, rp, rs, btype, analog, ...]) & IIR digital and analog filter design given order and critical points. \\
\hline kaiser_atten(numtaps, width) & Compute the attenuation of a Kaiser FIR filter. \\
\hline kaiser_beta(a) & Compute the Kaiser parameter beta, given the attenuation \(a\). \\
\hline kaiserord(ripple, width) & Design a Kaiser window to limit ripple and width of transition region. \\
\hline remez(numtaps, bands, desired[, weight, & Calculate the minimax optimal filter using the Remez exchange \\
\hline Hz, ...]) & algorithm. . \\
\hline unique_roots(p[, tol, rtype]) & Determine unique roots and their multiplicities from a list of roots. \\
\hline residue(b, a[, tol, rtype]) & Compute partial-fraction expansion of \(\mathrm{b}(\mathrm{s}) / \mathrm{a}(\mathrm{s})\). \\
\hline residuez(b, a[, tol, rtype]) & Compute partial-fraction expansion of \(\mathrm{b}(\mathrm{z}) / \mathrm{a}(\mathrm{z})\). \\
\hline invres(r, p, k[, tol, rtype]) & Compute \(\mathrm{b}(\mathrm{s})\) and \(\mathrm{a}(\mathrm{s})\) from partial fraction expansion: \(\mathrm{r}, \mathrm{p}, \mathrm{k}\) \\
\hline
\end{tabular}

Return a digital filter from an analog filter using the bilinear transform.
The bilinear transform substitutes \((z-1) /(z+1)\) for \(s\).
```

scipy.signal.firwin(numtaps,cutoff, width=None, window='hamming',pass_zero=True, scale=True,

```
    \(n y q=1.0\) )

FIR filter design using the window method.
This function computes the coefficients of a finite impulse response filter. The filter will have linear phase; it will be Type I if numtaps is odd and Type II if numtaps is even.

Type II filters always have zero response at the Nyquist rate, so a ValueError exception is raised if firwin is called with numtaps even and having a passband whose right end is at the Nyquist rate.

\section*{Parameters \\ numtaps : int}

Length of the filter (number of coefficients, i.e. the filter order +1 ). numtaps must be even if a passband includes the Nyquist frequency.
cutoff : float or 1D array_like
Cutoff frequency of filter (expressed in the same units as nyq) OR an array of cutoff frequencies (that is, band edges). In the latter case, the frequencies in cutoff should be positive and monotonically increasing between 0 and nyq. The values 0 and nyq must not be included in cutoff.
width : float or None
If width is not None, then assume it is the approximate width of the transition region (expressed in the same units as \(n y q\) ) for use in Kaiser FIR filter design. In this case, the window argument is ignored.
window : string or tuple of string and parameter values

Desired window to use. See scipy.signal.get_window for a list of windows and required parameters.
pass_zero : bool
If True, the gain at the frequency 0 (i.e. the "DC gain") is 1 . Otherwise the DC gain is 0 .
scale : bool
Set to True to scale the coefficients so that the frequency response is exactly unity at a certain frequency. That frequency is either:

\section*{0 (DC) if the first passband starts at 0 (i.e. pass_zero} is True);
\(n y q\) (the Nyquist rate) if the first passband ends at \(n y q\) (i.e the filter is a single band highpass filter);
center of first passband otherwise.
nyq : float
Nyquist frequency. Each frequency in cutoff must be between 0 and nyq.

\section*{Returns}
h: 1D ndarray
Coefficients of length numtaps FIR filter.

\section*{Raises}

ValueError :
If any value in cutoff is less than or equal to 0 or greater than or equal to \(n y q\), if the values in cutoff are not strictly monotonically increasing, or if numtaps is even but a passband includes the Nyquist frequency.

\section*{See Also:}
```

scipy.signal.firwin2

```

\section*{Examples}

Low-pass from 0 to f :
```

>>> firwin(numtaps, f)

```

Use a specific window function:
```

>>> firwin(numtaps, f, window='nuttall')

```

High-pass ('stop' from 0 to f):
```

>>> firwin(numtaps, f, pass_zero=False)

```

Band-pass:
```

>>> firwin(numtaps, [f1, f2], pass_zero=False)

```

Band-stop:
>>> firwin(numtaps, [f1, f2])
Multi-band (passbands are [0, f1], [f2, f3] and [f4, 1]):
```

>>>firwin(numtaps, [f1, f2, f3, f4])

```

Multi-band (passbands are [f1, f2] and [f3,f4]):
```

>>> firwin(numtaps, [f1, f2, f3, f4], pass_zero=False)

```
scipy.signal.firwin2 (numtaps, freq, gain, nfreqs=None, window='hamming', nyq=1.0)
FIR filter design using the window method.
From the given frequencies freq and corresponding gains gain, this function constructs an FIR filter with linear phase and (approximately) the given frequency response.

\section*{Parameters}
numtaps : int
The number of taps in the FIR filter. numtaps must be less than nfreqs. If the gain at the Nyquist rate, gain[-1], is not 0 , then numtaps must be odd.
freq : array-like, 1D
The frequency sampling points. Typically 0.0 to 1.0 with 1.0 being Nyquist. The Nyquist frequency can be redefined with the argument nyq.

The values in freq must be nondecreasing. A value can be repeated once to implement a discontinuity. The first value in freq must be 0 , and the last value must be nyq.
gain : array-like
The filter gains at the frequency sampling points.
nfreqs : int, optional
The size of the interpolation mesh used to construct the filter. For most efficient behavior, this should be a power of 2 plus 1 (e.g, 129, 257, etc). The default is one more than the smallest power of 2 that is not less than numtaps. nfreqs must be greater than numtaps.
window : string or (string, float) or float, or None, optional
Window function to use. Default is "hamming". See scipy.signal.get_window for the complete list of possible values. If None, no window function is applied.
nyq : float
Nyquist frequency. Each frequency in freq must be between 0 and nyq (inclusive).

\section*{Returns}
taps : numpy 1D array of length numtaps
The filter coefficients of the FIR filter.

\section*{See Also:}
scipy.signal.firwin

\section*{Notes}

From the given set of frequencies and gains, the desired response is constructed in the frequency domain. The inverse FFT is applied to the desired response to create the associated convolution kernel, and the first numtaps coefficients of this kernel, scaled by window, are returned.

The FIR filter will have linear phase. The filter is Type I if numtaps is odd and Type II if numtaps is even. Because Type II filters always have a zero at the Nyquist frequency, numtaps must be odd if gain[-1] is not zero. New in version 0.9.0.

\section*{References}
[R55], [R56]

\section*{Examples}

A lowpass FIR filter with a response that is 1 on \([0.0,0.5]\), and that decreases linearly on \([0.5,1.0]\) from 1 to 0 :
```

>>> taps = firwin2(150, [0.0, 0.5, 1.0], [1.0, 1.0, 0.0])
>>> print(taps[72:78])
[-0.02286961 -0.06362756 0.57310236 0.57310236-0.06362756-0.02286961]

```
scipy.signal.freqs ( \(b, a\), worN=None, plot=None)
Compute frequency response of analog filter.
Given the numerator (b) and denominator (a) of a filter compute its frequency response:
```

 \(b[0] *(j w) * *(n b-1)+b[1] *(j w) * *(n b-2)+\ldots+b[n b-1]\)
    ```

```

 \(a[0] *(j w) * *(n a-1)+a[1] *(j w) * *(n a-2)+\ldots+a[n a-1]\)
    ```

\section*{Parameters}
b : ndarray
Numerator of a linear filter.
a : ndarray
Denominator of a linear filter.
worN : \{None, int \}, optional
If None, then compute at 200 frequencies around the interesting parts of the response curve (determined by pole-zero locations). If a single integer, the compute at that many frequencies. Otherwise, compute the response at frequencies given in worN.
plot : callable
A callable that takes two arguments. If given, the return parameters \(w\) and \(h\) are passed to plot. Useful for plotting the frequency response inside freqz.

\section*{Returns}
\(\mathbf{w}\) : ndarray
The frequencies at which \(h\) was computed.
h : ndarray
The frequency response.

\section*{See Also:}
freqz
Compute the frequency response of a digital filter.

\section*{Notes}

Using Matplotlib's "plot" function as the callable for plot produces unexpected results, this plots the real part of the complex transfer function, not the magnitude.
scipy.signal.freqz ( \(b, a=1\), wor \(N=\) None, whole \(=0\), plot \(=\) None )
Compute the frequency response of a digital filter.
Given the numerator \(b\) and denominator \(a\) of a digital filter compute its frequency response:


\section*{Parameters}
b: ndarray
numerator of a linear filter
a : ndarray
denominator of a linear filter
worN : \{None, int \}, optional
If None, then compute at 512 frequencies around the unit circle. If a single integer, the compute at that many frequencies. Otherwise, compute the response at frequencies given in worN
whole : bool, optional
Normally, frequencies are computed from 0 to pi (upper-half of unit-circle. If whole is False, compute frequencies from 0 to \(2 *\) pi.
plot : callable
A callable that takes two arguments. If given, the return parameters \(w\) and \(h\) are passed to plot. Useful for plotting the frequency response inside freqz.

\section*{Returns}
\(\mathbf{w}\) : ndarray
The frequencies at which \(h\) was computed.
h : ndarray
The frequency response.

\section*{Notes}

Using Matplotlib's "plot" function as the callable for plot produces unexpected results, this plots the real part of the complex transfer function, not the magnitude.

\section*{Examples}
```

>>> import scipy.signal
>>> b = sp.signal.firwin(80, 0.5, window=('kaiser', 8))
>>> h, w = sp.signal.freqz(b)

```
```

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.title('Digital filter frequency response')
>>> ax1 = fig.add_subplot(111)
>>> plt.semilogy(h, np.abs(w), 'b')
>>> plt.ylabel('Amplitude (dB)', color='b')
>>> plt.xlabel('Frequency (rad/sample)')
>>> plt.grid()
>>> plt.legend()
>>> ax2 = ax1.twinx()
>>> angles = np.unwrap(np.angle(w))
>>> plt.plot(h, angles, 'g')
>>> plt.ylabel('Angle (radians)', color='g')
>>> plt.show()

```

scipy.signal.iirdesign(wp,ws, gpass, gstop, analog=0, ftype='ellip', output='ba') Complete IIR digital and analog filter design.

Given passband and stopband frequencies and gains construct an analog or digital IIR filter of minimum order for a given basic type. Return the output in numerator, denominator ('ba') or pole-zero ('zpk') form.

\section*{Parameters}
wp, ws : float
Passband and stopband edge frequencies, normalized from 0 to 1 ( 1 corresponds to pi radians / sample). For example:
- Lowpass: \(\mathrm{wp}=0.2\), \(\mathrm{ws}=0.3\)
- Highpass: \(\mathrm{wp}=0.3\), ws \(=0.2\)
- Bandpass: wp \(=[0.2,0.5], \mathrm{ws}=[0.1,0.6]\)
- Bandstop: \(\mathrm{wp}=[0.1,0.6], \mathrm{ws}=[0.2,0.5]\)
gpass : float
The maximum loss in the passband (dB).
gstop : float
The minimum attenuation in the stopband (dB).
analog : int, optional
Non-zero to design an analog filter (in this case \(w p\) and \(w s\) are in radians / second).
ftype : str, optional
The type of IIR filter to design:
- elliptic: 'ellip'
- Butterworth : 'butter',
- Chebyshev I : ‘cheby1’,
- Chebyshev II: 'cheby2',
- Bessel : 'bessel'
output : ['ba', 'zpk'], optional
Type of output: numerator/denominator ('ba') or pole-zero ('zpk'). Default is 'ba'.

\section*{Returns}
b, a : :
Numerator and denominator of the IIR filter. Only returned if output=' ba'.
\(\mathbf{z}, \mathbf{p}, \mathbf{k}\) : Zeros, poles, and gain of the IIR filter. Only returned if
'output='zpk'". :
scipy.signal.iirfilter ( \(N, W n, r p=N o n e, r s=N o n e\), btype \(=\) 'band', analog=0, ftype='butter', output=' \(b a\) ')
IIR digital and analog filter design given order and critical points.
Design an Nth order lowpass digital or analog filter and return the filter coefficients in ( \(\mathrm{B}, \mathrm{A}\) ) (numerator, denominator) or ( \(\mathrm{Z}, \mathrm{P}, \mathrm{K}\) ) form.

\section*{Parameters}
\(\mathbf{N}\) : int
The order of the filter.
Wn : array_like
A scalar or length-2 sequence giving the critical frequencies.

\section*{rp : float, optional}

For Chebyshev and elliptic filters provides the maximum ripple in the passband.
rs: float, optional
For chebyshev and elliptic filters provides the minimum attenuation in the stop band.
btype : str, optional
The type of filter (lowpass, highpass, bandpass, bandstop). Default is bandpass.
analog : int, optional
Non-zero to return an analog filter, otherwise a digital filter is returned.
ftype : str, optional
The type of IIR filter to design:
- elliptic : 'ellip'
- Butterworth : 'butter',
- Chebyshev I : ‘chebyl',
- Chebyshev II: ‘cheby2’,
- Bessel : 'bessel'
output : ['ba', 'zpk'], optional
Type of output: numerator/denominator ('ba') or pole-zero ('zpk'). Default is 'ba'.

\section*{See Also:}
butterord, cheb1ord, cheb2ord, ellipord
scipy.signal.kaiser_atten (numtaps, width)
Compute the attenuation of a Kaiser FIR filter.
Given the number of taps \(N\) and the transition width width, compute the attenuation \(a\) in dB , given by Kaiser's formula:
\[
\mathrm{a}=2.285 *(\mathrm{~N}-1) * \mathrm{pi} * \text { width }+7.95
\]

\section*{Parameters}
\(\mathbf{N}\) : int
The number of taps in the FIR filter.
width : float
The desired width of the transition region between passband and stopband (or, in general, at any discontinuity) for the filter.

\section*{Returns}
a : float
The attenuation of the ripple, in dB .

\section*{See Also:}
kaiserord, kaiser_beta
scipy.signal.kaiser_beta(a)
Compute the Kaiser parameter beta, given the attenuation \(a\).
Parameters
a: float
The desired attenuation in the stopband and maximum ripple in the passband, in dB . This should be a positive number.

\section*{Returns}
beta: float
The beta parameter to be used in the formula for a Kaiser window.

\section*{References}

Oppenheim, Schafer, "Discrete-Time Signal Processing", p.475-476.
scipy.signal.kaiserord (ripple, width)
Design a Kaiser window to limit ripple and width of transition region.

\section*{Parameters}
ripple : float
Positive number specifying maximum ripple in passband (dB) and minimum ripple in stopband.
width : float
Width of transition region (normalized so that 1 corresponds to pi radians / sample).

\section*{Returns}
numtaps : int
The length of the kaiser window.
beta : :
The beta parameter for the kaiser window.

\section*{See Also:}
kaiser_beta, kaiser_atten

\section*{Notes}

There are several ways to obtain the Kaiser window:
signal.kaiser(numtaps, beta, sym=0) signal.get_window(beta, numtaps) signal.get_window(('kaiser', beta), numtaps)
The empirical equations discovered by Kaiser are used.

\section*{References}

Oppenheim, Schafer, "Discrete-Time Signal Processing", p.475-476.
```

scipy.signal.remez (numtaps, bands, desired, weight=None, Hz=1, type='bandpass', maxiter=25,

``` grid_density \(=16\) )
Calculate the minimax optimal filter using the Remez exchange algorithm.
Calculate the filter-coefficients for the finite impulse response (FIR) filter whose transfer function minimizes the maximum error between the desired gain and the realized gain in the specified frequency bands using the Remez exchange algorithm.

\section*{Parameters}
numtaps : int
The desired number of taps in the filter. The number of taps is the number of terms in the filter, or the filter order plus one.
bands : array_like
A monotonic sequence containing the band edges in Hz . All elements must be nonnegative and less than half the sampling frequency as given by Hz .
desired : array_like
A sequence half the size of bands containing the desired gain in each of the specified bands.
weight : array_like, optional
A relative weighting to give to each band region. The length of weight has to be half the length of bands.
Hz : scalar, optional

The sampling frequency in Hz . Default is 1 .
type : \{ 'bandpass', 'differentiator', 'hilbert'\}, optional
The type of filter:
'bandpass' : flat response in bands. This is the default.
'differentiator' : frequency proportional response in bands.
'hilbert'
[filter with odd symmetry, that is, type III] (for even order) or type IV (for odd order) linear phase filters.
maxiter : int, optional
Maximum number of iterations of the algorithm. Default is 25 .
grid_density : int, optional
Grid density. The dense grid used in remez is of size (numtaps + 1) * grid_density. Default is 16 .

\section*{Returns}
out : ndarray
A rank-1 array containing the coefficients of the optimal (in a minimax sense) filter.

\section*{See Also:}

\section*{freqz}

Compute the frequency response of a digital filter.

\section*{References}
[R58], [R59]

\section*{Examples}

We want to construct a filter with a passband at \(0.2-0.4 \mathrm{~Hz}\), and stop bands at \(0-0.1 \mathrm{~Hz}\) and \(0.45-0.5 \mathrm{~Hz}\). Note that this means that the behavior in the frequency ranges between those bands is unspecified and may overshoot.
```

>>> bpass = sp.signal.remez(72, [0, 0.1, 0.2, 0.4, 0.45, 0.5], [0, 1, 0])
>>> freq, response = sp.signal.freqz(bpass)
>>> ampl = np.abs(response)
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(111)
>>> ax1.semilogy(freq/(2*np.pi), ampl, 'b-') \# freq in Hz
[<matplotlib.lines.Line2D object at 0xf486790>]
>>> plt.show()

```

scipy.signal. unique_roots ( \(p\), tol \(=0.001\), rtype='min')
Determine unique roots and their multiplicities from a list of roots.

\section*{Parameters}
p: array_like
The list of roots.
tol : float, optional
The tolerance for two roots to be considered equal. Default is \(1 \mathrm{e}-3\).
rtype : \{ 'max', 'min, 'avg'\}, optional
How to determine the returned root if multiple roots are within tol of each other.
- 'max': pick the maximum of those roots.
- 'min': pick the minimum of those roots.
- 'avg': take the average of those roots.

\section*{Returns}
pout : ndarray
The list of unique roots, sorted from low to high.
mult : ndarray
The multiplicity of each root.

\section*{Notes}

This utility function is not specific to roots but can be used for any sequence of values for which uniqueness and multiplicity has to be determined. For a more general routine, see numpy . unique.

\section*{Examples}
```

>>> vals = [0, 1.3, 1.31, 2.8, 1.25, 2.2, 10.3]
>>> uniq, mult = sp.signal.unique_roots(vals, tol=2e-2, rtype='avg')

```

Check which roots have multiplicity larger than 1 :
```

>>> uniq[mult > 1]
array([1.305])

```
scipy.signal.residue ( \(b, a\), tol \(=0.001\), rtype='avg')

Compute partial-fraction expansion of \(\mathrm{b}(\mathrm{s}) / \mathrm{a}(\mathrm{s})\).
If \(M=\operatorname{len}(b)\) and \(N=\operatorname{len}(a)\), then the partial-fraction expansion \(H(s)\) is defined as:

If there are any repeated roots (closer together than \(t o l\) ), then \(\mathrm{H}(\mathrm{s})\) has terms like:

\section*{Returns}
r: ndarray
Residues.
p : ndarray
Poles.
k : ndarray
Coefficients of the direct polynomial term.
See Also:
invres, numpy.poly, unique_roots
scipy.signal.residuez ( \(b, a\), tol \(=0.001\), rtype \(=\) 'avg')
Compute partial-fraction expansion of \(\mathrm{b}(\mathrm{z}) / \mathrm{a}(\mathrm{z})\).
If \(\mathrm{M}=\operatorname{len}(\mathrm{b})\) and \(\mathrm{N}=\operatorname{len}(\mathrm{a})\)
\[
\mathrm{b}(\mathrm{z}) \mathrm{b}[0]+\mathrm{b}[1] \mathrm{z}^{* *}(-1)+\ldots+\mathrm{b}[\mathrm{M}-1] \mathrm{z}^{* *}(-\mathrm{M}+1)
\]
\(\mathbf{H}(\mathbf{z})=-=\)
\[
\mathrm{a}(\mathrm{z}) \mathrm{a}[0]+\mathrm{a}[1] \mathrm{z}^{* *}(-1)+\ldots+\mathrm{a}[\mathrm{~N}-1] \mathrm{z}^{* *}(-\mathrm{N}+1)
\]
\(\mathrm{r}[0] \mathrm{r}[-1]\)
\[
=\frac{}{\left(1-\mathrm{p}[0] \mathrm{z}^{* *}(-1)\right)}+\frac{}{\left(1-\mathrm{p}[-1] \mathrm{z}^{*} *(-1)\right)}+\mathbf{k}[\mathbf{0}]+\mathbf{k}[\mathbf{1}] \mathrm{z}^{* *}(-\mathbf{1}) \ldots
\]

If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like
\[
r[i] r[i+1] r[i+n-1]
\]
\[
\overline{1 u * *_{n}}+\square+\ldots+\square\left(1-\mathrm{p}[\mathrm{i}] \mathrm{z}^{* *}(-1)\right)\left(1-\mathrm{p}[\mathrm{i}] \mathrm{z}^{* *}(-1)\right)^{* * 2}\left(1-\mathrm{p}[\mathrm{i}] \mathrm{z}^{* *}(-\right.
\]
1)) \({ }^{* *} \mathrm{n}\)
\[
\begin{aligned}
& H(s)=\frac{b(s)}{b[0] s * *(M-1)+b[1] s * *(M-2)+\ldots+b[M-1]}
\end{aligned}
\]
\[
\begin{aligned}
& \text { (s-p[0]) (s-p[1]) (s-p[-1]) }
\end{aligned}
\]

\section*{See Also:}
invresz, poly, polyval, unique_roots
scipy.signal.invres ( \(r, p, k, t o l=0.001, r t y p e={ }^{\prime} a v g\) ')
Compute \(\mathrm{b}(\mathrm{s})\) and \(\mathrm{a}(\mathrm{s})\) from partial fraction expansion: \(\mathrm{r}, \mathrm{p}, \mathrm{k}\)
If \(\mathrm{M}=\operatorname{len}(\mathrm{b})\) and \(\mathrm{N}=\operatorname{len}(\mathrm{a})\)
\[
\mathrm{b}(\mathrm{~s}) \mathrm{b}[0] \mathrm{x}^{* *}(\mathrm{M}-1)+\mathrm{b}[1] \mathrm{x}^{* *}(\mathrm{M}-2)+\ldots+\mathrm{b}[\mathrm{M}-1]
\]
\(\mathbf{H}(\mathbf{s})=-=\)
\[
\mathrm{a}(\mathrm{~s}) \mathrm{a}[0] \mathrm{x}^{* *}(\mathrm{~N}-1)+\mathrm{a}[1] \mathrm{x} * *(\mathrm{~N}-2)+\ldots+\mathrm{a}[\mathrm{~N}-1]
\]
\[
\mathrm{r}[0] \mathrm{r}[1] \mathrm{r}[-1]
\]
\[
=-+\cdots+\ldots+\cdots+k(s)
\]
\[
(\mathrm{s}-\mathrm{p}[0])(\mathrm{s}-\mathrm{p}[1])(\mathrm{s}-\mathrm{p}[-1])
\]

If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like
\[
\begin{gathered}
\mathrm{r}[\mathrm{i}] \mathrm{r}[\mathrm{i}+1] \mathrm{r}[\mathrm{i}+\mathrm{n}-1] \\
\longrightarrow \\
+\longrightarrow+\ldots+\mathrm{s}-\mathrm{p}[\mathrm{i}])(\mathrm{s}-\mathrm{p}[\mathrm{i}]) * * 2(\mathrm{~s}-\mathrm{p}[\mathrm{i}]) * * \mathrm{n}
\end{gathered}
\]

See Also:
residue, poly, polyval, unique_roots

\subsection*{3.13.5 Matlab-style IIR filter design}
\begin{tabular}{ll}
\hline butter(N, Wn[, btype, analog, output]) & Butterworth digital and analog filter design. \\
buttord(wp, ws, gpass, gstop[, analog]) & Butterworth filter order selection. \\
cheby1(N, rp, Wn[, btype, analog, output]) & Chebyshev type I digital and analog filter design. \\
cheb1ord(wp, ws, gpass, gstop[, analog]) & Chebyshev type I filter order selection. \\
cheby2(N, rs, Wn[, btype, analog, output]) & Chebyshev type I digital and analog filter design. \\
cheb2ord(wp, ws, gpass, gstop[, analog]) & Chebyshev type II filter order selection. \\
ellip(N, rp, rs, Wn[, btype, analog, output]) & Elliptic (Cauer) digital and analog filter design. \\
ellipord(wp, ws, gpass, gstop[, analog]) & Elliptic (Cauer) filter order selection. \\
bessel(N, Wn[, btype, analog, output]) & Bessel digital and analog filter design. \\
\hline scipy.signal .butter ( \(N, W n\), btype='low', analog=0, output='ba') \\
Butterworth digital and analog filter design.
\end{tabular}

Design an Nth order lowpass digital or analog Butterworth filter and return the filter coefficients in ( \(\mathrm{B}, \mathrm{A}\) ) or (Z,P,K) form.

\section*{See Also:}
buttord.
scipy.signal.buttord(wp,ws, gpass, gstop, analog=0)
Butterworth filter order selection.
Return the order of the lowest order digital Butterworth filter that loses no more than gpass dB in the passband and has at least gstop dB attenuation in the stopband.

\section*{Parameters}
wp, ws : float

Passband and stopband edge frequencies, normalized from 0 to 1 ( 1 corresponds to pi radians / sample). For example:
- Lowpass: \(\mathrm{wp}=0.2, \mathrm{ws}=0.3\)
- Highpass: wp \(=0.3\), ws \(=0.2\)
- Bandpass: wp \(=[0.2,0.5]\), ws \(=[0.1,0.6]\)
- Bandstop: \(\mathrm{wp}=[0.1,0.6], \mathrm{ws}=[0.2,0.5]\)
gpass : float
The maximum loss in the passband (dB).
gstop : float
The minimum attenuation in the stopband (dB).
analog : int, optional
Non-zero to design an analog filter (in this case \(w p\) and \(w s\) are in radians / second).

\section*{Returns}
ord : int
The lowest order for a Butterworth filter which meets specs.
wn : ndarray or float
The Butterworth natural frequency (i.e. the " 3 dB frequency"). Should be used with butter to give filter results.
scipy.signal. cheby1 ( \(N, r p\), Wn, btype='low', analog=0, output='ba')
Chebyshev type I digital and analog filter design.
Design an Nth order lowpass digital or analog Chebyshev type I filter and return the filter coefficients in (B,A) or (Z,P,K) form.

\section*{See Also:}
cheb1ord.
scipy.signal. cheb1ord (wp, ws, gpass, gstop, analog=0)
Chebyshev type I filter order selection.
Return the order of the lowest order digital Chebyshev Type I filter that loses no more than gpass dB in the passband and has at least gstop dB attenuation in the stopband.

\section*{Parameters}
\(\mathbf{w p}\), ws : float
Passband and stopband edge frequencies, normalized from 0 to 1 ( 1 corresponds to pi radians / sample). For example:
- Lowpass: \(\mathrm{wp}=0.2\), \(\mathrm{ws}=0.3\)
- Highpass: wp \(=0.3\), ws \(=0.2\)
- Bandpass: wp \(=[0.2,0.5]\), ws \(=[0.1,0.6]\)
- Bandstop: \(\mathrm{wp}=[0.1,0.6]\), ws \(=[0.2,0.5]\)
gpass : float
The maximum loss in the passband \((\mathrm{dB})\).
gstop : float

The minimum attenuation in the stopband (dB).
analog : int, optional
Non-zero to design an analog filter (in this case \(w p\) and \(w s\) are in radians / second).

\section*{Returns}
ord : int
The lowest order for a Chebyshev type I filter that meets specs.
wn : ndarray or float
The Chebyshev natural frequency (the " 3 dB frequency") for use with chebyl to give filter results.
scipy.signal. Cheby2 ( \(N, r s, W n\), btype \(=\) 'low', analog \(=0\), output='ba')
Chebyshev type I digital and analog filter design.
Design an Nth order lowpass digital or analog Chebyshev type I filter and return the filter coefficients in (B,A) or (Z,P,K) form.

\section*{See Also:}
cheb2ord.
scipy.signal.cheb2ord(wp, ws, gpass, gstop, analog=0)
Chebyshev type II filter order selection.
Description:
Return the order of the lowest order digital Chebyshev Type II filter that loses no more than gpass dB in the passband and has at least gstop dB attenuation in the stopband.

\section*{Parameters}
\(\mathbf{w p}\), ws : float
Passband and stopband edge frequencies, normalized from 0 to 1 ( 1 corresponds to pi radians / sample). For example:
- Lowpass: \(\mathrm{wp}=0.2\), ws \(=0.3\)
- Highpass: wp \(=0.3\), ws \(=0.2\)
- Bandpass: wp \(=[0.2,0.5]\), ws \(=[0.1,0.6]\)
- Bandstop: \(\mathrm{wp}=[0.1,0.6], \mathrm{ws}=[0.2,0.5]\)
gpass : float
The maximum loss in the passband ( dB ).
gstop : float
The minimum attenuation in the stopband (dB).
analog : int, optional
Non-zero to design an analog filter (in this case \(w p\) and \(w s\) are in radians / second).

\section*{Returns}
ord : int
The lowest order for a Chebyshev type II filter that meets specs.
wn : ndarray or float

The Chebyshev natural frequency (the " 3 dB frequency") for use with cheby 2 to give filter results.
scipy.signal.ellip ( \(N, r p, r s, W n\), btype \(=\) 'low', analog \(=0\), output='ba')
Elliptic (Cauer) digital and analog filter design.
Design an Nth order lowpass digital or analog elliptic filter and return the filter coefficients in (B,A) or (Z,P,K) form.

See Also:
ellipord.
scipy.signal.ellipord(wp, ws, gpass, gstop, analog=0)
Elliptic (Cauer) filter order selection.
Return the order of the lowest order digital elliptic filter that loses no more than gpass dB in the passband and has at least gstop dB attenuation in the stopband.

\section*{Parameters}
\(\mathbf{w p}\), ws : float
Passband and stopband edge frequencies, normalized from 0 to 1 ( 1 corresponds to pi radians / sample). For example:
- Lowpass: \(\mathrm{wp}=0.2\), ws \(=0.3\)
- Highpass: wp \(=0.3\), ws \(=0.2\)
- Bandpass: wp \(=[0.2,0.5]\), ws \(=[0.1,0.6]\)
- Bandstop: wp \(=[0.1,0.6], \mathrm{ws}=[0.2,0.5]\)
gpass : float
The maximum loss in the passband \((\mathrm{dB})\).
gstop : float
The minimum attenuation in the stopband (dB).
analog : int, optional
Non-zero to design an analog filter (in this case \(w p\) and \(w s\) are in radians / second).

\section*{Returns :}
\(\qquad\)
ord : int
The lowest order for an Elliptic (Cauer) filter that meets specs.
wn : ndarray or float
The Chebyshev natural frequency (the " 3 dB frequency") for use with ellip to give filter results.-
scipy.signal.bessel ( \(N, W n\), btype='low', analog=0, output='ba')
Bessel digital and analog filter design.
Design an Nth order lowpass digital or analog Bessel filter and return the filter coefficients in (B,A) or (Z,P,K) form.

\subsection*{3.13.6 Linear Systems}
\begin{tabular}{ll}
\hline lti \((* \operatorname{args,} * * \mathrm{kwords})\) & Linear Time Invariant class which simplifies representation. \\
lsim(system, U, T[, X0, interp]) & Simulate output of a continuous-time linear system. \\
lsim2(system, **kwargs[, U, T, X0]) & Simulate output of a continuous-time linear system, by using \\
impulse(system[, X0, T, N]) & Impulse response of continuous-time system. \\
impulse2(system, **kwargs[, X0, T, N]) & Impulse response of a single-input, continuous-time linear system. \\
step(system[, X0, T, N]) & Step response of continuous-time system. \\
step2(system, **kwargs[, X0, T, N]) & Step response of continuous-time system. \\
\hline
\end{tabular}
class scipy.signal.lti(*args, **kwords)
Linear Time Invariant class which simplifies representation.

\section*{Methods}
impulse(system[, X0, T, N]) Impulse response of continuous-time system.
output
step(system[, X0, T, N]) Step response of continuous-time system.
scipy.signal.impulse (system, \(X 0=\) None, \(T=\) None, \(N=\) None)
Impulse response of continuous-time system.

\section*{Parameters}
system : LTI class or tuple
If specified as a tuple, the system is described as (num, den), (zero, pole, gain), or (A, B, C, D).

X0 : array_like, optional
Initial state-vector. Defaults to zero.
T : array_like, optional
Time points. Computed if not given.
\(\mathbf{N}\) : int, optional
The number of time points to compute (if \(T\) is not given).

\section*{Returns}

T: ndarray
A 1-D array of time points.
yout : ndarray
A 1-D array containing the impulse response of the system (except for singularities at zero).
scipy.signal.step (system, \(X 0=\) None, \(T=\) None, \(N=\) None)
Step response of continuous-time system.

\section*{Parameters}
system : an instance of the LTI class or a tuple describing the system.
The following gives the number of elements in the tuple and the interpretation.
2 (num, den) 3 (zeros, poles, gain) 4 (A, B, C, D)
X0 : array_like, optional
Initial state-vector (default is zero).
T : array_like, optional

Time points (computed if not given).
\(\mathbf{N}\) : int
Number of time points to compute if \(T\) is not given.

\section*{Returns}

T: 1D ndarray
Output time points.
```

yout : 1D ndarray

```

Step response of system.

\section*{See Also:}
scipy.signal.step2
scipy.signal.lsim (system, \(U, T, X 0=\) None, interp \(=1\) )
Simulate output of a continuous-time linear system.

\section*{Parameters}
system : an instance of the LTI class or a tuple describing the system.
The following gives the number of elements in the tuple and the interpretation:
- 2: (num, den)
- 3: (zeros, poles, gain)
- 4: (A, B, C, D)
\(\mathbf{U}\) : array_like
An input array describing the input at each time \(T\) (interpolation is assumed between given times). If there are multiple inputs, then each column of the rank-2 array represents an input.

T: array_like
The time steps at which the input is defined and at which the output is desired.
X0 : :
The initial conditions on the state vector (zero by default).
interp: \(\{1,0\}\)
Whether to use linear (1) or zero-order hold (0) interpolation.

\section*{Returns}

T: 1D ndarray
Time values for the output.
yout : 1D ndarray
System response.
xout : ndarray
Time-evolution of the state-vector.
scipy.signal.lsim2 (system, \(U=\) None, \(T=\) None, \(X 0=\) None, **kwargs)
Simulate output of a continuous-time linear system, by using the ODE solver scipy. integrate.odeint.

\section*{Parameters}
system : an instance of the LTI class or a tuple describing the system.

The following gives the number of elements in the tuple and the interpretation:
- 2: (num, den)
- 3: (zeros, poles, gain)
- 4: (A, B, C, D)
\(\mathbf{U}\) : array_like (1D or 2D), optional
An input array describing the input at each time T. Linear interpolation is used between given times. If there are multiple inputs, then each column of the rank-2 array represents an input. If U is not given, the input is assumed to be zero.
\(\mathbf{T}\) : array_like (1D or 2D), optional
The time steps at which the input is defined and at which the output is desired. The default is 101 evenly spaced points on the interval \([0,10.0]\).
X0 : array_like (1D), optional
The initial condition of the state vector. If \(X 0\) is not given, the initial conditions are assumed to be 0 .
kwargs : dict
Additional keyword arguments are passed on to the function odeint. See the notes below for more details.

\section*{Returns}

T: 1D ndarray
The time values for the output.
yout : ndarray
The response of the system.
xout : ndarray
The time-evolution of the state-vector.

\section*{Notes}

This function uses scipy.integrate.odeint to solve the system's differential equations. Additional keyword arguments given to lsim2 are passed on to odeint. See the documentation for scipy. integrate.odeint for the full list of arguments.
scipy.signal.impulse (system, \(X 0=\) None, \(T=\) None, \(N=\) None)
Impulse response of continuous-time system.

\section*{Parameters}
system : LTI class or tuple
If specified as a tuple, the system is described as (num, den), (zero, pole, gain), or (A, B, C, D).
X0 : array_like, optional
Initial state-vector. Defaults to zero.
T : array_like, optional
Time points. Computed if not given.
\(\mathbf{N}\) : int, optional

The number of time points to compute (if \(T\) is not given).

\section*{Returns}

T: ndarray
A 1-D array of time points.
yout : ndarray
A 1-D array containing the impulse response of the system (except for singularities at zero).
scipy.signal.impulse2 (system, \(X 0=\) None, \(T=\) None, \(N=\) None, **kwargs)
Impulse response of a single-input, continuous-time linear system.

\section*{Parameters}
system : an instance of the LTI class or a tuple describing the system.
The following gives the number of elements in the tuple and the interpretation:
2 (num, den) 3 (zeros, poles, gain) 4 (A, B, C, D)
T: 1-D array_like, optional
The time steps at which the input is defined and at which the output is desired. If \(T\) is not given, the function will generate a set of time samples automatically.

X0 : 1-D array_like, optional
The initial condition of the state vector. Default: 0 (the zero vector).
N : int, optional
Number of time points to compute. Default: 100.
kwargs : various types
Additional keyword arguments are passed on to the function scipy.signal.lsim2, which in turn passes them on to scipy.integrate.odeint; see the latter's documentation for information about these arguments.

\section*{Returns}

T: ndarray
The time values for the output.
yout : ndarray
The output response of the system.

\section*{See Also:}
impulse, lsim2, integrate.odeint

\section*{Notes}

The solution is generated by calling scipy.signal.lsim2, which uses the differential equation solver scipy.integrate.odeint. New in version 0.8.0.

\section*{Examples}

Second order system with a repeated root: \(x '\) ' \((t)+2 * x(t)+x(t)=u(t)\)
```

>>> import scipy.signal
>>> system = ([1.0], [1.0, 2.0, 1.0])
>>> t, y = sp.signal.impulse2(system)
>>> import matplotlib.pyplot as plt
>>> plt.plot(t, y)

```

scipy.signal.step (system, \(X 0=\) None, \(T=\) None, \(N=\) None)
Step response of continuous-time system.

\section*{Parameters}
system : an instance of the LTI class or a tuple describing the system.
The following gives the number of elements in the tuple and the interpretation.
2 (num, den) 3 (zeros, poles, gain) 4 (A, B, C, D)
X0 : array_like, optional
Initial state-vector (default is zero).
T: array_like, optional
Time points (computed if not given).
\(\mathbf{N}\) : int
Number of time points to compute if \(T\) is not given.

\section*{Returns}

T: 1D ndarray
Output time points.
yout : 1D ndarray
Step response of system.
See Also:
scipy.signal.step2
scipy.signal.step2 (system, \(X 0=\) None, \(T=\) None, \(N=\) None, \(* * k w a r g s\) )
Step response of continuous-time system.

This function is functionally the same as scipy.signal.step, but it uses the function scipy.signal.lsim2 to compute the step response.

Parameters
system : an instance of the LTI class or a tuple describing the system.
The following gives the number of elements in the tuple and the interpretation.
2 (num, den) 3 (zeros, poles, gain) 4 (A, B, C, D)
X0 : array_like, optional
Initial state-vector (default is zero).
T: array_like, optional
Time points (computed if not given).
\(\mathbf{N}\) : int
Number of time points to compute if \(T\) is not given.
**kwargs : :
Additional keyword arguments are passed on the function scipy.signal.lsim2, which in turn passes them on to scipy.integrate.odeint. See the documentation for scipy.integrate.odeint for information about these arguments.

\section*{Returns}

T: 1D ndarray
Output time points.
yout : 1D ndarray
Step response of system.

\section*{See Also:}
scipy.signal.step

\section*{Notes}

New in version 0.8.0.

\subsection*{3.13.7 LTI Representations}
\begin{tabular}{|c|c|}
\hline \(t £ 2 \mathrm{zpk}(\mathrm{b}, \mathrm{a})\) & Return zero, pole, gain (z,p,k) representation from a numerator, denominator representation of a linear filter. \\
\hline zpk2tf( \(\mathrm{z}, \mathrm{p}, \mathrm{k}\) ) & Return polynomial transfer function representation from zeros \\
\hline \(t f 2 \mathrm{ss}(\) num, den \()\) & Transfer function to state-space representation. \\
\hline \[
\begin{aligned}
& s s 2 t f(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}[\text {, } \\
& \text { input }])
\end{aligned}
\] & State-space to transfer function. \\
\hline zpk2ss(z, p, k) & Zero-pole-gain representation to state-space representation \\
\hline ss2zpk(A, B, C, D[, inputl) & State-space representation to zero-pole-gain representation. \\
\hline scipy.signal.tf2z & k ( \(b, a\) ) \\
\hline
\end{tabular}

Numerator polynomial.
a : ndarray
Denominator polynomial.

\section*{Returns}
\(\mathbf{z}\) : ndarray
Zeros of the transfer function.
p : ndarray
Poles of the transfer function.
k : float
System gain.
If some values of \(b\) are too close to 0 , they are removed. In that case, a :
BadCoefficients warning is emitted. :
scipy.signal. \(\mathbf{z p k} 2 \mathrm{t} \mathbf{f}(z, p, k)\)
Return polynomial transfer function representation from zeros and poles
Parameters
\(\mathbf{z}\) : ndarray
Zeros of the transfer function.
p : ndarray
Poles of the transfer function.
k : float
System gain.

\section*{Returns}
b : ndarray
Numerator polynomial.
a : ndarray
Denominator polynomial.
scipy.signal.tf2ss(num, den)
Transfer function to state-space representation.

\section*{Parameters}
num, den : array_like
Sequences representing the numerator and denominator polynomials.

\section*{Returns}
\(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}\) : ndarray
State space representation of the system.
scipy.signal.ss2tf ( \(A, B, C, D\), input=0)
State-space to transfer function.
Parameters
A, B, C, D : ndarray
State-space representation of linear system.
input : int, optional
For multiple-input systems, the input to use.

\section*{Returns}
num, den : 1D ndarray
Numerator and denominator polynomials (as sequences) respectively.
```

scipy.signal.zpk2ss(z,p,k)

```

Zero-pole-gain representation to state-space representation

\section*{Parameters}
\(\mathbf{z}, \mathbf{p}\) : sequence
Zeros and poles.
\(\mathbf{k}\) : float
System gain.

\section*{Returns}
\(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}\) : ndarray
State-space matrices.
scipy.signal.ss2zpk ( \(A, B, C, D\), input=0)
State-space representation to zero-pole-gain representation.

\section*{Parameters}

A, B, C, D : ndarray
State-space representation of linear system.
input : int, optional
For multiple-input systems, the input to use.

\section*{Returns}
\(\mathbf{z}, \mathbf{p}\) : sequence
Zeros and poles.
k : float
System gain.

\subsection*{3.13.8 Waveforms}
```

chirp(t, f0, t1, f1[, method, phi, Frequency-swept cosine generator.
vertex_zero])
gausspulse(t[, fc, bw, bwr, tpr, Return a gaussian modulated sinusoid: exp(-a t^2) exp(1j*2*pi*fc*t).
retquad, ...])
sawtooth(t[,width]) Return a periodic sawtooth waveform.
square(t[, duty]) Return a periodic square-wave waveform.
sweep_poly(t, poly[, phi]) Frequency-swept cosine generator, with a time-dependent frequency
specified as a polynomial.
scipy.signal.chirp(t,f0,tl,fl,method='linear', phi=0,vertex_zero=True)
Frequency-swept cosine generator.
In the following, 'Hz' should be interpreted as 'cycles per time unit'; there is no assumption here that the time unit is one second. The important distinction is that the units of rotation are cycles, not radians.

```

\section*{Parameters}
\(\mathbf{t}\) : ndarray
Times at which to evaluate the waveform.
f0 : float
Frequency (in Hz) at time \(\mathrm{t}=0\).
t1 : float
Time at which \(f l\) is specified.
f1 : float
Frequency (in Hz ) of the waveform at time \(t l\).
method : \{ 'linear', 'quadratic', 'logarithmic', 'hyperbolic'\}, optional
Kind of frequency sweep. If not given, linear is assumed. See Notes below for more details.
phi : float, optional
Phase offset, in degrees. Default is 0 .
vertex_zero : bool, optional
This parameter is only used when method is 'quadratic'. It determines whether the vertex of the parabola that is the graph of the frequency is at \(t=0\) or \(t=t 1\).

\section*{Returns}

A numpy array containing the signal evaluated at ' \(t\) ' with the requested :
time-varying frequency. More precisely, the function returns: :
```

cos(phase + (pi/180)*phi)

```
where 'phase' is the integral (from 0 to \(t\) ) of " \(2 * p i * f(t){ }^{\text {' }}\). :
' \(\mathrm{f}(\mathrm{t})\) '" is defined below. :

\section*{See Also:}
```

scipy.signal.waveforms.sweep_poly

```

\section*{Notes}

There are four options for the method. The following formulas give the instantaneous frequency (in Hz ) of the signal generated by chirp(). For convenience, the shorter names shown below may also be used.
linear, lin, li:
```

f(t) = f0 + (f1 - f0) * t / t1

```
quadratic, quad, q:
The graph of the frequency \(f(t)\) is a parabola through \((0, f 0)\) and \((t 1, f 1)\). By default, the vertex of the parabola is at \((0, f 0)\). If vertex_zero is False, then the vertex is at \((\mathrm{t} 1, \mathrm{f} 1)\). The formula is:
if vertex_zero is True:
```

f(t) = f0 + (f1 - f0) * t**2 / t1**2

```
else:
```

f(t) = f1 - (f1 - f0) * (t1 - t)**2 / t1**2

```

To use a more general quadratic function, or an arbitrary polynomial, use the function scipy.signal.waveforms.sweep_poly.
logarithmic, log, lo:
\(f(t)=f 0 *(f 1 / f 0) * *(t / t 1)\)
f 0 and f 1 must be nonzero and have the same sign.
This signal is also known as a geometric or exponential chirp.
hyperbolic, hyp:
\(\mathrm{f}(\mathrm{t})=\mathrm{f} 0 * f 1 * t 1 /((\mathrm{f} 0-\mathrm{f} 1) * t+\mathrm{f} 1 * \mathrm{t} 1)\)
f 1 must be positive, and f0 must be greater than f 1 .
scipy.signal.gausspulse ( \(t, f c=1000, b w=0.5, b w r=-6, t p r=-60\), retquad \(=\) False, retenv \(=\) False \()\)
Return a gaussian modulated sinusoid: \(\exp \left(-a t^{\wedge} 2\right) \exp \left(1 j^{*} 2 * \mathrm{pi} * \mathrm{fc}^{*} \mathrm{t}\right)\).
If retquad is True, then return the real and imaginary parts (in-phase and quadrature). If retenv is True, then return the envelope (unmodulated signal). Otherwise, return the real part of the modulated sinusoid.

\section*{Parameters}
t: ndarray, or the string 'cutoff'
Input array.
fc : int, optional
Center frequency (Hz). Default is 1000.
bw : float, optional
Fractional bandwidth in frequency domain of pulse \((\mathrm{Hz})\). Default is 0.5 .

\section*{bwr: float, optional :}

Reference level at which fractional bandwidth is calculated (dB). Default is -6.

\section*{tpr : float, optional}

If \(t\) is 'cutoff', then the function returns the cutoff time for when the pulse amplitude falls below tpr (in dB). Default is -60 .
retquad : bool, optional
If True, return the quadrature (imaginary) as well as the real part of the signal. Default is False.
retenv: bool, optional
If True, return the envelope of the signal. Default is False.
scipy.signal.sawtooth ( \(t\), width=1)
Return a periodic sawtooth waveform.
The sawtooth waveform has a period \(2 *\) pi, rises from -1 to 1 on the interval 0 to width*2*pi and drops from 1 to -1 on the interval width* \(2 *\) pi to \(2 *\) pi. width must be in the interval \([0,1]\).

\section*{Parameters}
t : array_like
Time.
width : float, optional
Width of the waveform. Default is 1.

\section*{Returns}
y : ndarray
Output array containing the sawtooth waveform.

\section*{Examples}
```

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(0, 20*np.pi, 500)
>>> plt.plot(x, sp.signal.sawtooth(x))

```

scipy.signal.square ( \(t\), duty=0.5)
Return a periodic square-wave waveform.
The square wave has a period \(2 *\) pi, has value +1 from 0 to \(2 * \mathrm{pi*}\) duty and -1 from \(2 *\) pi*duty to \(2 *\) pi. duty must be in the interval \([0,1]\).

\section*{Parameters}
t : array_like
The input time array.
duty : float, optional
Duty cycle.
Returns
\(\mathbf{y}\) : array_like
The output square wave.
```

scipy.signal.sweep_poly(t, poly,phi=0)

```

Frequency-swept cosine generator, with a time-dependent frequency specified as a polynomial.
This function generates a sinusoidal function whose instantaneous frequency varies with time. The frequency at time \(t\) is given by the polynomial poly.

\section*{Parameters}
\(\mathbf{t}\) : ndarray
Times at which to evaluate the waveform.
poly : 1D ndarray (or array-like), or instance of numpy.poly1d

The desired frequency expressed as a polynomial. If poly is a list or ndarray of length \(n\), then the elements of poly are the coefficients of the polynomial, and the instantaneous frequency is
```

f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ...

+ poly[n-1]

```

If poly is an instance of numpy.poly1d, then the instantaneous frequency is
```

f(t) = poly(t)

```
phi : float, optional
Phase offset, in degrees. Default is 0 .

\section*{Returns}

A numpy array containing the signal evaluated at ' \(t\) ' with the requested :
time-varying frequency. More precisely, the function returns :
```

cos(phase + (pi/180)*phi)

```
where 'phase' is the integral (from 0 to \(t)\) of ' \(\mathbf{2} * \mathbf{p i} * \mathbf{f}(\mathbf{t})\) '‘; :
' \(\mathrm{f}(\mathrm{t})\) " is defined above. :

\section*{See Also:}
```

scipy.signal.waveforms.chirp

```

\section*{Notes}

New in version 0.8.0.

\subsection*{3.13.9 Window functions}
\begin{tabular}{|c|c|}
\hline get_window(window, Nx[, fftbins]) & Return a window of length \(N x\) and type window. \\
\hline barthann(M[, sym]) & Return the M-point modified Bartlett-Hann window. \\
\hline bartlett(M[, sym]) & The M-point Bartlett window. \\
\hline blackman(M[, sym]) & The M-point Blackman window. \\
\hline blackmanharris(M[,sym]) & The M-point minimum 4-term Blackman-Harris window. \\
\hline bohman(M[, sym]) & The M-point Bohman window. \\
\hline boxcar(M[, sym]) & The M-point boxcar window. \\
\hline chebwin(M, at[, sym]) & Dolph-Chebyshev window. \\
\hline flattop(M[, sym]) & The M-point Flat top window. \\
\hline gaussian(M, std[, sym]) & Return a Gaussian window of length M with standard-deviation std. \\
\hline general_gaussian(M, p, sig[, sym]) & Return a window with a generalized Gaussian shape. \\
\hline hamming(M[, sym]) & The M-point Hamming window. \\
\hline hann(M[, sym]) & The M-point Hanning window. \\
\hline kaiser(M, beta[, sym]) & Return a Kaiser window of length M with shape parameter beta. \\
\hline nuttall(M[, sym]) & A minimum 4-term Blackman-Harris window according to Nuttall. \\
\hline parzen(M[,sym]) & The M-point Parzen window. \\
\hline slepian(M, width[, sym]) & Return the M-point slepian window. \\
\hline triang(M[, sym]) & The M-point triangular window. \\
\hline \multicolumn{2}{|l|}{scipy.signal.get_window ( window, \(N x\), fftbins=True)} \\
\hline \multicolumn{2}{|l|}{Return a window of length \(N x\) and type window.} \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline
\end{tabular}

The type of window to create. See below for more details.
\(\mathbf{N x}\) : int
The number of samples in the window.
fftbins : bool, optional
If True, create a "periodic" window ready to use with ifftshift and be multiplied by the result of an fft (SEE ALSO fftfreq).

\section*{Notes}

Window types:
boxcar, triang, blackman, hamming, hanning, bartlett, parzen, bohman, blackmanharris, nuttall, barthann, kaiser (needs beta), gaussian (needs std), general_gaussian (needs power, width), slepian (needs width), chebwin (needs attenuation)

If the window requires no parameters, then window can be a string.
If the window requires parameters, then window must be a tuple with the first argument the string name of the window, and the next arguments the needed parameters.

If window is a floating point number, it is interpreted as the beta parameter of the kaiser window.
Each of the window types listed above is also the name of a function that can be called directly to create a window of that type.

\section*{Examples}
```

>>> get_window('triang', 7)
array([0.25, 0.5 , 0.75, 1. , 0.75, 0.5 , 0.25])
>>> get_window(('kaiser', 4.0), 9)
array([0.08848053, 0.32578323, 0.63343178, 0.89640418, 1. ,
0.89640418, 0.63343178, 0.32578323, 0.08848053])
>>> get_window(4.0, 9)
array([0.08848053, 0.32578323, 0.63343178, 0.89640418, 1.
0.89640418, 0.63343178, 0.32578323, 0.08848053])

```
scipy.signal.barthann ( \(M\), sym=True)

Return the M-point modified Bartlett-Hann window.
```

scipy.signal.bartlett(M, sym=True)

```

The M-point Bartlett window.
```

scipy.signal.blackman(M, sym=True)

```

The M-point Blackman window.
```

scipy.signal.blackmanharris(M, sym=True)

```

The M-point minimum 4-term Blackman-Harris window.
```

scipy.signal.bohman(M, sym=True)

```

The M-point Bohman window.
```

scipy.signal.boxcar(M, sym=True)

```

The M-point boxcar window.
```

scipy.signal.chebwin(M,at, sym=True)

```

Dolph-Chebyshev window.

\section*{Parameters}
\(\mathbf{M}\) : int

Window size.
at : float
Attenuation (in dB).
sym : bool
Generates symmetric window if True.
```

scipy.signal.flattop(M, sym=True)

```

The M-point Flat top window.
```

scipy.signal.gaussian(M, std, sym=True)

```

Return a Gaussian window of length M with standard-deviation std.
```

scipy.signal.general_gaussian (M, p,sig, sym=True)

```

Return a window with a generalized Gaussian shape.
The Gaussian shape is defined as \(\exp (-0.5 *(\mathrm{x} / \mathrm{sig}) * *(2 * \mathrm{p}))\), the half-power point is at \((2 * \log (2))) * *(1 /(2 * \mathrm{p}))\) * sig.
scipy.signal.hamming ( \(M\), sym=True)
The M-point Hamming window.
```

scipy.signal.hann(M, sym=True)

```

The M-point Hanning window.
```

scipy.signal.kaiser(M, beta, sym=True)

```

Return a Kaiser window of length M with shape parameter beta.
```

scipy.signal.nuttall(M, sym=True)

```

A minimum 4-term Blackman-Harris window according to Nuttall.
```

scipy.signal.parzen(M, sym=True)

```

The M-point Parzen window.
```

scipy.signal.slepian(M, width, sym=True)

```

Return the M-point slepian window.
```

scipy.signal.triang(M, sym=True)

```

The M-point triangular window.

\subsection*{3.13.10 Wavelets}
\begin{tabular}{|c|c|}
\hline cascade(hk[, J]) & Return (x, phi, psi) at dyadic points K/2**J from filter coefficients. \\
\hline daub(p) & The coefficients for the FIR low-pass filter producing Daubechies wavelets. \\
\hline morlet(M[, w, s, complete]) & Complex Morlet wavelet. \\
\hline qmf(hk) & Return high-pass qmf filter from low-pass \\
\hline
\end{tabular}

\section*{Parameters}
hk : :
Coefficients of low-pass filter.
J : int. optional
Values will be computed at grid points \(\mathrm{K} / 2 * * \mathrm{~J}\).

\section*{Returns}
x: :
The dyadic points \(\mathrm{K} / 2 * * \mathrm{~J}\) for \(\mathrm{K}=0 \ldots \mathrm{~N} *(2 \star * \mathrm{~J})-1\) where \(\mathrm{len}(\mathrm{hk})=\) len (gk) \(=\mathrm{N}+1\)
phi: :
The scaling function phi (x) at \(x\) :
N
\(\operatorname{phi}(x)=\operatorname{sum} h k * \operatorname{phi}(2 x-k)\)
\[
\mathrm{k}=0
\]
psi : :
The wavelet function \(\mathrm{psi}(\mathrm{x})\) at \(x\) :
N
\(\operatorname{phi}(x)=\operatorname{sum} g k * p h i(2 x-k)\)
\(\mathrm{k}=0\)
\(p s i\) is only returned if \(g k\) is not None.

\section*{Notes}

The algorithm uses the vector cascade algorithm described by Strang and Nguyen in "Wavelets and Filter Banks". It builds a dictionary of values and slices for quick reuse. Then inserts vectors into final vector at the end.
scipy.signal.daub ( \(p\) )
The coefficients for the FIR low-pass filter producing Daubechies wavelets.
\(p>=1\) gives the order of the zero at \(f=1 / 2\). There are \(2 p\) filter coefficients.
Parameters
\(\mathbf{p}\) : int
Order of the zero at \(\mathrm{f}=1 / 2\), can have values from 1 to 34 .
scipy.signal.morlet \((M, w=5.0, s=1.0\), complete \(=\) True \()\)
Complex Morlet wavelet.

\section*{Parameters}

M : int
Length of the wavelet.
\(\mathbf{w}\) : float
Omega0
s: float
Scaling factor, windowed from \(-\mathrm{s} * 2 *\) pi to \(+\mathrm{s} * 2 *\) pi.
complete : bool
Whether to use the complete or the standard version.

\section*{Notes}

\section*{The standard version:}
\(\mathrm{pi}{ }^{* *}-0.25 * \exp \left(1 \mathrm{j}^{*} \mathrm{w}^{*} \mathrm{x}\right) * \exp \left(-0.5 *\left(\mathrm{x}^{* *} 2\right)\right)\)
This commonly used wavelet is often referred to simply as the Morlet wavelet. Note that, this simplified version can cause admissibility problems at low values of w .
The complete version:
\(\mathrm{pi}{ }^{* *}-0.25 *\left(\exp \left(1 \mathrm{j}^{*} \mathrm{w}^{*} \mathrm{x}\right)-\exp \left(-0.5^{*}\left(\mathrm{w}^{*} * 2\right)\right)\right) * \exp \left(-0.5^{*}\left(\mathrm{x}^{*} * 2\right)\right)\)
The complete version of the Morlet wavelet, with a correction term to improve admissibility. For w greater than 5 , the correction term is negligible.

Note that the energy of the return wavelet is not normalised according to \(s\).
The fundamental frequency of this wavelet in Hz is given by \(f=2 * s * w * r / M\) where \(r\) is the sampling rate.
```

scipy.signal.qmf(hk)

```

Return high-pass qmf filter from low-pass

\subsection*{3.14 Sparse matrices (scipy . sparse)}

\subsection*{3.14.1 Sparse Matrices}

SciPy 2-D sparse matrix package.
Original code by Travis Oliphant. Modified and extended by Ed Schofield, Robert Cimrman, and Nathan Bell.

\section*{There are seven available sparse matrix types:}
1. csc_matrix: Compressed Sparse Column format
2. csr_matrix: Compressed Sparse Row format
3. bsr_matrix: Block Sparse Row format
4. lil_matrix: List of Lists format
5. dok_matrix: Dictionary of Keys format
6. coo_matrix: COOrdinate format (aka IJV, triplet format)
7. dia_matrix: DIAgonal format

To construct a matrix efficiently, use either lil_matrix (recommended) or dok_matrix. The lil_matrix class supports basic slicing and fancy indexing with a similar syntax to NumPy arrays. As illustrated below, the COO format may also be used to efficiently construct matrices.

To perform manipulations such as multiplication or inversion, first convert the matrix to either CSC or CSR format. The lil_matrix format is row-based, so conversion to CSR is efficient, whereas conversion to CSC is less so.

All conversions among the CSR, CSC, and COO formats are efficient, linear-time operations.

\section*{Example 1}

Construct a 1000x1000 lil_matrix and add some values to it:
```

>>> from scipy.sparse import lil_matrix
>>> from scipy.sparse.linalg import spsolve
>>> from numpy.linalg import solve, norm
>>> from numpy.random import rand
>>> A = lil_matrix((1000, 1000))
>>> A[0, :100] = rand(100)
>> A[1, 100:200] = A[0, :100]
>>> A.setdiag(rand(1000))

```

Now convert it to CSR format and solve \(\mathrm{A} \mathrm{x}=\mathrm{b}\) for x :
```

>>> A = A.tocsr()
>>> b = rand(1000)
>>> x = spsolve(A, b)

```

Convert it to a dense matrix and solve, and check that the result is the same:
```

>>> x_ = solve(A.todense(), b)

```

Now we can compute norm of the error with:
```

>>> err = norm(x-x_)
>>> err < 1e-10
True

```

It should be small :)

\section*{Example 2}

Construct a matrix in COO format:
```

>>> from scipy import sparse
>>> from numpy import array
>>> I = array([0,3,1,0])
>>> J = array([0,3,1,2])
>>> V = array([4,5,7,9])
>>> A = sparse.coo_matrix((V,(I,J)), shape=(4,4))

```

Notice that the indices do not need to be sorted.
Duplicate ( \(\mathrm{i}, \mathrm{j}\) ) entries are summed when converting to CSR or CSC.
```

>>> I = array([0,0,1,3,1,0,0])
>>> J = array([0,2,1,3,1,0,0])
>>> V = array([1,1,1,1,1,1,1])
>>> B = sparse.coo_matrix((V,(I,J)),shape=(4,4)).tocsr()

```

This is useful for constructing finite-element stiffness and mass matrices.

\section*{Further Details}

CSR column indices are not necessarily sorted. Likewise for CSC row indices. Use the .sorted_indices() and .sort_indices() methods when sorted indices are required (e.g. when passing data to other libraries).

\subsection*{3.14.2 Package Contents}

\section*{Modules}
\begin{tabular}{ll}
\hline base & Base class for sparse matrices \\
bsr & Compressed Block Sparse Row matrix format \\
compressed & Base class for sparse matrix formats using compressed storage \\
construct & Functions to construct sparse matrices \\
coo & A sparse matrix in COOrdinate or 'triplet' format \\
csc & Compressed Sparse Column matrix format \\
csgraph & Compressed Sparse graph algorithms \\
csr & Compressed Sparse Row matrix format \\
data & Base class for sparse matrice with a .data attribute \\
dia & Sparse DIAgonal format \\
dok & Dictionary Of Keys based matrix \\
extract & Functions to extract parts of sparse matrices \\
lil & LInked List sparse matrix class \\
linalg & Sparse Linear Algebra \\
sparsetools & sparsetools - a collection of routines for sparse matrix operations \\
spfuncs & Functions that operate on sparse matrices \\
sputils & Utility functions for sparse matrix module \\
\hline
\end{tabular}

Base class for sparse matrices

\section*{Functions}
```

isdense(x)
isintlike(x) Is x appropriate as an index into a sparse matrix? Returns True
isscalarlike(x) Is x either a scalar, an array scalar, or a 0-dim array?
issparse(x)
isspmatrix(x)
warn(message[, category, stacklevel]) Issue a warning, or maybe ignore it or raise an exception.

```

\section*{Classes}
spmatrix([maxprint]) This class provides a base class for all sparse matrices.

\section*{Exceptions}
```

SparseEfficiencyWarning
SparseFormatWarning
SparseWarning

```

Compressed Block Sparse Row matrix format

\section*{Functions}
```

bsr_matmat_pass2(n_brow, n_bcol,
R,C,N, ..)
bsr_matvec(n_brow, n_bcol, R, C, Ap,
Aj, Ax, ...)
bsr_matvecs(n_brow, n_bcol, n_vecs,
R,C, ...)
bsr_sort_indices(n_brow, n_bcol,
R, C, Ap, ...)
bsr_transpose(n_brow, n_bcol, R, C,
Ap, Aj, ...)
csr_matmat_pass1(n_row, n_col, Ap,
Aj, Bp, ...)
getdtype(dtype[, a, default]) Function used to simplify argument processing.
isshape(x) Is x a valid 2-tuple of dimensions?
isspmatrix(x)
isspmatrix_bsr(x)
to_native(A)
upcast(*args) Returns the nearest supported sparse dtype for the combination of
one or more types.
warn(message[, category, stacklevel]) Issue a warning, or maybe ignore it or raise an exception.

```

\section*{Classes}
```

bsr_matrix(arg1[, shape, dtype, copy, blocksize]) Block Sparse Row matrix

```

Base class for sparse matrix formats using compressed storage

\section*{Functions}
```

getdtype(dtype[, a, default]) Function used to simplify argument processing.
isdense(x)
isintlike(x) Is x appropriate as an index into a sparse matrix? Returns True
isscalarlike(x) Is x either a scalar, an array scalar, or a 0-dim array?
isshape(x) Is x a valid 2-tuple of dimensions?
isspmatrix(x)
to_native(A)
upcast(*args) Returns the nearest supported sparse dtype for the combination of one or
more types.
warn(message[, category, Issue a warning, or maybe ignore it or raise an exception.
stacklevel])

```

\section*{Classes}
```

spmatrix([maxprint]) This class provides a base class for all sparse matrices.

```

\section*{Exceptions}
```

SparseEfficiencyWarning

```
SparseEfficiencyWarning
Functions to construct sparse matrices
```


Functions

bmat(blocks[, format, dtype]) eye(m, n[, k, dtype, format])	Build a sparse matrix from sparse sub-blocks eye (m, n) returns a sparse ($m \times n$) matrix where the k-th diagonal	
hstack(blocks[, format, dtype])	Stack sparse matrices horizontally (column wise)	
identity(n[, dtype, format])	Identity matrix in sparse format	
kron(A, B[, format])	kronecker product of sparse matrices A and B	
kronsum(A, B[, format])	kronecker sum of sparse matrices A and B	
rand $(\mathrm{m}, \mathrm{n}[$, density, format, dtype])	distributed values.	
spdiags(data, diags, m, n[, format])	Return a sparse matrix from diagonals.	
upcast(*args)	Returns the nearest supported sparse dtype for the combination of one or more types.	
vstack(blocks[, format, dtype])	Stack sparse matrices vertically (row wise)	
warn(message[, category, stacklevel])	Issue a warning, or maybe ignore it or raise an exception.	
Classes		
bsr_matrix(arg1[, shape, dtype, copy, blocksize])		Block Sparse Row matrix
coo_matrix(arg1[, shape, dtype, copy])		A sparse matrix in COOrdinate format.
csc_matrix(arg1[, shape, dtype, copy])		Compressed Sparse Column matrix
csr_matrix(arg1[, shape, dtype, copy])		Compressed Sparse Row matrix
dia_matrix(arg1[, shape, dtype, copy])		Sparse matrix with DIAgonal storage
lil_matrix(arg1[, shape, dtype, copy])		Row-based linked list sparse matrix

A sparse matrix in COOrdinate or 'triplet' format

Functions

coo_matvec(nnz, Ai, Aj, Ax, Xx, nnz,	
coo_tocsr(n_row, n_col, nnz, Ai, Aj,	
Ax, Bp, ...)	
coo_todense(n_row, n_col, nnz, Ai,	
Aj, Ax, ...)	
getdtype(dtype[, a, default])	Function used to simplify argument processing.
isintlike(x)	Is x appropriate as an index into a sparse matrix? Returns True
isshape(x)	Is x a valid 2-tuple of dimensions?
isspmatrix(x)	
isspmatrix_coo(x)	
to_native(A)	
upcast(*args)	Returns the nearest supported sparse dtype for the combination of one or more types.
warn(message[, category, stacklevel])	Issue a warning, or maybe ignore it or raise an exception.

Classes

coo_matrix(arg1[, shape, dtype, copy]) A sparse matrix in COOrdinate format.
Compressed Sparse Column matrix format

Functions

```
csc_tocsr(n_row, n_col, Ap, Ai, Ax,
Bp, Bj, ...)
isintlike(x) Is x appropriate as an index into a sparse matrix? Returns True
isspmatrix_csc(x)
upcast(*args) Returns the nearest supported sparse dtype for the combination of
    one or more types.
warn(message[, category, stacklevel]) Issue a warning, or maybe ignore it or raise an exception.
```


Classes

```
csc_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Column matrix
```

Compressed Sparse graph algorithms

Functions

```
cs_graph_components(NDetermine connected compoments of a graph stored as a compressed sparse row or
                                    column matrix.
isspmatrix(x)
```

Classes
csr_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Row matrix

Compressed Sparse Row matrix format

Functions

csr_count_blocks(*args)	```csr_count_blocks(int n_row, int n_col, int R, int C, int Ap, int Aj) -> int```
csr_sample_values(n_row, n_col,	
$\mathrm{Ap}, \mathrm{Aj}, \mathrm{Ax}, \ldots$)	
csr_tobsr(n_row, n_col, R, C, Ap, Aj,	
Ax, ...)	
csr_tocsc(n_row, n _col, $\mathrm{Ap}, \mathrm{Aj}, \mathrm{Ax}$,	
$\mathrm{Bp}, \mathrm{Bi}, \ldots$)	
get_csr_submatrix(n_row, n_col,	
$\mathrm{Ap}, \mathrm{Aj}, \mathrm{Ax}, \ldots)$	
isintlike(x)	Is x appropriate as an index into a sparse matrix? Returns True
isspmatrix_csr(x)	
upcast(*args)	Returns the nearest supported sparse dtype for the combination of one or more types.
warn(message[, category, stacklevel])	Issue a warning, or maybe ignore it or raise an exception.
Classes	
csr_matrix(arg1[, shape, dtype, copy])	Compressed Sparse Row matrix

Base class for sparse matrice with a data attribute
subclasses must provide a _with_data() method that creates a new matrix with the same sparsity pattern as self but with a different data array

Functions

isscalarlike(x) Is x either a scalar, an array scalar, or a 0-dim array?

Classes

spmatrix([maxprint]) This class provides a base class for all sparse matrices.

Sparse DIAgonal format

Functions

```
dia_matvec(n_row, n_col,
n_diags, L, ...)
getdtype(dtype[, a, default]) Function used to simplify argument processing.
isshape(x)
isspmatrix(x)
isspmatrix_dia(x)
upcast(*args) Returns the nearest supported sparse dtype for the combination of one or
    more types.
```


Classes

```
dia_matrix(arg1[, shape, dtype, copy]) Sparse matrix with DIAgonal storage
```

Dictionary Of Keys based matrix

Functions

getdtype(dtype[, a, default]) isdense(x)	Function used to simplify argument processing.
isintlike(x)	Is x appropriate as an index into a sparse matrix? Returns True
isscalarlike(x) isshape(x) isspmatrix(x) isspmatrix_dok(x) upcast(*args)	Is x either a scalar, an array scalar, or a 0-dim array?

Classes

dok_matrix(arg1[, shape, dtype, copy]) Dictionary Of Keys based sparse matrix.
izip izip(iter1 [,iter2 [...]]) -> izip object
spmatrix([maxprint]) This class provides a base class for all sparse matrices.
Functions to extract parts of sparse matrices

Functions

find(A)	Return the indices and values of the nonzero elements of a matrix
$\operatorname{tril}(A[, k$, format $])$	Return the lower triangular portion of a matrix in sparse format
$\operatorname{triu}(A[, k$, format $])$	Return the upper triangular portion of a matrix in sparse format

Classes

coo_matrix(arg1[, shape, dtype, copy]) A sparse matrix in COOrdinate format.
LInked List sparse matrix class

Functions

bisect_left	bisect_left(a, x[, lo[, hi]]) -> index
getdtype(dtype[, a, default])	Function used to simplify argument processing.
isscalarlike(x)	Is x either a scalar, an array scalar, or a 0-dim array?
issequence(t)	Is x a valid 2-tuple of dimensions?
isshape(x) isspmatrix(x) isspmatrix_lil(x)	

Classes

lil_matrix(arg1[, shape, dtype, copy]) Row-based linked list sparse matrix spmatrix([maxprint]) This class provides a base class for all sparse matrices.

Sparse Linear Algebra

The submodules of sparse.linalg:

1. eigen: sparse eigenvalue problem solvers
2. isolve: iterative methods for solving linear systems
3. dsolve: direct factorization methods for solving linear systems

Examples

Functions


```
bsr_diagonal(n_brow, n_bcol, R, C, Ap, Aj, ...)
bsr_eldiv_bsr(n_row, n_col, R, C, Ap, Aj, ...)
bsr_elmul_bsr(n_row, n_col, R, C, Ap, Aj, ...)
bsr_matmat_pass2(n_brow, n_bcol, R, C, N, ...)
```

Table 3.2 - continued from previous page
bsr_matvec(n_brow, n_bcol, R, C, Ap, Aj, Ax, ...)
bsr_matvecs(n_brow, n_bcol, n_vecs, R, C, ...)
bsr_minus_bsr(n_row, n_col, R, C, Ap, Aj, ...)
bsr_plus_bsr(n_row, n_col, R, C, Ap, Aj, Ax, ...)
bsr_scale_columns(n_brow, n_bcol, R, C, Ap, ...)
bsr_scale_rows(n_brow, n_bcol, R, C, Ap, Aj, ...)
bsr_sort_indices(n_brow, n_bcol, R, C, Ap, ...)
bsr_transpose(n_brow, n_bcol, R, C, Ap, Aj, ...)
coo_count_diagonals(*args)
coo_matvec(nnz, Ai, Aj, Ax, Xx, nnz, Ai, Aj, ...)
coo_tocsc(n_row, n_col, nnz, Ai, Aj, Ax, Bp, ...)
coo _tocsr(n_row, n_col, nnz, Ai, Aj, Ax, Bp, ...)
coo_todense(n_row, n_col, nnz, Ai, Aj, Ax, ...) cs_graph_components(*args)
csc_diagonal(n_row, n_col, Ap, Aj, Ax, ...)
csc_eldiv_csc(n_row, n_col, Ap, Ai, Ax, Bp,...)
csc_elmul_csc(n_row, n_col, Ap, Ai, Ax, Bp,...)
csc_matmat_pass1(n_row, n_col, Ap, Ai, Bp, ...)
csc_matmat_pass2(n_row, n_col, Ap, Ai, Ax, ...)
csc_matvec(n_row, n_col, Ap, Ai, Ax, Xx, ...)
csc_matvecs(n_row, n_col, n_vecs, Ap, Ai, ...)
csc_minus_csc(n_row, n_col, Ap, Ai, Ax, Bp, ...)
csc_plus_csc(n_row, n_col, Ap, Ai, Ax, Bp, ...)
csc_tocsr(n_row, n_col, Ap, Ai, Ax, Bp, Bj, ...)
csr_count_blocks(*args)
csr_diagonal(n_row, n_col, Ap, Aj, Ax, ...)
csr_eldiv_csr(n_row, n_col, Ap, Aj, Ax, Bp, ...)
csr_eliminate_zeros(n_row, n_col, Ap, Aj, ...)
csr_elmul_csr(n_row, n_col, Ap, Aj, Ax, Bp,...)
csr_has_sorted_indices(*args)
csr_matmat_pass1(n_row, n_col, Ap, Aj, Bp, ...)
csr_matmat_pass2(n_row, n_col, Ap, Aj, Ax, ...)
csr_matvec(n_row, n_col, Ap, Aj, Ax, Xx, ...)
csr_matvecs(n_row, n_col, n_vecs, Ap, Aj, ...)
csr_minus_csr(n_row, n_col, Ap, Aj, Ax, Bp, ...)
csr_plus_csr(n_row, n_col, Ap, Aj, Ax, Bp, ...)
csr_sample_values(n_row, n_col, Ap, Aj, Ax, ...)
csr_scale_columns(n_row, n_col, Ap, Aj, Ax, ...)
csr_scale_rows(n_row, n_col, Ap, Aj, Ax, ...)
csr_sort_indices(n_row, Ap, Aj, n_row, Ap, ...)
csr_sum_duplicates(n_row, n_col, Ap, Aj, ...)
csr_tobsr(n_row, n_col, R, C, Ap, Aj, Ax, ...)
csr_tocsc(n_row, n_col, Ap, Aj, Ax, Bp, Bi, ...)
dia_matvec(n_row, n_col, n_diags, L, ...)
expandptr(n_row, Ap, Bi)
get_csr_submatrix(n_row, n_col, Ap, Aj, Ax, ...)

Functions that operate on sparse matrices

Functions

```
count_blocks(A, blocksize) For a given blocksize=(r,c) count the number of occupied
csr_count_blocks(*args) csr_count_blocks(int n_row, int n_col, int R, int C, int Ap, int Aj) -> int
estimate_blocksize(A[, efficiency]) Attempt to determine the blocksize of a sparse matrix
extract_diagonal(A)
isspmatrix_csc(x)
isspmatrix_csr(x)
```


Classes

```
csr_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Row matrix
```

Utility functions for sparse matrix module

Functions

```
getdtype(dtype[, a, default]) Function used to simplify argument processing.
isdense(x)
isintlike(x)
isscalarlike(x)
issequence(t)
isshape(x) Is x a valid 2-tuple of dimensions?
to_native(A)
upcast(*args) Returns the nearest supported sparse dtype for the combination of one or more types.
```


Classes

```
SparseEfficiencyWarning
SparseWarning
bsr_matrix(arg1[, shape, dtype, copy, blocksize]) Block Sparse Row matrix
coo_matrix(arg1[, shape, dtype, copy]) A sparse matrix in COOrdinate format.
CSC_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Column matrix
csr_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Row matrix
dia_matrix(arg1[, shape, dtype, copy]) Sparse matrix with DIAgonal storage
dok_matrix(arg1[, shape, dtype, copy]) Dictionary Of Keys based sparse matrix.
lil_matrix(arg1[, shape, dtype, copy]) Row-based linked list sparse matrix
```

exception scipy.sparse.SparseEfficiencyWarning
exception scipy.sparse.SparseWarning
class scipy.sparse.bsr_matrix (arg1, shape=None, dtype=None, copy=False, blocksize=None)
Block Sparse Row matrix

This can be instantiated in several ways:
bsr_matrix $(\mathbf{D},[$ blocksize $=(\mathbf{R}, C)])$
with a dense matrix or rank-2 ndarray D
bsr_matrix(S, [blocksize=(R,C)])
with another sparse matrix S (equivalent to $\mathrm{S} . \operatorname{tobsr}()$)
$\mathbf{b s r}_{-}$matrix((M, N), [blocksize=(R,C), dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'.

bsr_matrix((data, $\mathbf{i j})$, [blocksize=(R,C), shape=(M, N)])

where data and ij satisfy a[ij[0, k], ij[1, k]] = data[k]
bsr_matrix ((data, indices, indptr), [shape=(M, N)])
is the standard BSR representation where the block column indices for row i are stored in indices[indptr[i]:indices[i+1]] and their corresponding block values are stored in data[indptr[i]: indptr[i+1]]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.

Notes

Summary

- The Block Compressed Row (BSR) format is very similar to the Compressed Sparse Row (CSR) format. BSR is appropriate for sparse matrices with dense sub matrices like the last example below. Block matrices often arise in vector-valued finite element discretizations. In such cases, BSR is considerably more efficient than CSR and CSC for many sparse arithmetic operations.

Blocksize

- The blocksize (R, C) must evenly divide the shape of the matrix (M, N). That is, R and C must satisfy the relationship $\mathrm{M} \% \mathrm{R}=0$ and $\mathrm{N} \% \mathrm{C}=0$.
- If no blocksize is specified, a simple heuristic is applied to determine an appropriate blocksize.

Examples

```
>>> from scipy.sparse import *
>>> from scipy import *
>>> bsr_matrix( (3,4), dtype=int8 ).todense()
matrix([[0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0]], dtype=int8)
>>> row = array([0,0,1,2,2,2])
>>> col = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> bsr_matrix( (data,(row,col)), shape=(3,3) ).todense()
matrix([[1, 0, 2],
            [0, 0, 3],
    [4, 5, 6]])
>>> indptr = array([0,2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6]).repeat(4).reshape(6,2,2)
>>> bsr_matrix( (data,indices,indptr), shape=(6,6) ).todense()
matrix([[1, 1, 0, 0, 2, 2],
            [1, 1, 0, 0, 2, 2],
            [0, 0, 0, 0, 3, 3],
            [0, 0, 0, 0, 3, 3],
            [4, 4, 5, 5, 6, 6],
            [4, 4, 5, 5, 6, 6]])
```


Methods

$$
\text { asformat } \quad \text { Continued on next page }
$$

Table 3.3 - continued from previous page

```
asfptype
astype
check_format
conj
conjugate
copy
                                    Generic (shallow and deep) copying operations.
diagonal
dot
eliminate_zeros
getH
get_shape
getcol
getdata
getformat
getmaxprint
getnnz
getrow
matmat
matvec
mean
multiply
nonzero
prune
reshape
set_shape
setdiag
sort_indices
sorted_indices
sum
sum_duplicates
toarray
tobsr
tocoo
tocsc
tocsr
todense
todia
todok
tolil
transpose
```

class scipy.sparse.coo_matrix(argl, shape=None, dtype=None, copy=False)
A sparse matrix in COOrdinate format.
Also known as the ' ijv ' or 'triplet' format.
This can be instantiated in several ways:
coo_matrix(D)
with a dense matrix D
coo_matrix(S)
with another sparse matrix S (equivalent to S.tocoo())
coo_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=' ${ }^{\prime}{ }^{\prime}$ '.
coo_matrix((data, $\mathbf{i j}),[$ shape $=(\mathbf{M}, \mathbf{N})])$

The arguments 'data' and ' ij ' represent three arrays:

1. data[:] the entries of the matrix, in any order
2. $\mathrm{ij}[0][\mathrm{E}]$ the row indices of the matrix entries
3. $\mathrm{ij}[1][\mathrm{l}]$ the column indices of the matrix entries

Where $A[i j[0][k], ~ i j[1][k]=$ data[k]. When shape is not specified, it is inferred from the index arrays

Notes

Advantages of the COO format

- facilitates fast conversion among sparse formats
- permits duplicate entries (see example)
- very fast conversion to and from CSR/CSC formats

Disadvantages of the COO format

- does not directly support:
- arithmetic operations
- slicing

Intended Usage

- COO is a fast format for constructing sparse matrices
- Once a matrix has been constructed, convert to CSR or CSC format for fast arithmetic and matrix vector operations
- By default when converting to CSR or CSC format, duplicate (i, j) entries will be summed together. This facilitates efficient construction of finite element matrices and the like. (see example)

Examples

```
>>> from scipy.sparse import *
>>> from scipy import *
>>> coo_matrix( (3,4), dtype=int8 ).todense()
matrix([[0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0]], dtype=int8)
>>> row = array ([0,3,1,0])
>>> col = array([0,3,1,2])
>>> data = array([4,5,7,9])
>>> coo_matrix( (data,(row,col)), shape=(4,4) ).todense()
matrix([[4, 0, 9, 0],
```

$[0,7,0,0]$,
$[0,0,0,0]$,
$[0,0,0,5]])$
>>> \# example with duplicates
$\ggg \operatorname{row}=\operatorname{array}([0,0,1,3,1,0,0])$
$\ggg \operatorname{col}=\operatorname{array}([0,2,1,3,1,0,0])$
>>> data $=\operatorname{array}([1,1,1,1,1,1,1])$
\ggg coo_matrix((data, (row, col)), shape=(4,4)).todense()
matrix ([[3, 0, 1, 0],
$[0,2,0,0]$,
$[0,0,0,0]$,
$[0,0,0,1]])$

Methods

asformat
asfptype
astype
conj
conjugate \quad Generic (shallow and deep) copying operations.
copy
diagonal
dot
geth
get_shape
getcol
getformat
getmaxprint
getnnz
getrow
mean
multiply
nonzero
reshape
set_shape
setdiag
sum
toarray
tobsr
tocoo
tocsc
tocsr
todense
todia
todok
tolil
transpose

class scipy.sparse.csc_matrix (arg1, shape=None, dtype=None, copy=False)
Compressed Sparse Column matrix
This can be instantiated in several ways:
csc_matrix(D)
with a dense matrix or rank-2 ndarray D
csc_matrix(S)
with another sparse matrix S (equivalent to $\mathrm{S} . \operatorname{tocsc}($))
csc_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=' d '.
csc_matrix((data, ij), [shape=(M, N)])
where data and ij satisfy the relationship $\operatorname{a}[\mathrm{ij}[0, \mathrm{k}], \mathrm{ij}[1, \mathrm{k}]]=\operatorname{data}[\mathrm{k}]$
csc_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSC representation where the row indices for column i are stored in indices[indptr[i]:indices[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.

Notes

Advantages of the CSC format

- efficient arithmetic operations CSC + CSC, CSC * CSC, etc.
- efficient column slicing
- fast matrix vector products (CSR, BSR may be faster)

Disadvantages of the CSC format

- slow row slicing operations (consider CSR)
- changes to the sparsity structure are expensive (consider LIL or DOK)

Examples

```
>>> from scipy.sparse import *
>>> from scipy import *
>>> csc_matrix( (3,4), dtype=int8 ).todense()
matrix([[0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0]], dtype=int8)
>>> row = array([0,2,2,0,1,2])
>>> col = array([0,0,1,2,2,2])
>>> data = array([1,2,3,4,5,6])
>>> csc_matrix( (data,(row,col)), shape=(3,3) ).todense()
matrix([[1, 0, 4],
    [0, 0, 5],
    [2, 3, 6]])
>>> indptr = array([0,2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> csc_matrix( (data,indices,indptr), shape=(3,3) ).todense()
matrix([[1, 0, 4],
    [0, 0, 5],
    [2, 3, 6]])
```


Methods

```
asformat
asfptype
astype
check_format
conj
conjugate
copy
diagonal
dot
eliminate_zeros
getH
get_shape
getcol
getformat
getmaxprint
getnnz
getrow
mean
multiply
nonzero
prune
reshape
set_shape
setdiag
sort_indices
sorted_indices
sum
sum_duplicates
toarray
tobsr
tocoo
tocsc
tocsr
todense
todia
todok
tolil
transpose
```

class scipy.sparse.csr_matrix (argl, shape=None, dtype=None, copy=False)
Compressed Sparse Row matrix
This can be instantiated in several ways:
csr_matrix(D)
with a dense matrix or rank-2 ndarray D
csr_matrix(S)
with another sparse matrix S (equivalent to $\mathrm{S} . \operatorname{tocsr}()$)
csr_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'.
$\operatorname{csr} _\operatorname{matrix}(($ data, $\mathbf{i j}),[\operatorname{shape}=(\mathbf{M}, \mathbf{N})])$
where data and ij satisfy the relationship $\operatorname{lij}[0, k], i j[1, k]]=$ data[k]
csr_matrix ((data, indices, indptr), [shape $=(\mathbf{M}, \mathbf{N})])$
is the standard CSR representation where the column indices for row i are stored in indices[indptr[i]:indices[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.

Notes

Advantages of the CSR format

- efficient arithmetic operations CSR + CSR , CSR * CSR, etc.
- efficient row slicing
- fast matrix vector products

Disadvantages of the CSR format

- slow column slicing operations (consider CSC)
- changes to the sparsity structure are expensive (consider LIL or DOK)

Examples

```
>>> from scipy.sparse import *
>>> from scipy import *
>>> csr_matrix( (3,4), dtype=int8 ).todense()
matrix([[0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0]], dtype=int8)
>>> row = array([0,0,1,2,2,2])
>>> col = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> csr_matrix( (data,(row,col)), shape=(3,3) ).todense()
matrix([[1, 0, 2],
    [0, 0, 3],
    [4, 5, 6]])
>>> indptr = array([0,2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> csr_matrix( (data,indices,indptr), shape=(3,3) ).todense()
matrix([[1, 0, 2],
    [0, 0, 3],
    [4, 5, 6]])
```


Methods

asformat				
asfptype				
astype				
check_format				
conj		\quad		Continued on next page
:---	:---			

Table 3.6 - continued from previous page

```
conjugate
copy Generic (shallow and deep) copying operations.
diagonal
dot
eliminate_zeros
getH
get_shape
getcol
getformat
getmaxprint
getnnz
getrow
mean
multiply
nonzero
prune
reshape
set_shape
setdiag
sort_indices
sorted_indices
sum
sum_duplicates
toarray
tobsr
tocoo
tocsc
tocsr
todense
todia
todok
tolil
transpose
```

class scipy.sparse.dia_matrix (arg1, shape=None, dtype $=$ None, copy=False)
Sparse matrix with DIAgonal storage
This can be instantiated in several ways:

dia_matrix(D)

with a dense matrix

dia_matrix(S)

with another sparse matrix S (equivalent to S.todia())
dia_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N), dtype is optional, defaulting to dtype='d'.
dia_matrix $(($ data, offsets), shape $=(\mathbf{M}, \mathbf{N}))$
where the data $[k,:]$ stores the diagonal entries for diagonal offsets [k] (See example below)

Examples

```
>>> from scipy.sparse import *
>>> from scipy import *
>>> dia_matrix( (3,4), dtype=int8).todense()
matrix([[0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0]], dtype=int8)
>>> data = array([[1,2,3,4]]).repeat(3,axis=0)
>>> offsets = array([0,-1,2])
>>> dia_matrix( (data,offsets), shape=(4,4)).todense()
matrix([[1, 0, 3, 0],
    [1, 2, 0, 4],
    [0, 2, 3, 0],
    [0, 0, 3, 4]])
```


Methods

```
asformat
    asfptype
    astype
    conj
    conjugate
    copy Generic (shallow and deep) copying operations.
    diagonal
    dot
    getH
    get_shape
    getcol
    getformat
    getmaxprint
    getnnz
    getrow
    mean
    multiply
    nonzero
    reshape
    set_shape
    setdiag
    sum
    toarray
    tobsr
    tocoo
    tocsc
    tocsr
    todense
    todia
    todok
    tolil
    transpose
```

class scipy.sparse.dok_matrix(arg1, shape $=$ None, dtype $=$ None, copy=False)
Dictionary Of Keys based sparse matrix.

This is an efficient structure for constructing sparse matrices incrementally.
This can be instantiated in several ways:
dok_matrix(D)
with a dense matrix, D
dok_matrix(S)
with a sparse matrix, S
dok_matrix((M,N), [dtype])
create the matrix with initial shape (M, N) dtype is optional, defaulting to dtype='d'

Notes

Allows for efficient $\mathrm{O}(1)$ access of individual elements. Duplicates are not allowed. Can be efficiently converted to a coo_matrix once constructed.

Examples

```
>>> from scipy.sparse import *
>>> from scipy import *
>>> S = dok_matrix((5,5), dtype=float 32)
>>> for i in range(5):
>>> for j in range(5):
>>> S[i,j] = i+j # Update element
```


Methods

```
asformat
asfptype
astype
clear
conj
conjtransp
conjugate
copy Generic (shallow and deep) copying operations.
diagonal
dot
fromkeys
get
getH
get_shape
getcol
getformat
getmaxprint
getnnz
getrow
has_key
items
iteritems
iterkeys
itervalues
keys
mean
\(\square\) Continued on next page
```

Table 3.8 - continued from previous page

```
multiply
nonzero
pop
popitem
reshape
resize
set_shape
setdefault
setdiag
split
sum
take
toarray
tobsr
tocoo
tocsc
tocsr
todense
todia
todok
tolil
transpose
update
values
```

class scipy.sparse.lil_matrix(arg1, shape=None, dtype=None, copy=False)
Row-based linked list sparse matrix
This is an efficient structure for constructing sparse matrices incrementally.
This can be instantiated in several ways:
lil_matrix(D)
with a dense matrix or rank-2 ndarray D
lil_matrix(S)
with another sparse matrix S (equivalent to S.tocsc())
lil_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'.

Notes

Advantages of the LIL format

- supports flexible slicing
- changes to the matrix sparsity structure are efficient

Disadvantages of the LIL format

- arithmetic operations LIL + LIL are slow (consider CSR or CSC)
- slow column slicing (consider CSC)
- slow matrix vector products (consider CSR or CSC)

Intended Usage

- LIL is a convenient format for constructing sparse matrices
- once a matrix has been constructed, convert to CSR or CSC format for fast arithmetic and matrix vector operations
- consider using the COO format when constructing large matrices

Data Structure

- An array (self.rows) of rows, each of which is a sorted list of column indices of non-zero elements.
- The corresponding nonzero values are stored in similar fashion in self.data.

Methods

```
asformat
asfptype
astype
conj
conjugate
copy
diagonal
dot
getH
get_shape
getcol
getformat
getmaxprint
getnnz
getrow
getrowview
mean
multiply
nonzero
reshape
set_shape
setdiag
sum
toarray
tobsr
tocoo
tocsc
tocsr
todense
todia
todok
tolil
transpose
```


Functions

```
bmat(blocks[, format, dtype]) Build a sparse matrix from sparse sub-blocks
CS_graph_components(x) Determine connected compoments of a graph stored as a compressed sparse row
    or column matrix.
eye(m,n[,k, dtype, format]) eye(m, n) returns a sparse (m x n) matrix where the k-th diagonal
find(A)
hstack(blocks[, format,
dtype])
identity(n[, dtype, Identity matrix in sparse format
format])
issparse(x)
isspmatrix(x)
isspmatrix_bsr(x)
isspmatrix_coo(x)
isspmatrix_csc(x)
isspmatrix_csr(x)
isspmatrix_dia(x)
isspmatrix_dok(x)
isspmatrix_lil(x)
kron(A, B[, format]) kronecker product of sparse matrices A and B
kronsum(A, B[, format]) kronecker sum of sparse matrices A and B
lil_diags
lil_eye
rand(m, n[, density, format,
dtype])
spdiags(data, diags, m, n[,
format])
tril(A[, k, format])
triu(A[, k, format])
vstack(blocks[, format,
dtype])
scipy.sparse.bmat (blocks,format=None,dtype=None)
    Build a sparse matrix from sparse sub-blocks
Parameters
                    blocks :
                    grid of sparse matrices with compatible shapes an entry of None implies an all-zero
                matrix
            format : sparse format of the result (e.g. "csr")
```

by default an appropriate sparse matrix format is returned. This choice is subject to change.

Examples

```
>>> from scipy.sparse import coo_matrix, bmat
>>> A = coo_matrix([[1,2],[3,4]])
>>> B = coo_matrix([[5],[6]])
>>> C = coo_matrix([[7]])
>>> bmat( [[A,B],[None,C]] ).todense()
matrix([[1, 2, 5],
    [3, 4, 6],
    [0, 0, 7]])
```

```
>>> bmat( [[A,None],[None,C]] ).todense()
matrix([[1, 2, 0],
    [3, 4, 0],
    [0, 0, 7]])
```

scipy.sparse.cs_graph_components (x)

Determine connected compoments of a graph stored as a compressed sparse row or column matrix. For speed reasons, the symmetry of the matrix x is not checked. A nonzero at index (i, j) means that node i is connected to node j by an edge. The number of rows/columns of the matrix thus corresponds to the number of nodes in the graph.

Parameters

x : ndarray-like, 2 dimensions, or sparse matrix :
The adjacency matrix of the graph. Only the upper triangular part is used.

Returns

n_comp: int :
The number of connected components.
label: ndarray (ints, 1 dimension): :
The label array of each connected component (-2 is used to indicate empty rows in the matrix: 0 everywhere, including diagonal). This array has the length of the number of nodes, i.e. one label for each node of the graph. Nodes having the same label belong to the same connected component.

Notes

The matrix is assumed to be symmetric and the upper triangular part of the matrix is used. The matrix is converted to a CSR matrix unless it is already a CSR.

Examples

```
        >>> from scipy.sparse import cs_graph_components
```

 >>> import numpy as np
 >>> D = np.eye (4)
 >>> \(D[0,1]=D[1,0]=1\)
 >>> cs_graph_components(D)
 (3, array ([0, 0, 1, 2]))
 >>> from scipy.sparse import dok_matrix
 >>> cs_graph_components(dok_matrix(D))
 (3, array ([0, 0, 1, 2]))
 scipy.sparse.eye ($m, n, k=0$, dtype $=$ ' d ', format $=$ None)
eye (m, n) returns a sparse (mxn) matrix where the k -th diagonal is all ones and everything else is zeros.
scipy.sparse.find (A)

Return the indices and values of the nonzero elements of a matrix

Parameters

A: dense or sparse matrix
Matrix whose nonzero elements are desired.

Returns

(I,J,V) : tuple of arrays
I, J, and V contain the row indices, column indices, and values of the nonzero matrix entries.

Examples

```
>>> from scipy.sparse import csr_matrix
>> A = csr_matrix([[7.0, 8.0, 0],[0, 0, 9.0]])
>>> find(A)
(array([0, 0, 1], dtype=int32), array([0, 1, 2], dtype=int32), array([ 7., 8.., 9.]))
```

scipy.sparse.hstack (blocks, format=None, dtype=None)
Stack sparse matrices horizontally (column wise)

Parameters

blocks :
sequence of sparse matrices with compatible shapes
format : string
sparse format of the result (e.g. "csr") by default an appropriate sparse matrix format is returned. This choice is subject to change.

See Also:

vstack
stack sparse matrices vertically (row wise)

Examples

```
>>> from scipy.sparse import coo_matrix, vstack
>>> A = coo_matrix([[1,2],[3,4]])
>>> B = coo_matrix([[5],[6]])
>>> hstack( [A,B] ).todense()
matrix([[1, 2, 5],
    [3, 4, 6]])
scipy.sparse.identity(n,dtype='d',format=None)
Identity matrix in sparse format
```

Returns an identity matrix with shape (n, n) using a given sparse format and dtype.

Parameters

\mathbf{n} : integer
Shape of the identity matrix.
dtype : :
Data type of the matrix
format : string
Sparse format of the result, e.g. format="csr", etc.

Examples

```
>>> identity(3).todense()
matrix([[ 1., 0., 0.],
    [ 0., 1., 0.],
    [ 0., 0., 1.]])
>>> identity(3, dtype='int8', format='dia')
<3x3 sparse matrix of type '<type 'numpy.int8'>'
    with 3 stored elements (1 diagonals) in DIAgonal format>
```

```
scipy.sparse.issparse(x)
scipy.sparse.isspmatrix(x)
scipy.sparse.isspmatrix_bsr(x)
scipy.sparse.isspmatrix_coo(x)
scipy.sparse.isspmatrix_csc(x)
scipy.sparse.isspmatrix_csr(x)
scipy.sparse.isspmatrix_dia(x)
scipy.sparse.isspmatrix_dok(x)
scipy.sparse.isspmatrix_lil(x)
scipy.sparse.kron(A,B,format=None)
    kronecker product of sparse matrices A and B
```


Parameters

```
A : sparse or dense matrix
first matrix of the product
B : sparse or dense matrix
second matrix of the product
format : string
format of the result (e.g. "csr")
```


Returns

```
kronecker product in a sparse matrix format :
```


Examples

```
>>> A = csr_matrix(array([[0,2],[5,0]]))
>>> B = csr_matrix(array([[1,2],[3,4]]))
>>> kron(A,B).todense()
matrix([[ 0, 0, 2, 4],
    [ 0, 0, 6, 8],
    [ 5, 10, 0, 0],
    [15, 20, 0, 0]])
```

 >>> kron(A, [[1, 2], [3, 4]]).todense ()
 matrix([[0, 0, 2, 4],
 [0, 0, 6, 8],
 [5, 10, 0, 0],
 \([15,20,0,0]])\)
 scipy.sparse.kronsum (A, B, format=None)
kronecker sum of sparse matrices A and B

Kronecker sum of two sparse matrices is a sum of two Kronecker products kron(I_n,A) + kron(B,I_m) where A has shape (m, m) and B has shape (n, n) and I_m and I_n are identity matrices of shape (m, m) and (n, n) respectively.

Parameters

A :
square matrix
B :
square matrix
format : string
format of the result (e.g. "csr")

Returns

kronecker sum in a sparse matrix format :
scipy.sparse. rand (m, n, density $=0.01$, format='coo', dtype $=$ None)
Generate a sparse matrix of the given shape and density with uniformely distributed values.

Parameters

\mathbf{m}, n : int :
shape of the matrix
density: real :
density of the generated matrix: density equal to one means a full matrix, density of 0 means a matrix with no non-zero items.
format: str :
sparse matrix format.
dtype: dtype :
type of the returned matrix values.

Notes

Only float types are supported for now.
scipy.sparse.spdiags (data, diags, m, n, format=None)
Return a sparse matrix from diagonals.

Parameters

data : array_like
matrix diagonals stored row-wise
diags : diagonals to set

- $\mathrm{k}=0$ the main diagonal
- $\mathrm{k}>0$ the k -th upper diagonal
- $\mathrm{k}<0$ the k -th lower diagonal
\mathbf{m}, \mathbf{n} : int
shape of the result
format : format of the result (e.g. "csr")

By default (format=None) an appropriate sparse matrix format is returned. This choice is subject to change.

See Also:

```
dia_matrix
```

the sparse DIAgonal format.

Examples

```
>>> data = array([[1,2,3,4],[1,2,3,4],[1,2,3,4]])
>>> diags = array([0,-1,2])
>>> spdiags(data, diags, 4, 4).todense()
matrix([[1, 0, 3, 0],
[1, 2, 0, 4],
[0, 2, 3, 0],
[0, 0, 3, 4]])
```

scipy.sparse.tril ($A, k=0$, format=None)
Return the lower triangular portion of a matrix in sparse format
Returns the elements on or below the k-th diagonal of the matrix A.

- $\mathrm{k}=0$ corresponds to the main diagonal
- $\mathrm{k}>0$ is above the main diagonal
- $\mathrm{k}<0$ is below the main diagonal

Parameters

A : dense or sparse matrix
Matrix whose lower trianglar portion is desired.
\mathbf{k} : integer
The top-most diagonal of the lower triangle.
format : string
Sparse format of the result, e.g. format="csr", etc.

Returns

\mathbf{L} : sparse matrix
Lower triangular portion of A in sparse format.

See Also:

triu
upper triangle in sparse format

Examples

```
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix( [[1,2,0,0,3],[4,5,0,6,7],[0,0,8,9,0]], dtype='int32' )
>>> A.todense()
matrix([[1, 2, 0, 0, 3],
            [4, 5, 0, 6, 7],
            [0, 0, 8, 9, 0]])
>>> tril(A).todense()
```

```
matrix([[1, 0, 0, 0, 0],
    [4, 5, 0, 0, 0],
    [0, 0, 8, 0, 0]])
>>> tril(A).nnz
4
>>> tril(A, k=1).todense()
matrix([[1, 2, 0, 0, 0],
    [4, 5, 0, 0, 0],
    [0, 0, 8, 9, 0]])
>>> tril(A, k=-1).todense()
matrix([[0, 0, 0, 0, 0],
    [4, 0, 0, 0, 0],
    [0, 0, 0, 0, 0]])
>>> tril(A, format =' CSC')
<3x5 sparse matrix of type '<type 'numpy.int 32'>'
    with 4 stored elements in Compressed Sparse Column format>
scipy.sparse.triu(A,k=0,format=None)
Return the upper triangular portion of a matrix in sparse format
```


Returns the elements on or above the k-th diagonal of the matrix A.

- $\mathrm{k}=0$ corresponds to the main diagonal
- $\mathrm{k}>0$ is above the main diagonal
- $\mathrm{k}<0$ is below the main diagonal

Parameters

A : dense or sparse matrix
Matrix whose upper trianglar portion is desired.
\mathbf{k} : integer
The bottom-most diagonal of the upper triangle.
format : string
Sparse format of the result, e.g. format="csr", etc.

Returns

\mathbf{L} : sparse matrix
Upper triangular portion of A in sparse format.

See Also:

tril
lower triangle in sparse format

Examples

```
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix( [[1,2,0,0,3],[4,5,0,6,7],[0,0,8,9,0]], dtype='int 32' )
>>> A.todense()
matrix([[1, 2, 0, 0, 3],
            [4, 5, 0, 6, 7],
            [0, 0, 8, 9, 0]])
>>> triu(A).todense()
```

```
matrix([[1, 2, 0, 0, 3],
    [0, 5, 0, 6, 7],
    [0, 0, 8, 9, 0]])
>>> triu(A).nnz
8
>>> triu(A, k=1).todense()
matrix([[0, 2, 0, 0, 3],
    [0, 0, 0, 6, 7],
    [0, 0, 0, 9, 0]])
>>> triu(A, k=-1).todense()
matrix([[1, 2, 0, 0, 3],
    [4, 5, 0, 6, 7],
    [0, 0, 8, 9, 0]])
>>> triu(A, format=' CSC')
<3x5 sparse matrix of type '<type 'numpy.int 32'>'
    with 8 stored elements in Compressed Sparse Column format>
```

scipy.sparse.vstack (blocks, format=None, dtype=None)
Stack sparse matrices vertically (row wise)

Parameters

blocks :
sequence of sparse matrices with compatible shapes
format : string
sparse format of the result (e.g. "csr") by default an appropriate sparse matrix format is returned. This choice is subject to change.

See Also:

hstack stack sparse matrices horizontally (column wise)

Examples

```
>>> from scipy.sparse import coo_matrix, vstack
>>> A = coo_matrix([[1,2],[3,4]])
>>> B = coo_matrix([[5,6]])
>>> vstack( [A,B] ).todense()
matrix([[1, 2],
            [3, 4],
            [5, 6]])
```


3.14.3 Sparse matrix classes

csc_matrix $(\arg 1[$, shape, dtype, copy])	Compressed Sparse Column matrix
csr_matrix $(\arg 1[$, shape, dtype, copy $)$	Compressed Sparse Row matrix
bsr_matrix $(\arg 1[$, shape, dtype, copy, blocksize] $)$	Block Sparse Row matrix
lil_matrix $(\arg 1[$, shape, dtype, copy] $)$	Row-based linked list sparse matrix
dok_matrix $(\arg 1[$, shape, dtype, copy] $)$	Dictionary Of Keys based sparse matrix.
coo_matrix $(\arg 1[$, shape, dtype, copy])	A sparse matrix in COOrdinate format.
dia_matrix $(\arg 1[$, shape, dtype, copy] $)$	Sparse matrix with DIAgonal storage
class scipy.sparse.csc_matrix $(\arg 1$, shape $=$ None, dtype=None, copy=False $)$	
Compressed Sparse Column matrix	

This can be instantiated in several ways:

csc_matrix(D)
with a dense matrix or rank-2 ndarray D
csc_matrix(S)
with another sparse matrix S (equivalent to $\mathrm{S} . \operatorname{tocsc}($))
csc_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=' d^{\prime} '.
csc_matrix((data, $\mathbf{i j})$, [shape=(M, N)])
where data and ij satisfy the relationship $\operatorname{a}[\mathrm{ij}[0, \mathrm{k}]$, $\mathrm{ij}[1, \mathrm{k}]]=\operatorname{data}[\mathrm{k}]$
csc_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSC representation where the row indices for column i are stored in indices[indptr[i]:indices[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.

Notes

Advantages of the CSC format

- efficient arithmetic operations CSC $+\mathrm{CSC}, \mathrm{CSC} * \mathrm{CSC}$, etc.
- efficient column slicing
- fast matrix vector products (CSR, BSR may be faster)

Disadvantages of the CSC format

- slow row slicing operations (consider CSR)
- changes to the sparsity structure are expensive (consider LIL or DOK)

Examples

```
>>> from scipy.sparse import *
>>> from scipy import *
>>> csc_matrix( (3,4), dtype=int8 ).todense()
matrix([[0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0]], dtype=int8)
>>> row = array([0,2,2,0,1,2])
>>> col = array([0,0,1,2,2,2])
>>> data = array([1,2,3,4,5,6])
>>> csc_matrix( (data,(row,col)), shape=(3,3) ).todense()
matrix([[1, 0, 4],
    [0, 0, 5],
    [2, 3, 6]])
>>> indptr = array([0,2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> csc_matrix( (data,indices,indptr), shape=(3,3) ).todense()
matrix([[1, 0, 4],
```

$$
\begin{array}{lll}
{[0,} & 0, & 5] \\
{[2,} & 3, & 6]])
\end{array}
$$

Methods

```
asformat
asfptype
astype
check_format
conj
conjugate
copy Generic (shallow and deep) copying operations.
diagonal
dot
eliminate_zeros
getH
get_shape
getcol
getformat
getmaxprint
getnnz
getrow
mean
multiply
nonzero
prune
reshape
set_shape
setdiag
sort_indices
sorted_indices
sum
sum_duplicates
toarray
tobsr
tocoo
tocsc
tocsr
todense
todia
todok
tolil
transpose
```

class scipy.sparse.csr_matrix (argl, shape=None, dtype=None, copy=False)
Compressed Sparse Row matrix
This can be instantiated in several ways:
csr_matrix(D)
with a dense matrix or rank-2 ndarray D
csr_matrix(S)
with another sparse matrix S (equivalent to $S . \operatorname{tocsr}()$)
csr_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'.
$\mathbf{c s r} _\operatorname{matrix}((\operatorname{data}, \mathbf{i j}),[\operatorname{shape}=(\mathbf{M}, \mathbf{N})])$
where data and ij satisfy the relationship $\operatorname{ajj}[0, \mathrm{k}]$, $\mathrm{ij}[1, \mathrm{k}]$] = data[k]
csr_matrix ((data, indices, indptr), [shape=(M,N)])
is the standard CSR representation where the column indices for row i are stored in indices[indptr[i]:indices[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.

Notes

Advantages of the CSR format

- efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
- efficient row slicing
- fast matrix vector products

Disadvantages of the CSR format

- slow column slicing operations (consider CSC)
- changes to the sparsity structure are expensive (consider LIL or DOK)

Examples

```
>>> from scipy.sparse import *
>>> from scipy import *
>>> csr_matrix( (3,4), dtype=int8 ).todense()
matrix([[0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0]], dtype=int8)
>>> row = array([0,0,1,2,2,2])
>>> col = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> csr_matrix( (data,(row,col)), shape=(3,3) ).todense()
matrix([[1, 0, 2],
    [0, 0, 3],
    [4, 5, 6]])
>>> indptr = array([0,2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> csr_matrix( (data,indices,indptr), shape=(3,3) ).todense()
matrix([[1, 0, 2],
    [0, 0, 3],
    [4, 5, 6]])
```


Methods

asformat

> Continued on next page

Table 3.11 - continued from previous page

```
asfptype
astype
check_format
conj
conjugate
copy Generic (shallow and deep) copying operations.
diagonal
dot
eliminate_zeros
getH
get_shape
getcol
getformat
getmaxprint
getnnz
getrow
mean
multiply
nonzero
prune
reshape
set_shape
setdiag
sort_indices
sorted_indices
sum
sum_duplicates
toarray
tobsr
tocoo
tocsc
tocsr
todense
todia
todok
tolil
transpose
```

class scipy.sparse.bsr_matrix (arg1, shape=None, dtype=None, copy=False, blocksize=None)
Block Sparse Row matrix
This can be instantiated in several ways:
bsr_matrix $(\mathbf{D},[$ blocksize $=($ R,C $)])$
with a dense matrix or rank-2 ndarray D
bsr_matrix(S, [blocksize=(R,C)])
with another sparse matrix S (equivalent to $\mathrm{S} . \operatorname{tobsr}()$)
bsr_matrix((M, N), [blocksize=(R,C), dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'.
bsr_matrix $(($ data, $\mathbf{i j})$, [blocksize $=(\mathbf{R}, \mathbf{C})$, shape $=(\mathbf{M}, \mathbf{N})])$
where data and ijsatisfy a[ij[0, k], ij[1, k]] = data[k]
bsr_matrix ((data, indices, indptr), [shape=(M,N)])
is the standard BSR representation where the block column indices for row i are stored in indices[indptr[i]:indices[i+1]] and their corresponding block values are stored in data[indptr[i]: indptr[i+1]]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.

Notes

Summary

- The Block Compressed Row (BSR) format is very similar to the Compressed Sparse Row (CSR) format. BSR is appropriate for sparse matrices with dense sub matrices like the last example below. Block matrices often arise in vector-valued finite element discretizations. In such cases, BSR is considerably more efficient than CSR and CSC for many sparse arithmetic operations.

Blocksize

- The blocksize (R, C) must evenly divide the shape of the matrix (M, N). That is, R and C must satisfy the relationship $\mathrm{M} \% \mathrm{R}=0$ and $\mathrm{N} \% \mathrm{C}=0$.
- If no blocksize is specified, a simple heuristic is applied to determine an appropriate blocksize.

Examples

```
>>> from scipy.sparse import *
>>> from scipy import *
>>> bsr_matrix( (3,4), dtype=int8 ).todense()
matrix([[0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0]], dtype=int8)
>>> row = array([0,0,1,2,2,2])
>>> col = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> bsr_matrix( (data,(row,col)), shape=(3,3) ).todense()
matrix([[1, 0, 2],
            [0, 0, 3],
            [4, 5, 6]])
>>> indptr = array([0, 2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6]).repeat (4).reshape(6,2,2)
>>> bsr_matrix( (data,indices,indptr), shape=(6,6) ).todense()
matrix([[1, 1, 0, 0, 2, 2],
            [1, 1, 0, 0, 2, 2],
            [0, 0, 0, 0, 3, 3],
            [0, 0, 0, 0, 3, 3],
            [4, 4, 5, 5, 6, 6],
            [4, 4, 5, 5, 6, 6]])
```


Methods

$$
\begin{aligned}
& \text { asformat } \\
& \text { asfptype } \\
& \text { astype } \\
& \text { check_format } \\
& \hline
\end{aligned}
$$

Table 3.12 - continued from previous page

```
conj
conjugate
    copy Generic (shallow and deep) copying operations.
    diagonal
    dot
    eliminate_zeros
    getH
    get_shape
    getcol
    getdata
    getformat
    getmaxprint
    getnnz
    getrow
    matmat
    matvec
    mean
    multiply
    nonzero
    prune
    reshape
    set_shape
    setdiag
    sort_indices
    sorted_indices
    sum
    sum_duplicates
    toarray
    tobsr
    tocoo
    tocsc
    tocsr
    todense
    todia
    todok
    tolil
    transpose
```

class scipy.sparse.lil_matrix(argl, shape=None, dtype=None, copy=False)
Row-based linked list sparse matrix
This is an efficient structure for constructing sparse matrices incrementally.
This can be instantiated in several ways:
lil_matrix(D)
with a dense matrix or rank-2 ndarray D
lil_matrix(S)
with another sparse matrix S (equivalent to $S . \operatorname{tocsc}()$)
lil_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'.

Notes

Advantages of the LIL format

- supports flexible slicing
- changes to the matrix sparsity structure are efficient

Disadvantages of the LIL format

- arithmetic operations LIL + LIL are slow (consider CSR or CSC)
- slow column slicing (consider CSC)
- slow matrix vector products (consider CSR or CSC)

Intended Usage

- LIL is a convenient format for constructing sparse matrices
- once a matrix has been constructed, convert to CSR or CSC format for fast arithmetic and matrix vector operations
- consider using the COO format when constructing large matrices

Data Structure

- An array (self.rows) of rows, each of which is a sorted list of column indices of non-zero elements.
- The corresponding nonzero values are stored in similar fashion in self. data.

Methods

```
asformat
asfptype
astype
conj
conjugate
copy Generic (shallow and deep) copying operations.
diagonal
dot
getH
get_shape
getcol
getformat
getmaxprint
getnnz
getrow
getrowview
mean
multiply
nonzero
reshape
set_shape
setdiag
Continued on next page
```

Table 3.13 - continued from previous page

```
sum
toarray
tobsr
tocoo
tocsc
tocsr
todense
todia
todok
tolil
transpose
```

class scipy.sparse.dok_matrix (arg1, shape=None, dtype=None, copy=False)
Dictionary Of Keys based sparse matrix.
This is an efficient structure for constructing sparse matrices incrementally.
This can be instantiated in several ways:

dok_matrix(D)

with a dense matrix, D
dok_matrix(S)
with a sparse matrix, S
dok_matrix((M,N), [dtype])
create the matrix with initial shape (M, N) dtype is optional, defaulting to dtype='d'

Notes

Allows for efficient $\mathrm{O}(1)$ access of individual elements. Duplicates are not allowed. Can be efficiently converted to a coo_matrix once constructed.

Examples

```
>>> from scipy.sparse import *
>>> from scipy import *
>>> S = dok_matrix((5,5), dtype=float32)
>>> for i in range(5):
>>> for j in range(5):
>>> S[i,j] = i+j # Update element
```


Methods

Table 3.14 - continued from previous page

```
fromkeys
get
getH
get_shape
getcol
getformat
getmaxprint
getnnz
getrow
has_key
items
iteritems
iterkeys
itervalues
keys
mean
multiply
nonzero
pop
popitem
reshape
resize
set_shape
setdefault
setdiag
split
sum
take
toarray
tobsr
tocoo
tocsc
tocsr
todense
todia
todok
tolil
transpose
update
values
```

class scipy.sparse.coo_matrix(argl, shape=None, dtype=None, copy=False)
A sparse matrix in COOrdinate format.
Also known as the ' ijv ' or 'triplet' format.
This can be instantiated in several ways:
coo_matrix(D)
with a dense matrix D
coo_matrix(S)
with another sparse matrix S (equivalent to S.tocoo())
coo_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'.
coo_matrix $(($ data, $\mathbf{i j}),[$ shape $=(\mathbf{M}, \mathbf{N})])$

The arguments 'data' and ' ij ' represent three arrays:

1. data[:] the entries of the matrix, in any order
2. $\mathrm{ij}[0][:]$ the row indices of the matrix entries
3. $\mathrm{ij}[1][:]$ the column indices of the matrix entries

Where $A[i j[0][k], i j[1][k]=$ data[k]. When shape is not specified, it is inferred from the index arrays

Notes

Advantages of the COO format

- facilitates fast conversion among sparse formats
- permits duplicate entries (see example)
- very fast conversion to and from CSR/CSC formats

Disadvantages of the COO format

- does not directly support:
- arithmetic operations
- slicing

Intended Usage

- COO is a fast format for constructing sparse matrices
- Once a matrix has been constructed, convert to CSR or CSC format for fast arithmetic and matrix vector operations
- By default when converting to CSR or CSC format, duplicate (i, j) entries will be summed together. This facilitates efficient construction of finite element matrices and the like. (see example)

Examples

```
>>> from scipy.sparse import *
>>> from scipy import *
>>> coo_matrix( (3,4), dtype=int8 ).todense()
matrix([[0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0]], dtype=int8)
>>> row = array ([0,3,1,0])
>>> col = array([0,3,1,2])
>>> data = array([4,5,7,9])
>>> coo_matrix( (data,(row,col)), shape=(4,4) ).todense()
matrix([[4, 0, 9, 0],
```

```
[0, 7, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 5]])
>>> # example with duplicates
>>> row = array([0,0,1,3,1,0,0])
>>> col = array([0,2,1,3,1,0,0])
>>> data = array([1,1,1,1,1,1,1])
>>> coo_matrix( (data,(row,col)), shape=(4,4)).todense()
matrix([[3, 0, 1, 0],
    [0, 2, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 1]])
```

Methods
asformat
asfptype
astype
conj
conjugate \quad Generic (shallow and deep) copying operations.
copy
diagonal
dot
geth
get_shape
getcol
getformat
getmaxprint
getnnz
getrow
mean
multiply
nonzero
reshape
set_shape
setdiag
sum
toarray
tobsr
tocoo
tocsc
tocsr
todense
todia
todok
tolil
transpose
class scipy.sparse.dia_matrix (arg1, shape=None, dtype=None, copy=False)
Sparse matrix with DIAgonal storage
This can be instantiated in several ways:

dia_matrix(D)

with a dense matrix

dia_matrix(S)

with another sparse matrix S (equivalent to S.todia())

dia_matrix((M, N), [dtype])

to construct an empty matrix with shape (M, N), dtype is optional, defaulting to dtype='d'.
dia_matrix((data, offsets), shape=(M,N))
where the data $[k,:]$ stores the diagonal entries for diagonal offsets [k] (See example below)

Examples

```
>>> from scipy.sparse import *
>>> from scipy import *
>>> dia_matrix( (3,4), dtype=int8).todense()
matrix([[0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0]], dtype=int8)
>>> data = array([[1,2,3,4]]).repeat(3,axis=0)
>>> offsets = array([0,-1,2])
>>> dia_matrix( (data,offsets), shape=(4,4)).todense()
matrix([[1, 0, 3, 0],
            [1, 2, 0, 4],
            [0, 2, 3, 0],
            [0, 0, 3, 4]])
```


Methods

```
asformat
    asfptype
    astype
    conj
    conjugate
    copy
    diagonal
    dot
    getH
    get_shape
    getcol
    getformat
    getmaxprint
    getnnz
    getrow
    mean
    multiply
    nonzero
    reshape
    set_shape
    setdiag
    sum
    toarray
    tobsr
tocoo
\(\square\) Continued on next page
```

Table 3.16 - continued from previous page
tocsc
tocsr
todense
todia
todok
tolil
transpose

3.14.4 Functions

Building sparse matrices:

eye(m, n[, k, dtype, format])	eye(m, n) returns a sparse ($\mathrm{m} \times \mathrm{n}$) matrix where the k-th diagonal
identity(n[, dtype, format])	Identity matrix in sparse format
kron(A, B[, format])	kronecker product of sparse matrices A and B
kronsum(A, B[, format])	kronecker sum of sparse matrices A and B
spdiags(data, diags, m, n[, format])	Return a sparse matrix from diagonals.
tril(A[, k, format])	Return the lower triangular portion of a matrix in sparse format
triu(A[, k, format])	Return the upper triangular portion of a matrix in sparse format
bmat(blocks[, format, dtype])	Build a sparse matrix from sparse sub-blocks
hstack(blocks[, format, dtype])	Stack sparse matrices horizontally (column wise)
vstack(blocks[, format, dtype])	Stack sparse matrices vertically (row wise)
scipy.sparse. eye ($m, n, k=0$, dtype $=$ ' d ', format=None) eye $(\mathrm{m}, \mathrm{n}$) returns a sparse (mxn) matrix where the k -th diagonal is all ones and everything else is zeros.	
scipy.sparse.identity (n, dtype='d', format=None)	
Identity matrix in sparse format	
Returns an identity matrix with shape (n, n) using a given sparse format and dtype.	
Parameters	
\mathbf{n} : integer	
Shape of the identity matrix.	
dtype :	
Data type of the matrix	
format : string	

Sparse format of the result, e.g. format="csr", etc.

Examples

```
>>> identity(3).todense()
matrix([[ 1., 0., 0.],
    [ 0., 1., 0.],
    [ 0., 0., 1.]])
>>> identity(3, dtype='int8', format='dia')
<3x3 sparse matrix of type '<type 'numpy.int8'>'
                    with 3 stored elements (1 diagonals) in DIAgonal format>
```

scipy.sparse.kron (A, B, format=None)
kronecker product of sparse matrices A and B

Parameters

A: sparse or dense matrix
first matrix of the product
B : sparse or dense matrix
second matrix of the product
format : string
format of the result (e.g. "csr")

Returns

kronecker product in a sparse matrix format :

Examples

```
>>> A = csr_matrix(array([[0,2],[5,0]]))
>>> B = csr_matrix(array([[1,2],[3,4]]))
>>> kron(A,B).todense()
matrix([[ 0, 0, 2, 4],
    [ 0, 0, 6, 8],
    [ 5, 10, 0, 0],
    [15, 20, 0, 0]])
```

>>> kron(A, [[1, 2], [3, 4]]).todense()
matrix([[0, 0, 2, 4],
$[0,0,6,8]$,
$[5,10,0,0]$,
$[15,20,0,0]])$
scipy.sparse.kronsum (A, B, format=None)
kronecker sum of sparse matrices A and B
Kronecker sum of two sparse matrices is a sum of two Kronecker products kron(I_n,A) + kron(B,I_m) where A has shape (m, m) and B has shape (n, n) and I_m and I_n are identity matrices of shape (m, m) and (n, n) respectively.

Parameters

A :
square matrix
B :
square matrix
format : string
format of the result (e.g. "csr")

Returns

kronecker sum in a sparse matrix format :
scipy.sparse.spdiags (data, diags, m, n, format=None)
Return a sparse matrix from diagonals.
Parameters
data : array_like
matrix diagonals stored row-wise
diags : diagonals to set

- $\mathrm{k}=0$ the main diagonal
- $\mathrm{k}>0$ the k -th upper diagonal
- $\mathrm{k}<0$ the k -th lower diagonal
\mathbf{m}, \mathbf{n} : int
shape of the result
format : format of the result (e.g. "csr")
By default (format=None) an appropriate sparse matrix format is returned. This choice is subject to change.

See Also:

dia_matrix
the sparse DIAgonal format.

Examples

```
>>> data = array([[1,2,3,4],[1,2,3,4],[1,2,3,4]])
>>> diags = array([0,-1,2])
>>> spdiags(data, diags, 4, 4).todense()
matrix([[1, 0, 3, 0],
    [1, 2, 0, 4],
    [0, 2, 3, 0],
    [0, 0, 3, 4]])
```

scipy.sparse.tril ($A, k=0$, format=None)
Return the lower triangular portion of a matrix in sparse format
Returns the elements on or below the k-th diagonal of the matrix A.

- $\mathrm{k}=0$ corresponds to the main diagonal
- $\mathrm{k}>0$ is above the main diagonal
- $\mathrm{k}<0$ is below the main diagonal

Parameters

A : dense or sparse matrix
Matrix whose lower trianglar portion is desired.
\mathbf{k} : integer
The top-most diagonal of the lower triangle.
format : string
Sparse format of the result, e.g. format="csr", etc.

Returns

L: sparse matrix
Lower triangular portion of A in sparse format.

See Also:

triu
upper triangle in sparse format

Examples

```
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix( [ [1,2,0,0,3], [4,5,0,6,7], [0,0,8,9,0]], dtype='int32' )
>>> A.todense()
matrix([[1, 2, 0, 0, 3],
    [4, 5, 0, 6, 7],
    [0, 0, 8, 9, 0]])
>>> tril(A).todense()
matrix([[1, 0, 0, 0, 0],
    [4, 5, 0, 0, 0],
    [0, 0, 8, 0, 0]])
>>> tril(A).nnz
4
>>> tril(A, k=1).todense()
matrix([[1, 2, 0, 0, 0],
    [4, 5, 0, 0, 0],
    [0, 0, 8, 9, 0]])
>>> tril(A, k=-1).todense()
matrix([[0, 0, 0, 0, 0],
    [4, 0, 0, 0, 0],
    [0, 0, 0, 0, 0]])
>>> tril(A, format =' Csc')
<3x5 sparse matrix of type '<type 'numpy.int 32'>'
    with 4 stored elements in Compressed Sparse Column format>
```

scipy.sparse.triu $(A, k=0$, format $=$ None $)$

Return the upper triangular portion of a matrix in sparse format
Returns the elements on or above the k-th diagonal of the matrix A.

- $\mathrm{k}=0$ corresponds to the main diagonal
- $\mathrm{k}>0$ is above the main diagonal
- $\mathrm{k}<0$ is below the main diagonal

Parameters

A : dense or sparse matrix
Matrix whose upper trianglar portion is desired.
\mathbf{k} : integer
The bottom-most diagonal of the upper triangle.
format : string
Sparse format of the result, e.g. format="csr", etc.

Returns

L: sparse matrix
Upper triangular portion of A in sparse format.

See Also:

tril
lower triangle in sparse format

Examples

```
>>> from scipy.sparse import csr_matrix
>> A = csr_matrix( [[1,2,0,0,3],[4,5,0,6,7],[0,0,8,9,0]], dtype='int32' )
>>> A.todense()
matrix([[1, 2, 0, 0, 3],
            [4, 5, 0, 6, 7],
    [0, 0, 8, 9, 0]])
>>> triu(A).todense()
matrix([[1, 2, 0, 0, 3],
    [0, 5, 0, 6, 7],
    [0, 0, 8, 9, 0]])
>>> triu(A).nnz
8
>>> triu(A, k=1).todense()
matrix([[0, 2, 0, 0, 3],
    [0, 0, 0, 6, 7],
    [0, 0, 0, 9, 0]])
>>> triu(A, k=-1).todense()
matrix([[1, 2, 0, 0, 3],
    [4, 5, 0, 6, 7],
    [0, 0, 8, 9, 0]])
>>> triu(A, format='csc')
<3x5 sparse matrix of type '<type 'numpy.int 32'>'
    with 8 stored elements in Compressed Sparse Column format>
```

scipy.sparse.bmat (blocks,format=None, dtype=None)

Build a sparse matrix from sparse sub-blocks

Parameters
 blocks :

grid of sparse matrices with compatible shapes an entry of None implies an all-zero matrix
format : sparse format of the result (e.g. "csr")
by default an appropriate sparse matrix format is returned. This choice is subject to change.

Examples

```
>>> from scipy.sparse import coo_matrix, bmat
>>> A = coo_matrix([[1,2],[3,4]])
>>> B = coo_matrix([[5],[6]])
>>> C = coo_matrix([[7]])
>>> bmat( [[A,B],[None,C]] ).todense()
matrix([[1, 2, 5],
                    [3, 4, 6],
                    [0, 0, 7]])
>>> bmat( [[A,None],[None,C]] ).todense()
matrix([[1, 2, 0],
    [3, 4, 0],
    [0, 0, 7]])
```

scipy.sparse.hstack (blocks, format=None, dtype=None)
Stack sparse matrices horizontally (column wise)

Parameters

blocks :
sequence of sparse matrices with compatible shapes
format : string
sparse format of the result (e.g. "csr") by default an appropriate sparse matrix format is returned. This choice is subject to change.

```
    See Also:
    vstack
        stack sparse matrices vertically (row wise)
    Examples
        >>> from scipy.sparse import coo_matrix, vstack
        >>> A = coo_matrix([[1,2],[3,4]])
        >>> B = coo_matrix([[5],[6]])
        >>> hstack( [A,B] ).todense()
        matrix([[1, 2, 5],
            [3, 4, 6]])
scipy.sparse.vstack (blocks,format=None, dtype=None)
    Stack sparse matrices vertically (row wise)
```


Parameters

```
blocks :
```

sequence of sparse matrices with compatible shapes
format : string
sparse format of the result (e.g. "csr") by default an appropriate sparse matrix format is returned. This choice is subject to change.

See Also:

hstack
stack sparse matrices horizontally (column wise)
Examples

```
>>> from scipy.sparse import coo_matrix, vstack
>>> A = coo_matrix([[1,2],[3,4]])
>>> B = coo_matrix([[5,6]])
>>> vstack( [A,B] ).todense()
matrix([[1, 2],
            [3, 4],
            [5, 6]])
```

Identifying sparse matrices:

```
issparse(x)
isspmatrix(x)
isspmatrix_csc(x)
isspmatrix_csr(x)
isspmatrix_bsr(x)
isspmatrix_lil(x)
isspmatrix_dok(x)
isspmatrix_coo(x)
isspmatrix_dia(x)
```

```
scipy.sparse.issparse(x)
scipy.sparse.isspmatrix(x)
scipy.sparse.isspmatrix_csc(x)
scipy.sparse.isspmatrix_csr(x)
scipy.sparse.isspmatrix_bsr(x)
scipy.sparse.isspmatrix_lil(x)
scipy.sparse.isspmatrix_dok(x)
scipy.sparse.isspmatrix_coo(x)
scipy.sparse.isspmatrix_dia(x)
```


3.14.5 Exceptions

exception scipy.sparse.SparseEfficiencyWarning
exception scipy.sparse.SparseWarning

3.15 Sparse linear algebra (scipy.sparse.linalg)

Warning: This documentation is work-in-progress and unorganized.

3.15.1 Sparse Linear Algebra

The submodules of sparse.linalg:

1. eigen: sparse eigenvalue problem solvers
2. isolve: iterative methods for solving linear systems
3. dsolve: direct factorization methods for solving linear systems

3.15.2 Examples

exception scipy.sparse.linalg.ArpackError (info, infodict=\{0: 'Normal exit.', 1: 'Maximum number of iterations taken. All possible eigenvalues of OP has been found.', 2: 'No longer an informational error. Deprecated starting with release 2 of ARPACK.', 3: 'No shifts could be applied during a cycle of the Implicitly restarted Arnoldi iteration. One possibility is to increase the size of NCV relative to NEV.', -9999: ‘Could not build an Arnoldi factorization. IPARAM(5) returns the size of the current Arnoldi factorization. The user is advised to check that enough workspace and array storage has been allocated.', -13: "NEV and WHICH = 'BE' are incompatable. ", -12: 'IPARAM(1) must be equal to 0 or 1.', -1: 'N must be positive.', -10: 'IPARAM(7) must be 1, 2, 3, 4, 5.', -9: 'Starting vector is zero.', -8: 'Error return from trid. eigenvalue calculation; Informational error from LAPACK routine dsteqr .', -7: 'Length of private work array WORKL is not sufficient.', -6: "BMAT must be one of ' I ' or ' G '.", 5: "WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.", -4: 'The maximum number of Arnoldi update iterations allowed must be greater than zero.', -3: ' $N C V$ must be greater than NEV and less than or equal to N.', -2: 'NEV must be positive.', -11: " $\operatorname{IPARAM}(7)=1$ and $B M A T=' ~ G$ ' are incompatable." $\}$)
ARPACK error
exception scipy.sparse.linalg.ArpackNoConvergence (msg, eigenvalues, eigenvectors)
ARPACK iteration did not converge

Attributes

eigenvalues eigenvectors	ndarray ndarray	Partial result. Converged eigenvalues. Partial result. Converged eigenvectors.

class scipy.sparse.linalg.LinearOperator(shape, matvec, rmatvec=None, matmat=None, dtype=None)
Common interface for performing matrix vector products
Many iterative methods (e.g. cg, gmres) do not need to know the individual entries of a matrix to solve a linear system $A^{*} \mathrm{x}=\mathrm{b}$. Such solvers only require the computation of matrix vector products, $\mathrm{A}^{*} \mathrm{v}$ where v is a dense vector. This class serves as an abstract interface between iterative solvers and matrix-like objects.

```
Parameters
    shape : tuple
```

Matrix dimensions (M,N)
matvec : callable $f(v)$
Returns returns A* v.

Other Parameters

rmatvec : callable $f(v)$
Returns $\mathrm{A}^{\wedge} \mathrm{H}^{*} \mathrm{v}$, where $\mathrm{A}^{\wedge} \mathrm{H}$ is the conjugate transpose of A .
matmat : callable $f(V)$
Returns A * V, where V is a dense matrix with dimensions (N, K).
dtype : dtype
Data type of the matrix.

See Also:

```
aslinearoperator
```


Construct LinearOperators

Notes

The user-defined matvec() function must properly handle the case where v has shape $(\mathrm{N}$,) as well as the ($\mathrm{N}, 1$) case. The shape of the return type is handled internally by LinearOperator.

Examples

```
>>> from scipy.sparse.linalg import LinearOperator
>>> from scipy import *
>>> def mv(v):
... return array([ 2*v[0], 3*v[1]])
...
>>> A = LinearOperator( (2,2), matvec=mv )
>>> A
<2x2 LinearOperator with unspecified dtype>
>>> A.matvec( ones(2) )
array([ 2., 3.])
>>> A * ones(2)
array([ 2., 3.])
```


Methods

matmat

matvec
matmat (X)
Matrix-matrix multiplication
Performs the operation $y=A * X$ where A is an $M x N$ linear operator and X dense $N^{*} K$ matrix or ndarray.

Parameters

$\mathbf{X}:\{$ matrix, ndarray $\}$
An array with shape (N, K).

Returns

$\mathbf{Y}:\{$ matrix, ndarray $\}$
A matrix or ndarray with shape (M, K) depending on the type of the X argument.

Notes

This matmat wraps any user-specified matmat routine to ensure that y has the correct type.
matvec (x)
Matrix-vector multiplication
Performs the operation $\mathrm{y}=\mathrm{A} * \mathrm{x}$ where A is an MxN linear operator and x is a column vector or rank-1 array.

Parameters

$\mathbf{x}:\{$ matrix, ndarray $\}$
An array with shape $(\mathrm{N}$,$) or (\mathrm{N}, 1)$.

Returns

$\mathbf{y}:\{$ matrix, ndarray $\}$
A matrix or ndarray with shape (M,) or $(\mathrm{M}, 1)$ depending on the type and shape of the x argument.

Notes

This matvec wraps the user-specified matvec routine to ensure that y has the correct shape and type.

```
scipy.sparse.linalg.Tester
```

 alias of NoseTester
 scipy.sparse.linalg.aslinearoperator (A)

Return A as a LinearOperator.
' A ' may be any of the following types:

- ndarray
- matrix
- sparse matrix (e.g. csr_matrix, lil_matrix, etc.)
- LinearOperator
- An object with .shape and .matvec attributes

See the LinearOperator documentation for additonal information.

Examples

```
        >>> from scipy import matrix
```

 \(\ggg M=\operatorname{matrix}([[1,2,3],[4,5,6]]\), dtype='int32')
 >>> aslinearoperator (M)
 <2x3 LinearOperator with dtype=int32>
 scipy.sparse.linalg.bicg $(A, \quad b, \quad x 0=$ None, \quad tol=1.0000000000000001e-05, maxiter $=$ None,
xtype $=$ None,$M=$ None, callback=None $)$

Use BIConjugate Gradient iteration to solve $\mathrm{A} \mathrm{x}=\mathrm{b}$
Parameters
A : \{sparse matrix, dense matrix, LinearOperator $\}$
The N-by-N matrix of the linear system.
b: \{array, matrix $\}$
Right hand side of the linear system. Has shape (N,) or ($\mathrm{N}, 1$).

Returns

\mathbf{x} : \{array, matrix $\}$
The converged solution.
info : integer
Provides convergence information:
0 : successful exit >0 : convergence to tolerance not achieved, number of iterations <0 : illegal input or breakdown

Other Parameters

$\mathbf{x 0}$: \{array, matrix $\}$
Starting guess for the solution.
tol : float
Tolerance to achieve. The algorithm terminates when either the relative or the absolute residual is below tol.
maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
\mathbf{M} : \{sparse matrix, dense matrix, LinearOperator\}
Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.
callback : function
User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.
xtype : $\left\{{ }^{\prime} \mathrm{f}\right.$ ','d’,'F', ${ }^{\prime}$ ' $\}$
This parameter is deprecated - avoid using it.
The type of the result. If None, then it will be determined from A.dtype.char and b. If A does not have a typecode method then it will compute A.matvec(x0) to get a typecode. To save the extra computation when A does not have a typecode attribute use xtype $=0$ for the same type as b or use xtype='f', 'd','F', or 'D'. This parameter has been superceeded by LinearOperator.
scipy.sparse.linalg.bicgstab $(A, b, x 0=$ None, tol $=1.0000000000000001 e-05$, maxiter $=$ None, xtype $=$ None, $M=$ None, callback=None)
Use BIConjugate Gradient STABilized iteration to solve A $\mathrm{x}=\mathrm{b}$
Parameters
A : \{sparse matrix, dense matrix, LinearOperator \}
The N-by-N matrix of the linear system.
b: \{array, matrix \}
Right hand side of the linear system. Has shape (N,) or $(\mathrm{N}, 1)$.

Returns

\mathbf{x} : \{array, matrix \}
The converged solution.
info : integer
Provides convergence information:
0 : successful exit >0 : convergence to tolerance not achieved, number of iterations <0 : illegal input or breakdown

Other Parameters

$\mathbf{x 0}$: $\{$ array, matrix $\}$
Starting guess for the solution.
tol : float

Tolerance to achieve. The algorithm terminates when either the relative or the absolute residual is below tol.
maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
$\mathbf{M}:$ \{sparse matrix, dense matrix, LinearOperator\}
Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.
callback : function
User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.
xtype : \{‘f', 'd','F', 'D’\}
This parameter is deprecated - avoid using it.
The type of the result. If None, then it will be determined from A.dtype.char and b. If A does not have a typecode method then it will compute A.matvec(x0) to get a typecode. To save the extra computation when A does not have a typecode attribute use xtype $=0$ for the same type as b or use xtype='f','d','F', or 'D'. This parameter has been superceeded by LinearOperator.

```
scipy.sparse.linalg.cg(A,b,x0=None, tol=1.0000000000000001e-05, maxiter=None, xtype=None,
    M=None, callback=None)
Use Conjugate Gradient iteration to solve \(\mathrm{A} x=\mathrm{b}\)
```

Parameters
A: \{sparse matrix, dense matrix, LinearOperator \}
The N-by-N matrix of the linear system.
b: \{array, matrix $\}$
Right hand side of the linear system. Has shape (N,) or ($\mathrm{N}, 1$).

Returns

$\mathbf{x}:\{$ array, matrix $\}$
The converged solution.
info : integer
Provides convergence information:
0 : successful exit >0 : convergence to tolerance not achieved, number of iterations <0 : illegal input or breakdown

Other Parameters

$\mathbf{x 0}$: $\{$ array, matrix $\}$
Starting guess for the solution.
tol : float
Tolerance to achieve. The algorithm terminates when either the relative or the absolute residual is below tol.
maxiter : integer

Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
\mathbf{M} : \{sparse matrix, dense matrix, LinearOperator \}
Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.
callback : function
User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.
xtype : \{ ‘f','d’,'F', D'\}
This parameter is deprecated - avoid using it.
The type of the result. If None, then it will be determined from A.dtype.char and b. If A does not have a typecode method then it will compute A.matvec(x0) to get a typecode. To save the extra computation when A does not have a typecode attribute use xtype $=0$ for the same type as b or use xtype=' f ', 'd',' F ', or ' D '. This parameter has been superceeded by LinearOperator.

```
scipy.sparse.linalg.cgs \((A, \quad b, \quad x 0=\) None,\(\quad\) tol=1.0000000000000001e-05, \(\quad\) maxiter \(=\) None,
xtype=None, \(M=\) None, callback=None)
Use Conjugate Gradient Squared iteration to solve A \(\mathrm{x}=\mathrm{b}\)
```


Parameters

A: \{sparse matrix, dense matrix, LinearOperator $\}$
The N-by-N matrix of the linear system.
b: \{array, matrix \}
Right hand side of the linear system. Has shape (N,) or ($\mathrm{N}, 1$).

Returns

$\mathbf{x}:\{$ array, matrix $\}$
The converged solution.
info : integer
Provides convergence information:
0 : successful exit >0 : convergence to tolerance not achieved, number of iterations <0 : illegal input or breakdown

Other Parameters

$\mathbf{x 0}$: \{array, matrix \}
Starting guess for the solution.
tol : float
Tolerance to achieve. The algorithm terminates when either the relative or the absolute residual is below tol.
maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
$\mathbf{M}:\{$ sparse matrix, dense matrix, LinearOperator \}

Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.
callback : function
User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.
xtype : \{'f','d','F','D'\}
This parameter is deprecated - avoid using it.
The type of the result. If None, then it will be determined from A.dtype.char and b. If A does not have a typecode method then it will compute A.matvec(x0) to get a typecode. To save the extra computation when A does not have a typecode attribute use xtype $=0$ for the same type as b or use xtype=' f ','d','F', or 'D'. This parameter has been superceeded by LinearOperator.
class scipy.sparse.linalg.csc_matrix (argl, shape $=$ None, dtype $=$ None, copy=False)
Compressed Sparse Column matrix

This can be instantiated in several ways:

csc_matrix(D)
with a dense matrix or rank-2 ndarray D
csc_matrix(S)
with another sparse matrix S (equivalent to $\operatorname{S.tocsc}()$)
\csc _matrix $((M, N),[d t y p e])$
to construct an empty matrix with shape (\mathbf{M}, N) dtype is optional, defaulting to dtype='d'.
csc_matrix $(($ data, $\mathbf{i j})$, [shape=($\mathbf{M}, \mathbf{N})])$
where data and ij satisfy the relationship a[ij[0, k], ij[1, k]] = data[k]
csc_matrix ((data, indices, indptr), $[$ shape $=(\mathbf{M}, \mathbf{N})])$
is the standard CSC representation where the row indices for column i are stored in indices[indptr[i]:indices[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.

Notes

Advantages of the CSC format

- efficient arithmetic operations CSC $+\mathrm{CSC}, \mathrm{CSC} * \mathrm{CSC}$, etc.
- efficient column slicing
- fast matrix vector products (CSR, BSR may be faster)

Disadvantages of the CSC format

- slow row slicing operations (consider CSR)
- changes to the sparsity structure are expensive (consider LIL or DOK)

Examples

```
>>> from scipy.sparse import *
>>> from scipy import *
>>> csc_matrix( (3,4), dtype=int8 ).todense()
matrix([[0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0]], dtype=int8)
>>> row = array([0,2,2,0,1,2])
>>> col = array([0,0,1,2,2,2])
>>> data = array([1,2,3,4,5,6])
>>> csc_matrix( (data,(row,col)), shape=(3,3) ).todense()
matrix([[1, 0, 4],
    [0, 0, 5],
    [2, 3, 6]])
>>> indptr = array([0,2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> csc_matrix( (data,indices,indptr), shape=(3,3) ).todense()
matrix([[1, 0, 4],
    [0, 0, 5],
    [2, 3, 6]])
```


Methods

```
asformat
asfptype
astype
check_format
conj
conjugate
copy Generic (shallow and deep) copying operations.
diagonal
dot
eliminate_zeros
getH
get_shape
getcol
getformat
getmaxprint
getnnz
getrow
mean
multiply
nonzero
prune
reshape
set_shape
setdiag
sort_indices
sorted_indices
sum
sum_duplicates
Continued on next page
```

Table 3.17 - continued from previous page

```
toarray
tobsr
tocoo
tocsc
tocsr
todense
todia
todok
tolil
transpose
```

class scipy.sparse.linalg.csr_matrix (argl, shape=None, dtype=None, copy=False)

Compressed Sparse Row matrix
This can be instantiated in several ways:
csr_matrix(D)
with a dense matrix or rank-2 ndarray D
csr_matrix(S)
with another sparse matrix S (equivalent to $S . \operatorname{tocsr}()$)
csr_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'.
$\mathbf{c s r}$ _matrix $(($ data, $\mathbf{i j}),[\operatorname{shape}=(\mathbf{M}, \mathbf{N})])$
where data and ijsatisfy the relationship $\operatorname{lij}[0, k], i j[1, k]]=$ data[k]
csr_matrix ((data, indices, indptr), [shape=(M,N)])
is the standard CSR representation where the column indices for row i are stored in indices[indptr[i]:indices[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.

Notes

Advantages of the CSR format

- efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
- efficient row slicing
- fast matrix vector products

Disadvantages of the CSR format

- slow column slicing operations (consider CSC)
- changes to the sparsity structure are expensive (consider LIL or DOK)

Examples

```
>>> from scipy.sparse import *
>>> from scipy import *
>>> csr_matrix( (3,4), dtype=int8 ).todense()
matrix([[0, 0, 0, 0],
```

```
    [0, 0, 0, 0],
    [0, 0, 0, 0]], dtype=int8)
>>> row = array([0,0,1,2,2,2])
>>> col = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> csr_matrix( (data,(row,col)), shape=(3,3) ).todense()
matrix([[1, 0, 2],
    [0, 0, 3],
    [4, 5, 6]])
>>> indptr = array([0,2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> csr_matrix( (data,indices,indptr), shape=(3,3) ).todense()
matrix([[1, 0, 2],
    [0, 0, 3],
    [4, 5, 6]])
```


Methods

```
asformat
asfptype
astype
check_format
conj
conjugate
copy
Generic (shallow and deep) copying operations.
diagonal
dot
eliminate_zeros
getH
get_shape
getcol
getformat
getmaxprint
getnnz
getrow
mean
multiply
nonzero
prune
    reshape
    set_shape
    setdiag
    sort_indices
    sorted_indices
    sum
    sum_duplicates
    toarray
    tobsr
    tocoo
    tocsc
    tocsr

Table 3.18 - continued from previous page
todense
todia
todok
tolil
transpose
scipy.sparse.linalg.eigs ( \(A, k=6, M=\) None, sigma=None, which='LM', \(v 0=N o n e\), \(n c v=\) None, maxiter \(=\) None, tol=0, return_eigenvectors \(=\) True)
Find k eigenvalues and eigenvectors of the square matrix A .
Solves A * \(\mathrm{x}[\mathrm{i}]=\mathrm{w}[\mathrm{i}]\) * \(\mathrm{x}[\mathrm{i}]\), the standard eigenvalue problem for \(\mathrm{w}[\mathrm{i}]\) eigenvalues with corresponding eigenvectors \(\mathrm{x}[\mathrm{i}]\).

\section*{Parameters}

A : matrix, array, or object with matvec(x) method
An N x N matrix, array, or an object with matvec(x) method to perform the matrix vector product \(A * x\). The sparse matrix formats in scipy.sparse are appropriate for A.
\(\mathbf{k}\) : integer
The number of eigenvalues and eigenvectors desired. \(k\) must be smaller than N . It is not possible to compute all eigenvectors of a matrix.

\section*{Returns}
\(\mathbf{w}\) : array
Array of k eigenvalues.
\(\mathbf{v}\) : array
An array of \(k\) eigenvectors. \(\mathrm{v}[:, ~ i]\) is the eigenvector corresponding to the eigenvalue \(w[i]\).

\section*{Other Parameters}

M : matrix or array
(Not implemented) A symmetric positive-definite matrix for the generalized eigenvalue problem \(A * x=w * M * x\).
sigma : real or complex
(Not implemented) Find eigenvalues near sigma. Shift spectrum by sigma.
v0 : array
Starting vector for iteration.
ncv : integer
The number of Lanczos vectors generated \(n c v\) must be greater than \(k\); it is recommended that ncv \(>2 \star \mathrm{k}\).
which : string
Which \(k\) eigenvectors and eigenvalues to find:
- 'LM' : largest magnitude
- 'SM' : smallest magnitude
- 'LR' : largest real part
- 'SR' : smallest real part
- 'LI' : largest imaginary part
- 'SI' : smallest imaginary part
maxiter : integer
Maximum number of Arnoldi update iterations allowed
tol : float
Relative accuracy for eigenvalues (stopping criterion) The default value of 0 implies machine precision.
return_eigenvectors : boolean
Return eigenvectors (True) in addition to eigenvalues

\section*{Raises}

ArpackNoConvergence :
When the requested convergence is obtained.
The currently converged eigenvalues and eigenvectors can be found as eigenvalues and eigenvectors attributes of the exception object.

\section*{See Also:}
eigsh
eigenvalues and eigenvectors for symmetric matrix A

\section*{Notes}

This function is a wrapper to the ARPACK [R162] SNEUPD, DNEUPD, CNEUPD, ZNEUPD, functions which use the Implicitly Restarted Arnoldi Method to find the eigenvalues and eigenvectors [R163].

\section*{References}
[R162], [R163]

\section*{Examples}

Find 6 eigenvectors of the identity matrix:
```

>>> id = np.identity(13)
>>> vals, vecs = sp.sparse.linalg.eigs(id, k=6)
>>> vals
array([1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j])
>>> vecs.shape
(13, 6)

```
scipy.sparse.linalg.eigsh ( \(A, k=6, M=N o n e\), sigma=None, which='LM', v0=None, \(n c v=N o n e\), maxiter \(=\) None, tol \(=0\), return_eigenvectors \(=\) True)
Find \(k\) eigenvalues and eigenvectors of the real symmetric square matrix A .
Solves \(\mathrm{A} * \mathrm{x}[\mathrm{i}]=\mathrm{w}[\mathrm{i}] * \mathrm{x}[\mathrm{i}]\), the standard eigenvalue problem for \(\mathrm{w}[\mathrm{i}]\) eigenvalues with corresponding eigenvectors \(\mathrm{x}[\mathrm{i}]\).

\section*{Parameters}

A : matrix or array with real entries or object with matvec(x) method

An \(\mathrm{N} \times \mathrm{N}\) real symmetric matrix or array or an object with matvec( x ) method to perform the matrix vector product \(\mathrm{A} * \mathrm{x}\). The sparse matrix formats in scipy.sparse are appropriate for A .
\(\mathbf{k}\) : integer
The number of eigenvalues and eigenvectors desired.

\section*{Returns}
\(\mathbf{w}\) : array
Array of k eigenvalues
\(\mathbf{v}\) : array
An array of \(k\) eigenvectors The \(v[i]\) is the eigenvector corresponding to the eigenvector w[i]

\section*{Other Parameters}

M : matrix or array
(Not implemented) A symmetric positive-definite matrix for the generalized eigenvalue problem \(A * x=w * M * x\)
sigma : real
(Not implemented) Find eigenvalues near sigma. Shift spectrum by sigma.
v0 : array
Starting vector for iteration.
ncv : integer
The number of Lanczos vectors generated ncv must be greater than k and smaller than n ; it is recommended that \(\mathrm{ncv}>2 * \mathrm{k}\)
which : string

\section*{Which k eigenvectors and eigenvalues to find:}
- 'LA' : Largest (algebraic) eigenvalues
- 'SA' : Smallest (algebraic) eigenvalues
- 'LM' : Largest (in magnitude) eigenvalues
- 'SM' : Smallest (in magnitude) eigenvalues
- 'BE'
[Half ( \(\mathrm{k} / 2\) ) from each end of the spectrum] When k is odd, return one more \((k / 2+1)\) from the high end
maxiter : integer
Maximum number of Arnoldi update iterations allowed
tol : float
Relative accuracy for eigenvalues (stopping criterion). The default value of 0 implies machine precision.
return_eigenvectors : boolean
Return eigenvectors (True) in addition to eigenvalues

\section*{Raises}

\section*{ArpackNoConvergence :}

When the requested convergence is obtained.
The currently converged eigenvalues and eigenvectors can be found as eigenvalues and eigenvectors attributes of the exception object.

\section*{See Also:}
eigs
eigenvalues and eigenvectors for a general (nonsymmetric) matrix A

\section*{Notes}

This function is a wrapper to the ARPACK [R164] SSEUPD and DSEUPD functions which use the Implicitly Restarted Lanczos Method to find the eigenvalues and eigenvectors [R165].

\section*{References}
[R164], [R165]

\section*{Examples}
```

>>> id = np.identity(13)
>>> vals, vecs = sp.sparse.linalg.eigsh(id, k=6)
>>> vals
array([1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j])
>>> vecs.shape
(13, 6)

```
scipy.sparse.linalg.factorized (A)

Return a fuction for solving a sparse linear system, with A pre-factorized.

\section*{Example:}
solve \(=\) factorized ( A ) \# Makes LU decomposition. x1 = solve( rhs1 ) \# Uses the LU factors. \(\mathrm{x} 2=\operatorname{solve}(\) rhs2 ) \# Uses again the LU factors.
scipy.sparse.linalg.gmres \((A, b, x 0=\) None, tol \(=1.0000000000000001 e-05\), restart=None, maxiter=None, xtype=None, \(M=\) None, callback=None, restrt=None)
Use Generalized Minimal RESidual iteration to solve \(\mathrm{A} x=\mathrm{b}\).

\section*{Parameters}

A: \{sparse matrix, dense matrix, LinearOperator \}
The N-by-N matrix of the linear system.
b: \{array, matrix \(\}\)
Right hand side of the linear system. Has shape ( N, ) or ( \(\mathrm{N}, 1\) ).

\section*{Returns}
\(\mathbf{x}\) : \{array, matrix \(\}\)
The converged solution.
info : int
Provides convergence information:
- 0 : successful exit
- \(>0\) : convergence to tolerance not achieved, number of iterations
- <0 : illegal input or breakdown

\section*{Other Parameters}
\(\mathbf{x 0}\) : \(\{\) array, matrix \(\}\)
Starting guess for the solution (a vector of zeros by default).
tol : float
Tolerance to achieve. The algorithm terminates when either the relative or the absolute residual is below tol.
restart : int, optional
Number of iterations between restarts. Larger values increase iteration cost, but may be necessary for convergence. Default is 20 .
maxiter : int, optional
Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
\(\mathbf{M}\) : \{sparse matrix, dense matrix, LinearOperator \}
Inverse of the preconditioner of \(A\). \(M\) should approximate the inverse of \(A\) and be easy to solve for (see Notes). Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance. By default, no preconditioner is used.
callback : function
User-supplied function to call after each iteration. It is called as callback(rk), where rk is the current residual vector.

\section*{See Also:}

LinearOperator

\section*{Notes}

A preconditioner, P , is chosen such that P is close to A but easy to solve for. The preconditioner parameter required by this routine is \(M=P^{\wedge}-1\). The inverse should preferably not be calculated explicitly. Rather, use the following template to produce M :
```


Construct a linear operator that computes P^-1 * x.

```
import scipy.sparse.linalg as spla
M_x = lambda \(\mathrm{x}: ~ \mathrm{spla} . \operatorname{spsolve}(\mathrm{P}, \mathrm{x})\)
M = spla.LinearOperator((n, n), M_x)
scipy.sparse.linalg.lgmres \((A, \quad b, \quad x 0=\) None, \(\quad\) tol=1.0000000000000001e-05, maxiter \(=1000\), \(M=\) None, callback \(=\) None, inner_ \(m=30\), outer_ \(k=3\), outer_ \(v=\) None, store_outer_Av=True)
Solve a matrix equation using the LGMRES algorithm.
The LGMRES algorithm [BJM] [BPh] is designed to avoid some problems in the convergence in restarted GMRES, and often converges in fewer iterations.

\section*{Parameters}

A : \{sparse matrix, dense matrix, LinearOperator\}
The N -by- N matrix of the linear system.
b: \{array, matrix \}
Right hand side of the linear system. Has shape ( N, ) or ( \(\mathrm{N}, 1\) ).
\(\mathbf{x 0}\) : \(\{\) array, matrix \(\}\)
Starting guess for the solution.
tol : float
Tolerance to achieve. The algorithm terminates when either the relative or the absolute residual is below tol.
maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
\(\mathbf{M}\) : \(\{\) sparse matrix, dense matrix, LinearOperator \(\}\)
Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.
callback : function
User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.

\section*{Returns}
\(\mathbf{x}\) : array or matrix
The converged solution.

\section*{info : integer}

\section*{Provides convergence information:}

0 : successful exit \(>0\) : convergence to tolerance not achieved, number of iterations \(<0\) : illegal input or breakdown

\section*{Notes}

The LGMRES algorithm [BJM] [BPh] is designed to avoid the slowing of convergence in restarted GMRES, due to alternating residual vectors. Typically, it often outperforms GMRES(m) of comparable memory requirements by some measure, or at least is not much worse.

Another advantage in this algorithm is that you can supply it with 'guess' vectors in the outer_v argument that augment the Krylov subspace. If the solution lies close to the span of these vectors, the algorithm converges faster. This can be useful if several very similar matrices need to be inverted one after another, such as in Newton-Krylov iteration where the Jacobian matrix often changes little in the nonlinear steps.

\section*{References}
[BJM], [BPh]
scipy.sparse.linalg.lobpcg(A, \(\quad X, \quad B=\) None \(, \quad M=N o n e, \quad Y=N o n e, \quad\) tol=None, maxiter=20, largest \(=\) True, verbosityLevel \(=0, \quad\) retLambdaHistory=False, retResidualNormsHistory=False)
Solve symmetric partial eigenproblems with optional preconditioning
This function implements the Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG).

\section*{Parameters}

A: \{sparse matrix, dense matrix, LinearOperator \}
The symmetric linear operator of the problem, usually a sparse matrix. Often called the "stiffness matrix".

X : array_like

Initial approximation to the \(k\) eigenvectors. If \(A\) has shape \(=(n, n)\) then \(X\) should have shape shape \(=(\mathrm{n}, \mathrm{k})\).
B : \{dense matrix, sparse matrix, LinearOperator\}, optional
the right hand side operator in a generalized eigenproblem. by default, B = Identity often called the "mass matrix"
\(\mathbf{M}\) : \{dense matrix, sparse matrix, LinearOperator\}, optional preconditioner to A ; by default \(\mathrm{M}=\) Identity M should approximate the inverse of A

Y : array_like, optional
n-by-size \(Y\) matrix of constraints, size \(\mathrm{Y}<\mathrm{n}\) The iterations will be performed in the B-orthogonal complement of the column-space of Y. Y must be full rank.

\section*{Returns}
w : array
Array of k eigenvalues
\(\mathbf{v}\) : array
An array of \(k\) eigenvectors. \(V\) has the same shape as X .

\section*{Other Parameters}
tol : scalar, optional
Solver tolerance (stopping criterion) by default: tol=n*sqrt(eps)
maxiter: integer, optional :
maximum number of iterations by default: \(\operatorname{maxiter=}=\min (n, 20)\)
largest : boolean, optional
when True, solve for the largest eigenvalues, otherwise the smallest
verbosityLevel : integer, optional
controls solver output. default: verbosityLevel \(=0\).
retLambdaHistory : boolean, optional
whether to return eigenvalue history
retResidualNormsHistory : boolean, optional
whether to return history of residual norms

\section*{Notes}

If both retLambdaHistory and retResidualNormsHistory are True, the return tuple has the following format (lambda, V, lambda history, residual norms history)
```

scipy.sparse.linalg.lsqr (A, b, damp=0.0, atol=le-08, btol=le-08, conlim=100000000.0,
iter_lim=None, show=False, calc_var=False)

```

Find the least-squares solution to a large, sparse, linear system of equations.
The function solves \(A x=b\) or \(\min ||b-A x|| \wedge 2\) or \({ }^{\prime} \min \|A x-b\|^{\wedge} 2+d^{\wedge} 2\|x\|^{\wedge} 2\).
The matrix A may be square or rectangular (over-determined or under-determined), and may have any rank.
```

1. Unsymmetric equations -- solve $\mathrm{A} * \mathrm{x}=\mathrm{b}$
2. Linear least squares -- solve $A * x=b$
in the least-squares sense
```
```

3. Damped least squares -- solve (A)*x = (b)
(damp*I) (0)
in the least-squares sense
```

\section*{Parameters}

A: \{sparse matrix, ndarray, LinearOperatorLinear\}
Representation of an mxn matrix. It is required that the linear operator can produce \(A x\) and \(A^{\wedge} T x\).
b: (m,) ndarray
Right-hand side vector b.
damp : float
Damping coefficient.
atol, btol : float
Stopping tolerances. If both are \(1.0 \mathrm{e}-9\) (say), the final residual norm should be accurate to about 9 digits. (The final x will usually have fewer correct digits, depending on cond(A) and the size of damp.)
conlim : float
Another stopping tolerance. lsqr terminates if an estimate of cond (A) exceeds conlim. For compatible systems \(\mathrm{Ax}=\mathrm{b}\), conlim could be as large as \(1.0 \mathrm{e}+12\) (say). For least-squares problems, conlim should be less than \(1.0 \mathrm{e}+8\). Maximum precision can be obtained by setting atol \(=\) btol \(=\) conlim \(=\) zero, but the number of iterations may then be excessive.
iter_lim : int
Explicit limitation on number of iterations (for safety).
show : bool
Display an iteration log.
calc_var : bool
Whether to estimate diagonals of \(\left(A^{\prime} A+\operatorname{damp}^{\wedge} 2 * I\right)^{\wedge}\{-1\}\).

\section*{Returns}
\(\mathbf{x}\) : ndarray of float
The final solution.
istop : int
Gives the reason for termination. 1 means x is an approximate solution to \(\mathrm{Ax}=\mathrm{b} .2\) means x approximately solves the least-squares problem.
itn : int
Iteration number upon termination.
r1norm : float
norm(r), where \(r=b-A x\).
r2norm : float
```

sqrt(norm(r)^2 + damp^2 * norm(x)^2). Equal to rlnorm if damp
== 0.

```
anorm : float
Estimate of Frobenius norm of Abar \(=[\) [A]; [damp*I] ].
acond : float
Estimate of cond (Abar).
arnorm : float
Estimate of norm ( \(A^{\prime} * r-d^{\prime}\) damp \(\left.^{\wedge} 2 * x\right)\).
xnorm : float
norm (x)
var : ndarray of float
If calc_var is True, estimates all diagonals of \(\left(A^{\prime} A\right)^{\wedge}\{-1\}\) (if damp \(==0\) ) or more generally \(\left(A^{\prime} A+d^{\prime}{ }^{\wedge} 2 * I\right)^{\wedge}\{-1\}\). This is well defined if \(A\) has full column rank or damp >0. (Not sure what var means if rank (A) \(<\mathrm{n}\) and damp = 0 .)

\section*{Notes}

LSQR uses an iterative method to approximate the solution. The number of iterations required to reach a certain accuracy depends strongly on the scaling of the problem. Poor scaling of the rows or columns of A should therefore be avoided where possible.

For example, in problem 1 the solution is unaltered by row-scaling. If a row of A is very small or large compared to the other rows of A , the corresponding row of ( Ab ) should be scaled up or down.
In problems 1 and 2, the solution x is easily recovered following column-scaling. Unless better information is known, the nonzero columns of A should be scaled so that they all have the same Euclidean norm (e.g., 1.0).

In problem 3, there is no freedom to re-scale if damp is nonzero. However, the value of damp should be assigned only after attention has been paid to the scaling of A .

The parameter damp is intended to help regularize ill-conditioned systems, by preventing the true solution from being very large. Another aid to regularization is provided by the parameter acond, which may be used to terminate iterations before the computed solution becomes very large.

If some initial estimate x 0 is known and if damp \(==0\), one could proceed as follows:
1. Compute a residual vector \(r 0=b-A * x 0\).
2.Use LSQR to solve the system \(A * d x=r 0\).
3. Add the correction dx to obtain a final solution \(x=x 0+d x\).

This requires that \(\times 0\) be available before and after the call to LSQR. To judge the benefits, suppose LSQR takes \(k 1\) iterations to solve \(A * x=b\) and \(k 2\) iterations to solve \(A * d x=r 0\). If \(x 0\) is "good", norm(r0) will be smaller than norm(b). If the same stopping tolerances atol and btol are used for each system, k1 and k2 will be similar, but the final solution \(\mathrm{x} 0+\mathrm{dx}\) should be more accurate. The only way to reduce the total work is to use a larger stopping tolerance for the second system. If some value btol is suitable for \(A * x=b\), the larger value btol*norm(b)/norm(r0) should be suitable for A*dx \(=\) r0.

Preconditioning is another way to reduce the number of iterations. If it is possible to solve a related system \(\mathrm{M} * \mathrm{x}\) \(=\mathrm{b}\) efficiently, where M approximates A in some helpful way (e.g. \(\mathrm{M}-\mathrm{A}\) has low rank or its elements are small relative to those of \(A\) ), LSQR may converge more rapidly on the system \(A * M\) (inverse) \(* z=b\), after which x can be recovered by solving \(\mathrm{M}^{*} \mathrm{x}=\mathrm{z}\).

If A is symmetric, LSQR should not be used!
Alternatives are the symmetric conjugate-gradient method (cg) and/or SYMMLQ. SYMMLQ is an implementation of symmetric cg that applies to any symmetric A and will converge more rapidly than LSQR. If A is positive definite, there are other implementations of symmetric cg that require slightly less work per iteration than SYMMLQ (but will take the same number of iterations).

\section*{References}
[R166], [R167], [R168]
scipy.sparse.linalg.minres \((A, \quad b, x 0=N o n e\), shift=0.0, tol=1.00000000000000001e-05, maxiter=None, xtype=None, M=None, callback=None, show=False, check=False)
Use MINimum RESidual iteration to solve \(\mathrm{Ax}=\mathrm{b}\)
MINRES minimizes norm \(\left(\mathrm{A}^{*} \mathrm{x}-\mathrm{b}\right)\) for the symmetric matrix A. Unlike the Conjugate Gradient method, A can be indefinite or singular.
If shift \(!=0\) then the method solves \(\left(\mathrm{A}-\operatorname{shift}^{*} \mathrm{I}\right) \mathrm{x}=\mathrm{b}\)

\section*{Parameters}

A : \{sparse matrix, dense matrix, LinearOperator \(\}\)
The N-by-N matrix of the linear system.
b: \{array, matrix \(\}\)
Right hand side of the linear system. Has shape ( N, ) or ( \(\mathrm{N}, 1\) ).

\section*{Returns}
\(\mathbf{x}\) : \{array, matrix \}
The converged solution.
info : integer
Provides convergence information:
0 : successful exit \(>0\) : convergence to tolerance not achieved, number of iterations \(<0\) : illegal input or breakdown

\section*{Other Parameters}
\(\mathbf{x 0}\) : \{array, matrix \}
Starting guess for the solution.
tol : float
Tolerance to achieve. The algorithm terminates when either the relative or the absolute residual is below tol.
maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
\(\mathbf{M}:\) \{sparse matrix, dense matrix, LinearOperator \(\}\)
Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.
callback : function
User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.
xtype : \{‘f', 'd', 'F', 'D' \(\}\)
This parameter is deprecated - avoid using it.
The type of the result. If None, then it will be determined from A.dtype.char and b. If A does not have a typecode method then it will compute A.matvec(x0) to get a typecode. To save the extra computation when A does not have a typecode attribute use xtype \(=0\) for the same type as \(b\) or use xtype=' \(f\) ', 'd',' \(F\) ', or 'D'. This parameter has been superceeded by LinearOperator.

\section*{Notes}

THIS FUNCTION IS EXPERIMENTAL AND SUBJECT TO CHANGE!

\section*{References}

\section*{Solution of sparse indefinite systems of linear equations,}
C. C. Paige and M. A. Saunders (1975), SIAM J. Numer. Anal. 12(4), pp. 617-629. http://www.stanford.edu/group/SOL/software/minres.html

This file is a translation of the following MATLAB implementation:
http://www.stanford.edu/group/SOL/software/minres/matlab/
scipy.sparse.linalg.qmr \((A, \quad b, \quad x 0=\) None,\(\quad\) tol \(=1.0000000000000001 e-05, \quad\) maxiter \(=\) None, xtype \(=\) None, \(M 1=\) None, \(M 2=\) None, callback=None )
Use Quasi-Minimal Residual iteration to solve \(\mathrm{A} x=\mathrm{b}\)

\section*{Parameters}

A : \{sparse matrix, dense matrix, LinearOperator\}
The N-by-N matrix of the linear system.
b: \{array, matrix \}
Right hand side of the linear system. Has shape ( N, ) or ( \(\mathrm{N}, 1\) ).

\section*{Returns}
\(\mathbf{x}\) : \{array, matrix \}
The converged solution.
info : integer
Provides convergence information:
0 : successful exit \(>0\) : convergence to tolerance not achieved, number of iterations \(<0\) : illegal input or breakdown

Other Parameters
\(\mathbf{x 0}\) : \{array, matrix \}
Starting guess for the solution.
tol : float
Tolerance to achieve. The algorithm terminates when either the relative or the absolute residual is below tol.
maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.

M1: \{sparse matrix, dense matrix, LinearOperator\}
Left preconditioner for A.

M2 : \{sparse matrix, dense matrix, LinearOperator \}
Right preconditioner for A. Used together with the left preconditioner M1. The matrix \(\mathrm{M} 1 * \mathrm{~A} * \mathrm{M} 2\) should have better conditioned than A alone.
callback : function
User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.
xtype : \{ 'f','d','F', 'D'\}
This parameter is DEPRECATED - avoid using it.
The type of the result. If None, then it will be determined from A.dtype.char and \(b\). If A does not have a typecode method then it will compute A.matvec(x0) to get a typecode. To save the extra computation when A does not have a typecode attribute use xtype \(=0\) for the same type as \(b\) or use xtype='f', 'd','F', or 'D'. This parameter has been superceeded by LinearOperator.

\section*{See Also:}

LinearOperator
scipy.sparse.linalg.spilu(A, drop_tol=None, fill_factor=None, drop_rule=None, permc_spec \(=\) None, diag_pivot_thresh=None, relax=None, panel_size=None, options=None)
Compute an incomplete LU decomposition for a sparse, square matrix A.
The resulting object is an approximation to the inverse of A .

\section*{Parameters}

A:
Sparse matrix to factorize
drop_tol : float, optional
Drop tolerance \((0<=\) tol \(<=1)\) for an incomplete \(L U\) decomposition. (default: 1e-4)
fill_factor : float, optional
Specifies the fill ratio upper bound ( \(>=1.0\) ) for ILU. (default: 10)
drop_rule : str, optional
Comma-separated string of drop rules to use. Available rules: basic, prows, column, area, secondary, dynamic, interp. (Default: basic, area)

See SuperLU documentation for details.
milu : str, optional
Which version of modified ILU to use. (Choices: silu, smilu_1, smilu_2 (default), smilu_3.)

\section*{Remaining other options :}

Same as for splu

\section*{Returns}
invA_approx : scipy.sparse.linalg.dsolve._superlu.SciPyLUType
Object, which has a solve method.

\section*{See Also:}
splu
complete LU decomposition

\section*{Notes}

To improve the better approximation to the inverse, you may need to increase fill_factor AND decrease drop_tol.

This function uses the SuperLU library.

\section*{References}
[SLU]
scipy.sparse.linalg.splu (A, permc_spec=None, diag_pivot_thresh=None, drop_tol=None, relax \(=\) None, panel_size \(=\) None, options \(=\{ \}\) )
Compute the LU decomposition of a sparse, square matrix.

\section*{Parameters}

A :
Sparse matrix to factorize. Should be in CSR or CSC format.
permc_spec : str, optional
How to permute the columns of the matrix for sparsity preservation. (default: 'COLAMD')
- NATURAL: natural ordering.
- MMD_ATA: minimum degree ordering on the structure of \(\mathrm{A}^{\wedge} \mathrm{T}\) A.
- MMD_AT_PLUS_A: minimum degree ordering on the structure of \(A^{\wedge} T+A\).
- COLAMD: approximate minimum degree column ordering
diag_pivot_thresh : float, optional
Threshold used for a diagonal entry to be an acceptable pivot. See SuperLU user's guide for details [SLU]
drop_tol : float, optional
(deprecated) No effect.
relax : int, optional
Expert option for customizing the degree of relaxing supernodes. See SuperLU user's guide for details [SLU]
panel_size : int, optional
Expert option for customizing the panel size. See SuperLU user's guide for details [SLU]
options : dict, optional
Dictionary containing additional expert options to SuperLU. See SuperLU user guide [SLU] (section 2.4 on the 'Options' argument) for more details. For example, you can specify options=dict (Equil=False, IterRefine='SINGLE')) to turn equilibration off and perform a single iterative refinement.

\section*{Returns}
invA : scipy.sparse.linalg.dsolve._superlu.SciPyLUType
Object, which has a solve method.

\section*{See Also:}
spilu
incomplete LU decomposition

\section*{Notes}

This function uses the SuperLU library.

\section*{References}
[SLU]
```

scipy.sparse.linalg.spsolve(A,b,permc_spec=None,use_umfpack=True)

```

Solve the sparse linear system \(\mathrm{Ax}=\mathrm{b}\)
scipy.sparse.linalg.svds ( \(A, k=6, n c v=\) None, \(t o l=0\) )
Compute k singular values/vectors for a sparse matrix using ARPACK.
Parameters
A : sparse matrix
Array to compute the SVD on
k: int, optional
Number of singular values and vectors to compute.
ncv : integer
The number of Lanczos vectors generated ncv must be greater than \(\mathrm{k}+1\) and smaller than n ; it is recommended that ncv \(>2 * \mathrm{k}\)
tol : float, optional
Tolerance for singular values. Zero (default) means machine precision.
```

scipy.sparse.linalg.use_solver(**kwargs)

```

Valid keyword arguments with defaults (other ignored):
useUmfpack \(=\) True assumeSortedIndices \(=\) False
The default sparse solver is umfpack when available. This can be changed by passing useUmfpack = False, which then causes the always present SuperLU based solver to be used.
Umfpack requires a CSR/CSC matrix to have sorted column/row indices. If sure that the matrix fulfills this, pass assumeSortedIndices=True to gain some speed.

\subsection*{3.16 Spatial algorithms and data structures (scipy.spatial)}

Nearest-neighbor queries:
\begin{tabular}{lc}
\hline KDTree(data[, leafsize]) & kd-tree for quick nearest-neighbor lookup \\
CKDTree & kd-tree for quick nearest-neighbor lookup \\
distance & \\
\hline
\end{tabular}
class scipy.spatial. KDTree (data, leafsize=10)
kd-tree for quick nearest-neighbor lookup
This class provides an index into a set of k-dimensional points which can be used to rapidly look up the nearest neighbors of any point.

The algorithm used is described in Maneewongvatana and Mount 1999. The general idea is that the kd-tree is a binary tree, each of whose nodes represents an axis-aligned hyperrectangle. Each node specifies an axis and splits the set of points based on whether their coordinate along that axis is greater than or less than a particular value.

During construction, the axis and splitting point are chosen by the "sliding midpoint" rule, which ensures that the cells do not all become long and thin.

The tree can be queried for the r closest neighbors of any given point (optionally returning only those within some maximum distance of the point). It can also be queried, with a substantial gain in efficiency, for the \(r\) approximate closest neighbors.

For large dimensions (20 is already large) do not expect this to run significantly faster than brute force. Highdimensional nearest-neighbor queries are a substantial open problem in computer science.

The tree also supports all-neighbors queries, both with arrays of points and with other kd-trees. These do use a reasonably efficient algorithm, but the kd-tree is not necessarily the best data structure for this sort of calculation.

\section*{Methods}
```

count_neighbors
innernode
leafnode
node
query
query_ball_point
query_ball_tree
query_pairs
sparse_distance_matrix

```
class scipy.spatial.cKDTree
kd-tree for quick nearest-neighbor lookup
This class provides an index into a set of k-dimensional points which can be used to rapidly look up the nearest neighbors of any point.

The algorithm used is described in Maneewongvatana and Mount 1999. The general idea is that the kd-tree is a binary trie, each of whose nodes represents an axis-aligned hyperrectangle. Each node specifies an axis and splits the set of points based on whether their coordinate along that axis is greater than or less than a particular value.

During construction, the axis and splitting point are chosen by the "sliding midpoint" rule, which ensures that the cells do not all become long and thin.
The tree can be queried for the r closest neighbors of any given point (optionally returning only those within some maximum distance of the point). It can also be queried, with a substantial gain in efficiency, for the \(r\) approximate closest neighbors.

For large dimensions (20 is already large) do not expect this to run significantly faster than brute force. Highdimensional nearest-neighbor queries are a substantial open problem in computer science.

\section*{Parameters}
data : array-like, shape ( \(\mathrm{n}, \mathrm{m}\) )
The \(n\) data points of dimension mto be indexed. This array is not copied unless this is necessary to produce a contiguous array of doubles, and so modifying this data will result in bogus results.
leafsize : positive integer
The number of points at which the algorithm switches over to brute-force.

\section*{Methods}
query

\section*{Distance computations (scipy.spatial.distance)}

\section*{Function Reference}

Distance matrix computation from a collection of raw observation vectors stored in a rectangular array.
```

pdist(X[, metric, p, w, V, VI]) Computes the pairwise distances between m original observations in
n-dimensional space.
Computes distance between each pair of observation vectors in the
Converts a vector-form distance vector to a square-form distance matrix, and
vice-versa.
scipy.spatial.distance.pdist (X, metric='euclidean', }p=2,w=None,V=None,VI=None
Computes the pairwise distances between m original observations in n-dimensional space. Returns a condensed distance matrix Y. For each i and j (where $i<j<n$), the metric dist ($\mathrm{u}=\mathrm{X}[\mathrm{i}], \mathrm{v}=\mathrm{X}[j]$) is computed and stored in the :math: ${ }^{\mathrm{ij}}$ 'th entry.

```

See squareform for information on how to calculate the index of this entry or to convert the condensed distance matrix to a redundant square matrix.

The following are common calling conventions.
1.Y = pdist(X, 'euclidean')

Computes the distance between \(m\) points using Euclidean distance (2-norm) as the distance metric between the points. The points are arranged as \(\mathrm{m} n\)-dimensional row vectors in the matrix X .
```

2.Y = pdist(X, 'minkowski', p)

```

Computes the distances using the Minkowski distance \(\|u-v\|_{p}\) (p-norm) where \(p \geq 1\).
```

3.Y = pdist(X, 'cityblock')

```

Computes the city block or Manhattan distance between the points.
```

4.Y = pdist(X, 'seuclidean', V=None)

```

Computes the standardized Euclidean distance. The standardized Euclidean distance between two nvectors \(u\) and \(v\) is
\[
\sqrt{\sum\left(u_{i}-v_{i}\right)^{2} / V\left[x_{i}\right]} .
\]
\(\mathbf{V}\) is the variance vector; \(\mathrm{V}[\mathrm{i}]\) is the variance computed over all
the \(i\) 'th components of the points. If not passed, it is automatically computed.
5.Y = pdist(X, 'sqeuclidean')

Computes the squared Euclidean distance \(\|u-v\|_{2}^{2}\) between the vectors.
6.Y = pdist (X, ' cosine')

Computes the cosine distance between vectors \(u\) and \(v\),
\[
1-\frac{u v^{T}}{|u|_{2}|v|_{2}}
\]
where \(|*| \_2\) is the 2 norm of its argument *.
```

7.Y = pdist(X, 'correlation')

```

Computes the correlation distance between vectors \(u\) and \(v\). This is
\[
1-\frac{(u-\bar{u})(v-\bar{v})^{T}}{|(u-\bar{u})||(v-\bar{v})|^{T}}
\]
where \(\bar{v}\) is the mean of the elements of vector v .
```

8.Y = pdist(X, 'hamming')

```

Computes the normalized Hamming distance, or the proportion of those vector elements between two n -vectors u and v which disagree. To save memory, the matrix X can be of type boolean.
9.Y = pdist(X, 'jaccard')

Computes the Jaccard distance between the points. Given two vectors, \(u\) and \(v\), the Jaccard distance is the proportion of those elements \(u[i]\) and \(v[i]\) that disagree where at least one of them is non-zero.
```

10.Y = pdist(X, 'chebyshev')

```

Computes the Chebyshev distance between the points. The Chebyshev distance between two nvectors \(u\) and \(v\) is the maximum norm- 1 distance between their respective elements. More precisely, the distance is given by
\[
d(u, v)=\max _{i}\left|u_{i}-v_{i}\right| .
\]
11.Y = pdist (X, 'canberra')

Computes the Canberra distance between the points. The Canberra distance between two points \(u\) and \(v\) is
\[
d(u, v)=\sum_{u} \frac{\left|u_{i}-v_{i}\right|}{\left(\left|u_{i}\right|+\left|v_{i}\right|\right)}
\]
```

12.Y = pdist(X, 'braycurtis')

```

Computes the Bray-Curtis distance between the points. The Bray-Curtis distance between two points \(u\) and \(v\) is
\[
d(u, v)=\frac{\sum_{i} u_{i}-v_{i}}{\sum_{i} u_{i}+v_{i}}
\]
13.Y = pdist(X, 'mahalanobis', VI=None)

Computes the Mahalanobis distance between the points. The Mahalanobis distance between two points \(u\) and \(v\) is \((u-v)(1 / V)(u-v)^{T}\) where \((1 / V)\) (the VI variable) is the inverse covariance. If VI is not None, VI will be used as the inverse covariance matrix.
14.Y = pdist (X, 'yule')

Computes the Yule distance between each pair of boolean vectors. (see yule function documentation)
```

15.Y = pdist(X, 'matching')

```

Computes the matching distance between each pair of boolean vectors. (see matching function documentation)
```

16.Y = pdist(X, 'dice')

```

Computes the Dice distance between each pair of boolean vectors. (see dice function documentation)
17.Y = pdist(X, 'kulsinski')

Computes the Kulsinski distance between each pair of boolean vectors. (see kulsinski function documentation)
18.Y = pdist(X, 'rogerstanimoto')

Computes the Rogers-Tanimoto distance between each pair of boolean vectors. (see rogerstanimoto function documentation)
```

19.Y = pdist(X, 'russellrao')

```

Computes the Russell-Rao distance between each pair of boolean vectors. (see russellrao function documentation)
```

20.Y = pdist(X, 'sokalmichener')

```

Computes the Sokal-Michener distance between each pair of boolean vectors. (see sokalmichener function documentation)
21.Y = pdist(X, 'sokalsneath')

Computes the Sokal-Sneath distance between each pair of boolean vectors. (see sokalsneath function documentation)
22.Y = pdist(X, 'wminkowski')

Computes the weighted Minkowski distance between each pair of vectors. (see wminkowski function documentation)
22.Y = pdist(X, f)

Computes the distance between all pairs of vectors in X using the user supplied 2-arity function f . For example, Euclidean distance between the vectors could be computed as follows:
```

dm = pdist(X, (lambda u, v: np.sqrt(((u-v)*(u-v).T).sum())))

```

Note that you should avoid passing a reference to one of the distance functions defined in this library. For example,:
```

dm = pdist(X, sokalsneath)

```
would calculate the pair-wise distances between the vectors in X using the Python function sokalsneath. This would result in sokalsneath being called \(\binom{n}{2}\) times, which is inefficient. Instead, the optimized C version is more efficient, and we call it using the following syntax.:
```

dm = pdist(X, 'sokalsneath')

```

\section*{Parameters}
\(\mathbf{X}\) : ndarray

An m by n array of m original observations in an n -dimensional space.
metric : string or function
The distance metric to use. The distance function can be 'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', ‘russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', ‘sqeuclidean', 'yule'.
\(\mathbf{w}\) : ndarray
The weight vector (for weighted Minkowski).
p : double
The p-norm to apply (for Minkowski, weighted and unweighted)
\(\mathbf{V}\) : ndarray
The variance vector (for standardized Euclidean).
VI : ndarray
The inverse of the covariance matrix (for Mahalanobis).

\section*{Returns}

Y : ndarray
A condensed distance matrix.

\section*{See Also:}
squareform
converts between condensed distance matrices and square distance matrices.
scipy.spatial.distance.cdist ( \(X A, X B\), metric='euclidean', \(p=2, V=\) None, \(V I=\) None, \(w=\) None)
Computes distance between each pair of observation vectors in the Cartesian product of two collections of vectors. XA is a \(m_{A}\) by \(n\) array while XB is a \(m_{B}\) by \(n\) array. A \(m_{A}\) by \(m_{B}\) array is returned. An exception is thrown if XA and \(X B\) do not have the same number of columns.

A rectangular distance matrix \(Y\) is returned. For each \(i\) and \(j\), the metric dist (u=XA[i], v=XB[j]) is computed and stored in the \(i j\) th entry.

The following are common calling conventions:
```

1.Y = cdist(XA, XB, 'euclidean')

```

Computes the distance between \(m\) points using Euclidean distance (2-norm) as the distance metric between the points. The points are arranged as \(m n\)-dimensional row vectors in the matrix X .
2. \(\mathrm{Y}=\operatorname{cdist}(\mathrm{XA}, \mathrm{XB}, \quad\) 'minkowski', p\()\)

Computes the distances using the Minkowski distance \(\|u-v\|_{p}\) ( \(p\)-norm) where \(p \geq 1\).
```

3.Y = cdist(XA, XB, 'Cityblock')

```

Computes the city block or Manhattan distance between the points.
```

4.Y = cdist(XA, XB, 'seuclidean', V=None)

```

Computes the standardized Euclidean distance. The standardized Euclidean distance between two nvectors \(u\) and \(v\) is
\[
\sqrt{\sum\left(u_{i}-v_{i}\right)^{2} / V\left[x_{i}\right]} .
\]
\(\mathbf{V}\) is the variance vector; \(\mathrm{V}[\mathrm{i}]\) is the variance computed over all the \(i\) 'th components of the points. If not passed, it is automatically computed.
```

5.Y = cdist(XA, XB, 'sqeuclidean')

```

Computes the squared Euclidean distance \(\|u-v\|_{2}^{2}\) between the vectors.
6.Y = cdist (XA, XB, ' cosine')

Computes the cosine distance between vectors \(u\) and \(v\),
\[
\frac{1-u v^{T}}{|u|_{2}|v|_{2}}
\]
where \(|*|_{2}\) is the 2-norm of its argument *.
```

7.Y = cdist(XA, XB, 'correlation')

```

Computes the correlation distance between vectors \(u\) and \(v\). This is
\[
\frac{1-\left(u-n|u|_{1}\right)\left(v-n|v|_{1}\right)^{T}}{\left|\left(u-n|u|_{1}\right)\right|_{2}\left|\left(v-n|v|_{1}\right)\right|^{T}}
\]
where \(|*|_{1}\) is the Manhattan (or 1-norm) of its argument, and \(n\) is the common dimensionality of the vectors.
8.Y = cdist (XA, XB, 'hamming')

Computes the normalized Hamming distance, or the proportion of those vector elements between two n -vectors u and v which disagree. To save memory, the matrix X can be of type boolean.
9.Y = cdist (XA, XB, ' jaccard')

Computes the Jaccard distance between the points. Given two vectors, \(u\) and \(v\), the Jaccard distance is the proportion of those elements \(u[i]\) and \(v[i]\) that disagree where at least one of them is non-zero.
```

10.Y = cdist(XA, XB, 'chebyshev')

```

Computes the Chebyshev distance between the points. The Chebyshev distance between two n vectors \(u\) and \(v\) is the maximum norm- 1 distance between their respective elements. More precisely, the distance is given by
\[
d(u, v)=\max _{i}\left|u_{i}-v_{i}\right| .
\]
\(11 . Y=\) cdist (XA, XB, 'canberra')
Computes the Canberra distance between the points. The Canberra distance between two points \(u\) and \(v\) is
\[
d(u, v)=\sum_{u} \frac{\left|u_{i}-v_{i}\right|}{\left(\left|u_{i}\right|+\left|v_{i}\right|\right)}
\]
```

12.Y = cdist(XA, XB, 'braycurtis')

```

Computes the Bray-Curtis distance between the points. The Bray-Curtis distance between two points \(u\) and \(v\) is
\[
d(u, v)=\frac{\sum_{i}\left(u_{i}-v_{i}\right)}{\sum_{i}\left(u_{i}+v_{i}\right)}
\]
13.Y = cdist(XA, XB, 'mahalanobis', VI=None)

Computes the Mahalanobis distance between the points. The Mahalanobis distance between two points \(u\) and \(v\) is \((u-v)(1 / V)(u-v)^{T}\) where \((1 / V)\) (the VI variable) is the inverse covariance. If VI is not None, VI will be used as the inverse covariance matrix.
```

14.Y = cdist(XA, XB, 'yule')

```

Computes the Yule distance between the boolean vectors. (see yule function documentation)
```

15.Y = cdist(XA, XB, 'matching')

```

Computes the matching distance between the boolean vectors. (see matching function documentation)
16.Y = cdist(XA, XB, 'dice')

Computes the Dice distance between the boolean vectors. (see dice function documentation)
17.Y = cdist(XA, XB, 'kulsinski')

Computes the Kulsinski distance between the boolean vectors. (see kulsinski function documentation)
\(18 . Y=\) cdist (XA, XB, 'rogerstanimoto')
Computes the Rogers-Tanimoto distance between the boolean vectors. (see rogerstanimoto function documentation)
19.Y = cdist (XA, XB, 'russellrao')

Computes the Russell-Rao distance between the boolean vectors. (see russellrao function documentation)
20.Y = cdist (XA, XB, 'sokalmichener')

Computes the Sokal-Michener distance between the boolean vectors. (see sokalmichener function documentation)
21.Y = cdist (XA, XB, 'sokalsneath')

Computes the Sokal-Sneath distance between the vectors. (see sokalsneath function documentation)
22.Y = cdist (XA, XB, 'wminkowski')

Computes the weighted Minkowski distance between the vectors. (see sokalsneath function documentation)
23.Y = cdist (XA, XB, f)

Computes the distance between all pairs of vectors in X using the user supplied 2-arity function f . For example, Euclidean distance between the vectors could be computed as follows:
```

dm = cdist(XA, XB, (lambda u, v: np.sqrt(((u-v) *(u-v).T).sum())))

```

Note that you should avoid passing a reference to one of the distance functions defined in this library. For example,:
```

dm = cdist(XA, XB, sokalsneath)

```
would calculate the pair-wise distances between the vectors in X using the Python function sokalsneath. This would result in sokalsneath being called \(\binom{n}{2}\) times, which is inefficient. Instead, the optimized C version is more efficient, and we call it using the following syntax.:
```

dm = cdist(XA, XB, 'sokalsneath')

```

\section*{Parameters}

XA : ndarray
An \(m_{A}\) by \(n\) array of \(m_{A}\) original observations in an \(n\)-dimensional space.
\(\mathbf{X B}\) : ndarray
An \(m_{B}\) by \(n\) array of \(m_{B}\) original observations in an \(n\)-dimensional space.
metric : string or function
The distance metric to use. The distance function can be 'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'wminkowski', 'yule'.
\(\mathbf{w}\) : ndarray
The weight vector (for weighted Minkowski).
\(\mathbf{p}\) : double
The p-norm to apply (for Minkowski, weighted and unweighted)
\(\mathbf{V}\) : ndarray
The variance vector (for standardized Euclidean).
VI : ndarray
The inverse of the covariance matrix (for Mahalanobis).

\section*{Returns}

Y: ndarray
A \(m_{A}\) by \(m_{B}\) distance matrix.
scipy.spatial.distance.squareform ( \(X\), force='no', checks=True)
Converts a vector-form distance vector to a square-form distance matrix, and vice-versa.

\section*{Parameters}
\(\mathbf{X}\) : ndarray
Either a condensed or redundant distance matrix.

\section*{Returns}

Y: ndarray
If a condensed distance matrix is passed, a redundant one is returned, or if a redundant one is passed, a condensed distance matrix is returned.

\section*{force}
[string] As with MATLAB(TM), if force is equal to 'tovector' or 'tomatrix', the input will be treated as a distance matrix or distance vector respectively.

\section*{checks}
[bool] If checks is set to False, no checks will be made for matrix symmetry nor zero diagonals. This is useful if it is known that \(\mathrm{X}-\mathrm{X} . \mathrm{T1}\) is small and diag ( X ) is close to zero. These values are ignored any way so they do not disrupt the squareform transformation.

Predicates for checking the validity of distance matrices, both condensed and redundant. Also contained in this module are functions for computing the number of observations in a distance matrix.
\begin{tabular}{ll}
\hline is_valid_dm(D[, tol, throw, name, warning]) & Returns True if the variable D passed is a valid distance matrix. \\
is_valid_y \((y[\), warning, throw, name] \()\) & Returns True if the variable y passed is a valid condensed \\
num_obs_dm(d) & Returns the number of original observations that correspond to a \\
num_obs_y(Y) & Returns the number of original observations that correspond to a \\
\hline
\end{tabular}
scipy.spatial.distance.is_valid_dm ( \(D\), tol \(=0.0\), throw \(=\) False, name \(=\) ' \(D\) ', warning \(=\) False )
Returns True if the variable D passed is a valid distance matrix. Distance matrices must be 2-dimensional numpy arrays containing doubles. They must have a zero-diagonal, and they must be symmetric.

\section*{Parameters}

D : ndarray
The candidate object to test for validity.
tol : double
The distance matrix should be symmetric. tol is the maximum difference between the :math: \(\mathrm{ij}^{\mathrm{ij}}\) 'th entry and the :math: ji ' th entry for the distance metric to be considered symmetric.
throw : bool
An exception is thrown if the distance matrix passed is not valid.
name : string
the name of the variable to checked. This is useful ifa throw is set to True so the offending variable can be identified in the exception message when an exception is thrown.
warning : boolx
Instead of throwing an exception, a warning message is raised.

\section*{Returns}

Returns "True" if the variable "D" passed is a valid :
distance matrix. Small numerical differences in " \(D\) " and :
"D.T" and non-zeroness of the diagonal are ignored if they are :
within the tolerance specified by "tol". :
```

scipy.spatial.distance.is_valid_y (y,warning=False, throw=False, name=None)

```

Returns True if the variable y passed is a valid condensed distance matrix. Condensed distance matrices must be 1-dimensional numpy arrays containing doubles. Their length must be a binomial coefficient \(\binom{n}{2}\) for some positive integer n .

\section*{Parameters}
y : ndarray

The condensed distance matrix.
warning : bool, optional
Invokes a warning if the variable passed is not a valid condensed distance matrix. The warning message explains why the distance matrix is not valid. 'name' is used when referencing the offending variable.
throws : throw, optional
Throws an exception if the variable passed is not a valid condensed distance matrix.
name : bool, optional
Used when referencing the offending variable in the warning or exception message.
scipy.spatial.distance. num_obs_dm (d)
Returns the number of original observations that correspond to a square, redudant distance matrix \(D\).
Parameters
d : ndarray
The target distance matrix.

\section*{Returns}
numobs : int
The number of observations in the redundant distance matrix.
scipy.spatial.distance.num_obs_y \((Y)\)
Returns the number of original observations that correspond to a condensed distance matrix Y.

\section*{Parameters}

Y: ndarray
The number of original observations in the condensed observation \(Y\).

\section*{Returns}
\(\mathbf{n}\) : int
The number of observations in the condensed distance matrix passed.
Distance functions between two vectors \(u\) and \(v\). Computing distances over a large collection of vectors is inefficient for these functions. Use pdist for this purpose.
\begin{tabular}{|c|c|}
\hline braycurtis(u, v) & Computes the Bray-Curtis distance between two \(n\)-vectors \(u\) and \\
\hline canberra(u, v) & Computes the Canberra distance between two n-vectors \(u\) and \(v\), \\
\hline chebyshev(u, v) & Computes the Chebyshev distance between two n -vectors u and v , \\
\hline cityblock(u, v) & Computes the Manhattan distance between two n-vectors \(u\) and v, \\
\hline correlation(u, v) & Computes the correlation distance between two \(n\)-vectors \(u\) and \(v\), which is defined as .. \\
\hline cosine(u, v) & Computes the Cosine distance between two n-vectors \(u\) and \(v\), which \\
\hline dice(u, v) & Computes the Dice dissimilarity between two boolean n-vectors \\
\hline euclidean(u, v) & Computes the Euclidean distance between two n-vectors \(u\) and v, \\
\hline hamming(u, v) & Computes the Hamming distance between two n-vectors \(u\) and \\
\hline jaccard(u, v) & Computes the Jaccard-Needham dissimilarity between two boolean \\
\hline kulsinski(u, v) & Computes the Kulsinski dissimilarity between two boolean n-vectors \\
\hline mahalanobis(u, v, VI) & Computes the Mahalanobis distance between two n-vectors \(u\) and \(v\), \\
\hline matching(u, v) & Computes the Matching dissimilarity between two boolean n -vectors \\
\hline minkowski(u, v, p) & Computes the Minkowski distance between two vectors \(u\) and \(v\), \\
\hline rogerstanimoto(u, v) & Computes the Rogers-Tanimoto dissimilarity between two boolean \\
\hline russellrao(u, v) & Computes the Russell-Rao dissimilarity between two boolean n-vectors \\
\hline seuclidean(u, v, V) & Returns the standardized Euclidean distance between two n-vectors \\
\hline sokalmichener(u, v) & Computes the Sokal-Michener dissimilarity between two boolean vectors \\
\hline sokalsneath(u, v) & Computes the Sokal-Sneath dissimilarity between two boolean vectors \\
\hline sqeuclidean(u, v) & Computes the squared Euclidean distance between two n-vectors u and v, \\
\hline yule(u, v) & Computes the Yule dissimilarity between two boolean \(n\)-vectors \(u\) and v, \\
\hline
\end{tabular}
scipy.spatial.distance.braycurtis ( \(u, v\) )
Computes the Bray-Curtis distance between two \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\sum\left|u_{i}-v_{i}\right| / \sum\left|u_{i}+v_{i}\right|
\]

Parameters
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Bray-Curtis distance between vectors \(u\) and \(v\).
scipy.spatial.distance.canberra ( \(u, v\) )
Computes the Canberra distance between two \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\frac{\sum_{i}\left|u_{i}-v_{i}\right|}{\sum_{i}\left|u_{i}\right|+\left|v_{i}\right|}
\]

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Canberra distance between vectors \(u\) and \(v\).
scipy.spatial.distance. chebyshev ( \(u, v\) )
Computes the Chebyshev distance between two \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\max _{i}\left|u_{i}-v_{i}\right|
\]

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Chebyshev distance between vectors \(u\) and \(v\).
scipy.spatial.distance. cityblock ( \(u, v\) )
Computes the Manhattan distance between two \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\sum_{i}\left(u_{i}-v_{i}\right)
\]

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The City Block distance between vectors \(u\) and \(v\).
scipy.spatial.distance.correlation ( \(u, v\) )
Computes the correlation distance between two \(n\)-vectors \(u\) and \(v\), which is defined as
\[
1-\operatorname{frac}(u-\bar{u})(v-\bar{v})^{T}\|(u-\bar{u})\|_{2}\|(v-\bar{v})\|_{2}^{T}
\]
where \(\bar{u}\) is the mean of a vectors elements and n is the common dimensionality of u and v .

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The correlation distance between vectors \(u\) and \(v\).
scipy.spatial.distance.cosine ( \(u, v\) )
Computes the Cosine distance between two \(n\)-vectors \(u\) and \(v\), which is defined as
\[
1-\frac{u v^{T}}{\|u\|_{2}\|v\|_{2}}
\]

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Cosine distance between vectors \(u\) and \(v\).
scipy.spatial.distance.dice ( \(u, v\) )
Computes the Dice dissimilarity between two boolean \(n\)-vectors \(u\) and \(v\), which is
\[
\frac{c_{T F}+c_{F T}}{2 c_{T T}+c_{F T}+c_{T F}}
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n\).

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Dice dissimilarity between vectors \(u\) and \(v\).
scipy.spatial.distance.euclidean ( \(u, v\) )
Computes the Euclidean distance between two \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\|u-v\|_{2}
\]

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Euclidean distance between vectors \(u\) and \(v\).
scipy.spatial.distance. hamming ( \(u, v\) )
Computes the Hamming distance between two \(n\)-vectors \(u\) and \(v\), which is simply the proportion of disagreeing components in \(u\) and \(v\). If \(u\) and \(v\) are boolean vectors, the Hamming distance is
\[
\frac{c_{01}+c_{10}}{n}
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n\).
Parameters
\(\mathbf{u}\) : ndarray

An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Hamming distance between vectors \(u\) and \(v\).
scipy.spatial.distance.jaccard ( \(u, v\) )
Computes the Jaccard-Needham dissimilarity between two boolean \(n\)-vectors \(u\) and \(v\), which is
\[
\operatorname{racc}_{T F}+c_{F T} c_{T T}+c_{F T}+c_{T F}
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n\).
Parameters
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d: double
The Jaccard distance between vectors \(u\) and \(v\).
scipy.spatial.distance.kulsinski (u,v)
Computes the Kulsinski dissimilarity between two boolean \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\operatorname{racc}_{T F}+c_{F T}-c_{T T}+n c_{F T}+c_{T F}+n
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n\).

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Kulsinski distance between vectors \(u\) and \(v\).
scipy.spatial.distance.mahalanobis ( \(u, v, V I\) )
Computes the Mahalanobis distance between two \(n\)-vectors \(u\) and \(v\), which is defiend as
\[
(u-v) V^{-1}(u-v)^{T}
\]
where VI is the inverse covariance matrix \(V^{-1}\).

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray

An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Mahalanobis distance between vectors \(u\) and \(v\).
scipy.spatial.distance.matching (u,v)
Computes the Matching dissimilarity between two boolean \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\frac{c_{T F}+c_{F T}}{n}
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n\).

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Matching dissimilarity between vectors \(u\) and \(v\).
scipy.spatial.distance.minkowski \((u, v, p)\)
Computes the Minkowski distance between two vectors \(u\) and \(v\), defined as
\[
\|u-v\|_{p}=\left(\sum\left|u_{i}-v_{i}\right|^{p}\right)^{1 / p}
\]

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An n-dimensional vector.
\(\mathbf{v}\) : ndarray
An n-dimensional vector.
p : ndarray
The norm of the difference \(\|u-v\|_{p}\).

\section*{Returns}
d: double
The Minkowski distance between vectors \(u\) and \(v\).
scipy.spatial.distance.rogerstanimoto ( \(u, v\) )
Computes the Rogers-Tanimoto dissimilarity between two boolean \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\frac{R}{c_{T T}+c_{F F}+R}
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n\) and \(R=2\left(c_{T F}+c_{F T}\right)\).

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Rogers-Tanimoto dissimilarity between vectors \(u\) and \(v\).
scipy.spatial.distance.russellrao ( \(u, v\) )
Computes the Russell-Rao dissimilarity between two boolean \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\frac{n-c_{T T}}{n}
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n\).

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Russell-Rao dissimilarity between vectors \(u\) and \(v\).
scipy.spatial.distance.seuclidean ( \(u, v, V\) )
Returns the standardized Euclidean distance between two n-vectors \(u\) and \(v . \mathrm{V}\) is an m-dimensional vector of component variances. It is usually computed among a larger collection vectors.

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d: double
The standardized Euclidean distance between vectors \(u\) and \(v\).
scipy.spatial.distance.sokalmichener ( \(u, v\) )
Computes the Sokal-Michener dissimilarity between two boolean vectors \(u\) and \(v\), which is defined as
\[
\frac{R}{S+R}
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n, R=2 *\left(c_{T F}+c_{F T}\right)\) and \(S=c_{F F}+c_{T T}\).

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Sokal-Michener dissimilarity between vectors \(u\) and \(v\).
scipy.spatial.distance.sokalsneath \((u, v)\)
Computes the Sokal-Sneath dissimilarity between two boolean vectors \(u\) and \(v\),
\[
\frac{R}{c_{T T}+R}
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n\) and \(R=2\left(c_{T F}+c_{F T}\right)\).

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Sokal-Sneath dissimilarity between vectors \(u\) and \(v\).
scipy.spatial.distance.sqeuclidean ( \(u, v\) )
Computes the squared Euclidean distance between two n-vectors \(u\) and \(v\), which is defined as
\[
\|u-v\|_{2}^{2} .
\]

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The squared Euclidean distance between vectors \(u\) and \(v\).
scipy.spatial.distance. yule (u,v)
Computes the Yule dissimilarity between two boolean \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\frac{R}{c_{T T}+c_{F F}+\frac{R}{2}}
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n\) and \(R=2.0 *\left(c_{T F}+c_{F T}\right)\).

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Yule dissimilarity between vectors \(u\) and \(v\).

\section*{References}

\section*{Copyright Notice}

Copyright (C) Damian Eads, 2007-2008. New BSD License.
Functions
\begin{tabular}{|c|c|}
\hline braycurtis(u, v) & Computes the Bray-Curtis distance between two n-vectors \(u\) and \\
\hline canberra(u, v) & Computes the Canberra distance between two \(n\)-vectors \(u\) and \(v\), \\
\hline cdist(XA, XB[, metric, p, V, VI, w]) & Computes distance between each pair of observation vectors in the \\
\hline chebyshev(u, v) & Computes the Chebyshev distance between two n-vectors \(u\) and \(v\), \\
\hline cityblock(u, v) & Computes the Manhattan distance between two n-vectors u and v , \\
\hline correlation(u, v) & Computes the correlation distance between two \(n\)-vectors \(u\) and \(v\), which is defined as .. \\
\hline cosine(u, v) & Computes the Cosine distance between two n-vectors \(u\) and \(v\), which \\
\hline dice(u, v) & Computes the Dice dissimilarity between two boolean n-vectors \\
\hline euclidean(u, v) & Computes the Euclidean distance between two n-vectors \(u\) and v, \\
\hline hamming(u, v) & Computes the Hamming distance between two n-vectors \(u\) and \\
\hline is_valid_dm(D[, tol, throw, name, warning]) & Returns True if the variable D passed is a valid distance matrix. \\
\hline is_valid_y(y[, warning, throw, name]) & Returns True if the variable y passed is a valid condensed \\
\hline jaccard(u, v) & Computes the Jaccard-Needham dissimilarity between two boolean \\
\hline kulsinski(u, v) & Computes the Kulsinski dissimilarity between two boolean n -vectors \\
\hline mahalanobis(u, v, VI) & Computes the Mahalanobis distance between two n-vectors \(u\) and v, \\
\hline matching(u, v) & Computes the Matching dissimilarity between two boolean n -vectors \\
\hline minkowski(u, v, p) & Computes the Minkowski distance between two vectors \(u\) and \(v\), \\
\hline num_obs_dm(d) & Returns the number of original observations that correspond to a \\
\hline num_obs_y (Y) & Returns the number of original observations that correspond to a \\
\hline pdist(X[, metric, p, w, V, VI]) & Computes the pairwise distances between m original observations in n-dimensional space. \\
\hline rogerstanimoto(u, v) & Computes the Rogers-Tanimoto dissimilarity between two boolean \\
\hline russellrao(u, v) & Computes the Russell-Rao dissimilarity between two boolean n-vectors \\
\hline seuclidean(u, v, V) & Returns the standardized Euclidean distance between two n-vectors \\
\hline sokalmichener(u, v) & Computes the Sokal-Michener dissimilarity between two boolean vectors \\
\hline sokalsneath(u, v) & Computes the Sokal-Sneath dissimilarity between two boolean vectors \\
\hline sqeuclidean(u, v) & Computes the squared Euclidean distance between two n-vectors u and v, \\
\hline squareform(X[, force, checks]) & Converts a vector-form distance vector to a square-form distance matrix, and vice-versa. \\
\hline wminkowski(u, v, p, w) & Computes the weighted Minkowski distance between two vectors \(u\) \\
\hline yule(u, v) & Computes the Yule dissimilarity between two boolean n-vectors \(u\) and \(v\), \\
\hline
\end{tabular}

Delaunay triangulation:
\begin{tabular}{ll}
\hline Delaunay(points) & Delaunay tesselation in N dimensions \\
tsearch(tri, xi) & Find simplices containing the given points. \\
\hline
\end{tabular}
class scipy.spatial.Delaunay (points)
Delaunay tesselation in N dimensions New in version 0.9.
Parameters
points : ndarray of floats, shape (npoints, ndim)
Coordinates of points to triangulate

\section*{Notes}

The tesselation is computed using the Qhull libary [Qhull].

\section*{References}
[Qhull]

\section*{Attributes}
```

transform
vertex_to_simplex
convex_hull

```
\begin{tabular}{|l|l|l|}
\hline points & \begin{tabular}{l} 
ndarray of double, \\
shape (npoints, \\
ndim) \\
ndarray of ints, \\
shape (nsimplex, \\
ndim+1) \\
ndarray of ints, \\
shape (nsimplex, \\
ndim+1) \\
ndarray of double, \\
nhape (nsimplex, \\
ndim+2)
\end{tabular} & \begin{tabular}{l} 
Indices of vertices forming simplices in the triangulation \\
ns opposite to the kth vertex. For simplices at the boundary, -1 \\
is onotes no neighbor. \\
[normal, offset] forming the hyperplane equation of the facet on \\
the paraboloid. (See [Qhull] documentation for more.)
\end{tabular} \\
equations & \begin{tabular}{l} 
Indices of neighbor simplices for each simplex. The kth neighbor \\
paraboloid_scale, \\
float
\end{tabular} & \begin{tabular}{l} 
Scale and shift for the extra paraboloid dimension. (See [Qhull] \\
documentation for more.)
\end{tabular} \\
\hline
\end{tabular}

\section*{Methods}
```

find_simplex
lift_points
plane_distance

```
scipy.spatial.tsearch (tri, xi)
Find simplices containing the given points. This function does the same thing as Delaunay.find_simplex. New in version 0.9.

\section*{See Also:}

Delaunay.find_simplex

\subsection*{3.17 Distance computations (scipy.spatial.distance)}

\subsection*{3.17.1 Function Reference}

Distance matrix computation from a collection of raw observation vectors stored in a rectangular array.
\begin{tabular}{ll}
\hline pdist(X[, metric, p,w, V, VI]) & \begin{tabular}{l} 
Computes the pairwise distances between \(m\) original observations in \\
n-dimensional space.
\end{tabular} \\
\begin{tabular}{ll} 
cdist (XA, XB[, metric, p, V, \\
VI, w] \()\)
\end{tabular} & Computes distance between each pair of observation vectors in the \\
\begin{tabular}{l} 
squareform(X[, force, \\
checks] \()\)
\end{tabular} & \begin{tabular}{l} 
Converts a vector-form distance vector to a square-form distance matrix, and \\
vice-versa.
\end{tabular} \\
\hline
\end{tabular}
scipy.spatial.distance.pdist ( \(X\), metric='euclidean', \(p=2, w=N o n e, V=N o n e, V I=N o n e\) )
Computes the pairwise distances between \(m\) original observations in \(n\)-dimensional space. Returns a condensed distance matrix Y. For each \(i\) and \(j\) (where \(i<j<n\) ), the metric dist ( \(\mathrm{u}=\mathrm{X}[\mathrm{i}], \mathrm{v}=\mathrm{X}[j]\) ) is computed and stored in the :math: \({ }^{\mathrm{ij}}\) 'th entry.
See squareform for information on how to calculate the index of this entry or to convert the condensed distance matrix to a redundant square matrix.

The following are common calling conventions.
1.Y = pdist(X, 'euclidean')

Computes the distance between m points using Euclidean distance (2-norm) as the distance metric between the points. The points are arranged as m n-dimensional row vectors in the matrix X .
2.Y = pdist (X, 'minkowski', p )

Computes the distances using the Minkowski distance \(\|u-v\|_{p}\) (p-norm) where \(p \geq 1\).
```

3.Y = pdist(X, 'cityblock')

```

Computes the city block or Manhattan distance between the points.
```

4.Y = pdist(X, 'seuclidean', V=None)

```

Computes the standardized Euclidean distance. The standardized Euclidean distance between two nvectors \(u\) and \(v\) is
\[
\sqrt{\sum\left(u_{i}-v_{i}\right)^{2} / V\left[x_{i}\right]}
\]
\(V\) is the variance vector; \(V[i]\) is the variance computed over all
the i'th components of the points. If not passed, it is automatically computed.
5.Y = pdist (X, 'sqeuclidean')

Computes the squared Euclidean distance \(\|u-v\|_{2}^{2}\) between the vectors.
6.Y = pdist (X, ' cosine')

Computes the cosine distance between vectors \(u\) and \(v\),
\[
1-\frac{u v^{T}}{|u|_{2}|v|_{2}}
\]
where \(|*| \_2\) is the 2 norm of its argument *.
7.Y = pdist(X, 'correlation')

Computes the correlation distance between vectors \(u\) and \(v\). This is
\[
1-\frac{(u-\bar{u})(v-\bar{v})^{T}}{|(u-\bar{u})||(v-\bar{v})|^{T}}
\]
where \(\bar{v}\) is the mean of the elements of vector v .
8.Y = pdist (X, 'hamming')

Computes the normalized Hamming distance, or the proportion of those vector elements between two \(n\)-vectors \(u\) and \(v\) which disagree. To save memory, the matrix \(X\) can be of type boolean.
9.Y = pdist (X, 'jaccard')

Computes the Jaccard distance between the points. Given two vectors, u and v, the Jaccard distance is the proportion of those elements \(u\) [i] and \(v[i]\) that disagree where at least one of them is non-zero.
```

10.Y = pdist(X, 'chebyshev')

```

Computes the Chebyshev distance between the points. The Chebyshev distance between two nvectors \(u\) and \(v\) is the maximum norm- 1 distance between their respective elements. More precisely, the distance is given by
\[
d(u, v)=\max _{i}\left|u_{i}-v_{i}\right| .
\]
11.Y = pdist (X, 'canberra')

Computes the Canberra distance between the points. The Canberra distance between two points \(u\) and \(v\) is
\[
d(u, v)=\sum_{u} \frac{\left|u_{i}-v_{i}\right|}{\left(\left|u_{i}\right|+\left|v_{i}\right|\right)}
\]
12.Y = pdist(X, 'braycurtis')

Computes the Bray-Curtis distance between the points. The Bray-Curtis distance between two points \(u\) and \(v\) is
\[
d(u, v)=\frac{\sum_{i} u_{i}-v_{i}}{\sum_{i} u_{i}+v_{i}}
\]
13.Y \(=\) pdist(X, 'mahalanobis', VI=None)

Computes the Mahalanobis distance between the points. The Mahalanobis distance between two points \(u\) and \(v\) is \((u-v)(1 / V)(u-v)^{T}\) where \((1 / V)\) (the VI variable) is the inverse covariance. If VI is not None, VI will be used as the inverse covariance matrix.
\(14 . Y=\) pdist (X, 'yule')
Computes the Yule distance between each pair of boolean vectors. (see yule function documentation)
15.Y = pdist (X, 'matching')

Computes the matching distance between each pair of boolean vectors. (see matching function documentation)
\(16 . Y=\) pdist (X, 'dice')
Computes the Dice distance between each pair of boolean vectors. (see dice function documentation)
17.Y = pdist(X, 'kulsinski')

Computes the Kulsinski distance between each pair of boolean vectors. (see kulsinski function documentation)
```

18.Y = pdist(X, 'rogerstanimoto')

```

Computes the Rogers-Tanimoto distance between each pair of boolean vectors. (see rogerstanimoto function documentation)
```

19.Y = pdist(X, 'russellrao')

```

Computes the Russell-Rao distance between each pair of boolean vectors. (see russellrao function documentation)
```

20.Y = pdist(X, 'sokalmichener')

```

Computes the Sokal-Michener distance between each pair of boolean vectors. (see sokalmichener function documentation)
21.Y = pdist(X, 'sokalsneath')

Computes the Sokal-Sneath distance between each pair of boolean vectors. (see sokalsneath function documentation)
```

22.Y = pdist(X, 'wminkowski')

```

Computes the weighted Minkowski distance between each pair of vectors. (see wminkowski function documentation)
22.Y \(=\operatorname{pdist}(X, f)\)

Computes the distance between all pairs of vectors in X using the user supplied 2-arity function f . For example, Euclidean distance between the vectors could be computed as follows:
```

dm = pdist(X, (lambda u, v: np.sqrt(((u-v)*(u-v).T).sum())))

```

Note that you should avoid passing a reference to one of the distance functions defined in this library. For example,:
```

dm = pdist(X, sokalsneath)

```
would calculate the pair-wise distances between the vectors in X using the Python function sokalsneath. This would result in sokalsneath being called \(\binom{n}{2}\) times, which is inefficient. Instead, the optimized C version is more efficient, and we call it using the following syntax.:
```

dm = pdist(X, 'sokalsneath')

```

\section*{Parameters}

X : ndarray
An m by \(n\) array of \(m\) original observations in an \(n\)-dimensional space.
metric : string or function
The distance metric to use. The distance function can be 'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine’, 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', ‘sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'.
\(\mathbf{w}\) : ndarray
The weight vector (for weighted Minkowski).
\(\mathbf{p}\) : double
The p-norm to apply (for Minkowski, weighted and unweighted)
V : ndarray
The variance vector (for standardized Euclidean).

VI : ndarray
The inverse of the covariance matrix (for Mahalanobis).

\section*{Returns}

Y: ndarray
A condensed distance matrix.

\section*{See Also:}
squareform
converts between condensed distance matrices and square distance matrices.
scipy.spatial.distance.cdist ( \(X A, X B\), metric='euclidean', \(p=2, V=N o n e, V I=N o n e, w=N o n e)\)
Computes distance between each pair of observation vectors in the Cartesian product of two collections of vectors. XA is a \(m_{A}\) by \(n\) array while XB is a \(m_{B}\) by \(n\) array. A \(m_{A}\) by \(m_{B}\) array is returned. An exception is thrown if XA and XB do not have the same number of columns.

A rectangular distance matrix \(Y\) is returned. For each \(i\) and \(j\), the metric dist ( \(u=X A[i], v=X B[j]\) ) is computed and stored in the \(i j\) th entry.

The following are common calling conventions:
1.Y = cdist (XA, XB, 'euclidean')

Computes the distance between \(m\) points using Euclidean distance (2-norm) as the distance metric between the points. The points are arranged as \(m n\)-dimensional row vectors in the matrix X .
```

2.Y = cdist(XA, XB, 'minkowski', p)

```

Computes the distances using the Minkowski distance \(\|u-v\|_{p}\) ( \(p\)-norm) where \(p \geq 1\).
```

3.Y = cdist(XA, XB, 'cityblock')

```

Computes the city block or Manhattan distance between the points.
```

4.Y = cdist(XA, XB, 'seuclidean', V=None)

```

Computes the standardized Euclidean distance. The standardized Euclidean distance between two nvectors \(u\) and \(v\) is
\[
\sqrt{\sum\left(u_{i}-v_{i}\right)^{2} / V\left[x_{i}\right]} .
\]
\(\mathbf{V}\) is the variance vector; \(\mathrm{V}[\mathrm{i}]\) is the variance computed over all
the i'th components of the points. If not passed, it is automatically computed.
5.Y = cdist (XA, XB, 'sqeuclidean')

Computes the squared Euclidean distance \(\|u-v\|_{2}^{2}\) between the vectors.
6.Y = cdist (XA, XB, 'cosine')

Computes the cosine distance between vectors \(u\) and \(v\),
\[
\frac{1-u v^{T}}{|u|_{2}|v|_{2}}
\]
where \(|*|_{2}\) is the 2-norm of its argument *.

> 7.Y = cdist (XA, XB, 'correlation')

Computes the correlation distance between vectors \(u\) and \(v\). This is
\[
\frac{1-\left(u-n|u|_{1}\right)\left(v-n|v|_{1}\right)^{T}}{\left|\left(u-n|u|_{1}\right)\right|_{2}\left|\left(v-n|v|_{1}\right)\right|^{T}}
\]
where \(|*|_{1}\) is the Manhattan (or 1-norm) of its argument, and \(n\) is the common dimensionality of the vectors.
8.Y \(=\) cdist (XA, XB, 'hamming')

Computes the normalized Hamming distance, or the proportion of those vector elements between two \(n\)-vectors \(u\) and \(v\) which disagree. To save memory, the matrix \(X\) can be of type boolean.
```

9.Y = cdist(XA, XB, 'jaccard')

```

Computes the Jaccard distance between the points. Given two vectors, u and v, the Jaccard distance is the proportion of those elements \(u[i]\) and \(v[i]\) that disagree where at least one of them is non-zero.
```

10.Y = cdist(XA, XB, 'chebyshev')

```

Computes the Chebyshev distance between the points. The Chebyshev distance between two nvectors \(u\) and \(v\) is the maximum norm- 1 distance between their respective elements. More precisely, the distance is given by
\[
d(u, v)=\max _{i}\left|u_{i}-v_{i}\right| .
\]
```

11.Y = cdist(XA, XB, 'canberra')

```

Computes the Canberra distance between the points. The Canberra distance between two points \(u\) and \(v\) is
\[
d(u, v)=\sum_{u} \frac{\left|u_{i}-v_{i}\right|}{\left(\left|u_{i}\right|+\left|v_{i}\right|\right)}
\]
12.Y = cdist (XA, XB, 'braycurtis')

Computes the Bray-Curtis distance between the points. The Bray-Curtis distance between two points \(u\) and \(v\) is
\[
d(u, v)=\frac{\sum_{i}\left(u_{i}-v_{i}\right)}{\sum_{i}\left(u_{i}+v_{i}\right)}
\]
13.Y = cdist (XA, XB, 'mahalanobis', VI=None)

Computes the Mahalanobis distance between the points. The Mahalanobis distance between two points \(u\) and \(v\) is \((u-v)(1 / V)(u-v)^{T}\) where \((1 / V)\) (the VI variable) is the inverse covariance. If VI is not None, VI will be used as the inverse covariance matrix.
14.Y = cdist (XA, XB, 'yule')

Computes the Yule distance between the boolean vectors. (see yule function documentation)
15.Y = cdist (XA, XB, 'matching')

Computes the matching distance between the boolean vectors. (see matching function documentation)
\(16 . Y=\) cdist (XA, XB, 'dice')
Computes the Dice distance between the boolean vectors. (see dice function documentation)
17.Y = cdist(XA, XB, 'kulsinski')

Computes the Kulsinski distance between the boolean vectors. (see kulsinski function documentation)
\(18 . Y=\) cdist (XA, XB, 'rogerstanimoto')
Computes the Rogers-Tanimoto distance between the boolean vectors. (see rogerstanimoto function documentation)
```

19.Y = cdist(XA, XB, 'russellrao')

```

Computes the Russell-Rao distance between the boolean vectors. (see russellrao function documentation)
20.Y = cdist (XA, XB, 'sokalmichener')

Computes the Sokal-Michener distance between the boolean vectors. (see sokalmichener function documentation)
\(21 . Y=\) cdist (XA, XB, 'sokalsneath')
Computes the Sokal-Sneath distance between the vectors. (see sokalsneath function documentation)
22. \(\mathrm{Y}=\) cdist (XA, XB, 'wminkowski')

Computes the weighted Minkowski distance between the vectors. (see sokalsneath function documentation)
23.Y = cdist (XA, XB, f)

Computes the distance between all pairs of vectors in X using the user supplied 2-arity function f . For example, Euclidean distance between the vectors could be computed as follows:
```

dm = cdist(XA, XB, (lambda u, v: np.sqrt(((u-v)*(u-v).T).sum())))

```

Note that you should avoid passing a reference to one of the distance functions defined in this library. For example,:
```

dm = cdist(XA, XB, sokalsneath)

```
would calculate the pair-wise distances between the vectors in X using the Python function sokalsneath. This would result in sokalsneath being called \(\binom{n}{2}\) times, which is inefficient. Instead, the optimized C version is more efficient, and we call it using the following syntax.:
```

dm = cdist(XA, XB, 'sokalsneath')

```

\section*{Parameters}

XA : ndarray
An \(m_{A}\) by \(n\) array of \(m_{A}\) original observations in an \(n\)-dimensional space.

XB : ndarray
An \(m_{B}\) by \(n\) array of \(m_{B}\) original observations in an \(n\)-dimensional space.
metric : string or function
The distance metric to use. The distance function can be 'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'wminkowski', 'yule'.
\(\mathbf{w}\) : ndarray
The weight vector (for weighted Minkowski).
\(\mathbf{p}\) : double
The p-norm to apply (for Minkowski, weighted and unweighted)
V : ndarray
The variance vector (for standardized Euclidean).
VI : ndarray
The inverse of the covariance matrix (for Mahalanobis).

\section*{Returns}

Y: ndarray
A \(m_{A}\) by \(m_{B}\) distance matrix.
scipy.spatial.distance.squareform ( \(X\), force='no', checks=True)
Converts a vector-form distance vector to a square-form distance matrix, and vice-versa.

\section*{Parameters}

X : ndarray
Either a condensed or redundant distance matrix.

\section*{Returns}

Y: ndarray
If a condensed distance matrix is passed, a redundant one is returned, or if a redundant one is passed, a condensed distance matrix is returned.

\section*{force}
[string] As with MATLAB(TM), if force is equal to 'tovector' or 'tomatrix', the input will be treated as a distance matrix or distance vector respectively.
checks
[bool] If checks is set to False, no checks will be made for matrix symmetry nor zero diagonals. This is useful if it is known that \(\mathrm{X}-\mathrm{X}\).T1 is small and diag ( X ) is close to zero. These values are ignored any way so they do not disrupt the squareform transformation.

Predicates for checking the validity of distance matrices, both condensed and redundant. Also contained in this module are functions for computing the number of observations in a distance matrix.
\begin{tabular}{|c|c|}
\hline is_valid_dm(D[, tol, throw, name, warning]) & Returns True if the variable D passed is a valid distance matrix. \\
\hline is_valid_y(y[, warning, throw, name]) & Returns True if the variable y passed is a valid condensed \\
\hline num_obs_dm(d) & Returns the number of original observations that correspond to a \\
\hline num_obs_y \((\mathrm{Y})\) & Returns the number of original observations that correspond to a \\
\hline
\end{tabular}

Returns True if the variable D passed is a valid distance matrix. Distance matrices must be 2-dimensional numpy arrays containing doubles. They must have a zero-diagonal, and they must be symmetric.

\section*{Parameters}

D : ndarray
The candidate object to test for validity.
tol : double
The distance matrix should be symmetric. tol is the maximum difference between the :math: \({ }^{\mathrm{ij}}\) 'th entry and the :math: \({ }^{\mathrm{j} i}\) ' th entry for the distance metric to be considered symmetric.
throw : bool
An exception is thrown if the distance matrix passed is not valid.
name : string
the name of the variable to checked. This is useful ifa throw is set to True so the offending variable can be identified in the exception message when an exception is thrown.
warning : boolx
Instead of throwing an exception, a warning message is raised.

\section*{Returns}

Returns "'True" if the variable ' \(D\) "' passed is a valid :
distance matrix. Small numerical differences in ' \(D\) " and :
"D.T" and non-zeroness of the diagonal are ignored if they are :
within the tolerance specified by 'tol'". :
scipy.spatial.distance.is_valid_y (y, warning=False, throw=False, name=None)
Returns True if the variable y passed is a valid condensed distance matrix. Condensed distance matrices must be 1-dimensional numpy arrays containing doubles. Their length must be a binomial coefficient \(\binom{n}{2}\) for some positive integer \(n\).

Parameters
\(\mathbf{y}\) : ndarray
The condensed distance matrix.
warning : bool, optional
Invokes a warning if the variable passed is not a valid condensed distance matrix. The warning message explains why the distance matrix is not valid. 'name' is used when referencing the offending variable.
throws : throw, optional
Throws an exception if the variable passed is not a valid condensed distance matrix.
name : bool, optional
Used when referencing the offending variable in the warning or exception message.
scipy.spatial.distance.num_obs_dm (d)
Returns the number of original observations that correspond to a square, redudant distance matrix \(D\).

\section*{Parameters}
d : ndarray
The target distance matrix.

\section*{Returns}
numobs : int
The number of observations in the redundant distance matrix.
scipy.spatial.distance. num_obs_y \((Y)\)
Returns the number of original observations that correspond to a condensed distance matrix Y.

\section*{Parameters}

Y : ndarray
The number of original observations in the condensed observation Y .

\section*{Returns}
\(\mathbf{n}\) : int
The number of observations in the condensed distance matrix passed.
Distance functions between two vectors \(u\) and \(v\). Computing distances over a large collection of vectors is inefficient for these functions. Use pdist for this purpose.
\begin{tabular}{|c|c|}
\hline braycurtis(u, v) & Computes the Bray-Curtis distance between two \(n\)-vectors \(u\) and \\
\hline canberra(u, v) & Computes the Canberra distance between two \(n\)-vectors \(u\) and \(v\), \\
\hline chebyshev(u, v) & Computes the Chebyshev distance between two n-vectors \(u\) and v, \\
\hline cityblock(u, v) & Computes the Manhattan distance between two \(n\)-vectors \(u\) and v, \\
\hline correlation(u, v) & Computes the correlation distance between two n-vectors \(u\) and \(v\), which is defined as .. \\
\hline cosine(u, v) & Computes the Cosine distance between two \(n\)-vectors \(u\) and \(v\), which \\
\hline dice(u, v) & Computes the Dice dissimilarity between two boolean n-vectors \\
\hline euclidean(u, v) & Computes the Euclidean distance between two n-vectors \(u\) and v, \\
\hline hamming(u, v) & Computes the Hamming distance between two n-vectors \(u\) and \\
\hline jaccard(u, v) & Computes the Jaccard-Needham dissimilarity between two boolean \\
\hline kulsinski(u, v) & Computes the Kulsinski dissimilarity between two boolean n-vectors \\
\hline mahalanobis(u, v, VI) & Computes the Mahalanobis distance between two n-vectors \(u\) and \(v\), \\
\hline matching(u, v) & Computes the Matching dissimilarity between two boolean n -vectors \\
\hline minkowski(u, v, p) & Computes the Minkowski distance between two vectors \(u\) and v, \\
\hline rogerstanimoto(u, v) & Computes the Rogers-Tanimoto dissimilarity between two boolean \\
\hline russellrao(u, v) & Computes the Russell-Rao dissimilarity between two boolean n-vectors \\
\hline seuclidean(u, v, V) & Returns the standardized Euclidean distance between two n-vectors \\
\hline sokalmichener(u, v) & Computes the Sokal-Michener dissimilarity between two boolean vectors \\
\hline sokalsneath(u, v) & Computes the Sokal-Sneath dissimilarity between two boolean vectors \\
\hline sqeuclidean(u, v) & Computes the squared Euclidean distance between two n-vectors u and v, \\
\hline yule(u, v) & Computes the Yule dissimilarity between two boolean \(n\)-vectors \(u\) and v, \\
\hline
\end{tabular}
scipy.spatial.distance.braycurtis \((u, v)\)
Computes the Bray-Curtis distance between two \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\sum\left|u_{i}-v_{i}\right| / \sum\left|u_{i}+v_{i}\right| .
\]

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Bray-Curtis distance between vectors \(u\) and \(v\).
scipy.spatial.distance. canberra ( \(u, v\) )
Computes the Canberra distance between two \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\frac{\sum_{i}\left|u_{i}-v_{i}\right|}{\sum_{i}\left|u_{i}\right|+\left|v_{i}\right|} .
\]

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Canberra distance between vectors \(u\) and \(v\).
scipy.spatial.distance.chebyshev ( \(u, v\) )
Computes the Chebyshev distance between two \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\max _{i}\left|u_{i}-v_{i}\right|
\]

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Chebyshev distance between vectors \(u\) and \(v\).
scipy.spatial.distance.cityblock ( \(u, v\) )
Computes the Manhattan distance between two \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\sum_{i}\left(u_{i}-v_{i}\right)
\]

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double

The City Block distance between vectors \(u\) and \(v\).
scipy.spatial.distance.correlation ( \(u, v\) )
Computes the correlation distance between two \(n\)-vectors \(u\) and \(v\), which is defined as
\[
1-\operatorname{frac}(u-\bar{u})(v-\bar{v})^{T}\|(u-\bar{u})\|_{2}\|(v-\bar{v})\|_{2}^{T}
\]
where \(\bar{u}\) is the mean of a vectors elements and n is the common dimensionality of u and v .

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The correlation distance between vectors \(u\) and \(v\).
scipy.spatial.distance.cosine ( \(u, v\) )
Computes the Cosine distance between two \(n\)-vectors \(u\) and \(v\), which is defined as
\[
1-\frac{u v^{T}}{\|u\|_{2}\|v\|_{2}}
\]

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Cosine distance between vectors \(u\) and \(v\).
scipy. spatial. distance. dice ( \(u, v\) )
Computes the Dice dissimilarity between two boolean \(n\)-vectors \(u\) and \(v\), which is
\[
\frac{c_{T F}+c_{F T}}{2 c_{T T}+c_{F T}+c_{T F}}
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n\).
Parameters
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Dice dissimilarity between vectors \(u\) and \(v\).
scipy.spatial.distance.euclidean ( \(u, v\) )
Computes the Euclidean distance between two \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\|u-v\|_{2}
\]

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Euclidean distance between vectors \(u\) and \(v\).
scipy.spatial.distance.hamming ( \(u, v\) )
Computes the Hamming distance between two \(n\)-vectors \(u\) and \(v\), which is simply the proportion of disagreeing components in \(u\) and \(v\). If \(u\) and \(v\) are boolean vectors, the Hamming distance is
\[
\frac{c_{01}+c_{10}}{n}
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n\).

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Hamming distance between vectors \(u\) and \(v\).
scipy.spatial.distance.jaccard ( \(u, v\) )
Computes the Jaccard-Needham dissimilarity between two boolean \(n\)-vectors \(u\) and \(v\), which is
\[
r a c c_{T F}+c_{F T} c_{T T}+c_{F T}+c_{T F}
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n\).
Parameters
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d: double
The Jaccard distance between vectors \(u\) and \(v\).
scipy.spatial.distance.kulsinski (u,v)
Computes the Kulsinski dissimilarity between two boolean \(n\)-vectors \(u\) and \(v\), which is defined as
\[
r a c c_{T F}+c_{F T}-c_{T T}+n c_{F T}+c_{T F}+n
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n\).
Parameters
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d: double
The Kulsinski distance between vectors \(u\) and \(v\).
scipy.spatial.distance.mahalanobis ( \(u, v, V I\) )
Computes the Mahalanobis distance between two \(n\)-vectors \(u\) and \(v\), which is defiend as
\[
(u-v) V^{-1}(u-v)^{T}
\]
where VI is the inverse covariance matrix \(V^{-1}\).

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d: double
The Mahalanobis distance between vectors \(u\) and \(v\).
scipy.spatial.distance.matching ( \(u, v\) )
Computes the Matching dissimilarity between two boolean \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\frac{c_{T F}+c_{F T}}{n}
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n\).
Parameters
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d: double
The Matching dissimilarity between vectors \(u\) and \(v\).
scipy.spatial.distance.minkowski ( \(u, v, p\) )
Computes the Minkowski distance between two vectors \(u\) and \(v\), defined as
\[
\|u-v\|_{p}=\left(\sum\left|u_{i}-v_{i}\right|^{p}\right)^{1 / p}
\]

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An n-dimensional vector.
\(\mathbf{v}\) : ndarray
An n-dimensional vector.
\(\mathbf{p}\) : ndarray
The norm of the difference \(\|u-v\|_{p}\).

\section*{Returns}
d : double
The Minkowski distance between vectors \(u\) and \(v\).
scipy.spatial.distance.rogerstanimoto ( \(u, v\) )
Computes the Rogers-Tanimoto dissimilarity between two boolean \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\frac{R}{c_{T T}+c_{F F}+R}
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n\) and \(R=2\left(c_{T F}+c_{F T}\right)\).
Parameters
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Rogers-Tanimoto dissimilarity between vectors \(u\) and \(v\).
scipy.spatial.distance.russellrao ( \(u, v\) )
Computes the Russell-Rao dissimilarity between two boolean \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\frac{n-c_{T T}}{n}
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n\).

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d: double

The Russell-Rao dissimilarity between vectors \(u\) and \(v\).
scipy.spatial.distance.seuclidean ( \(u, v, V\) )
Returns the standardized Euclidean distance between two n -vectors u and \(\mathrm{v} . \mathrm{V}\) is an m -dimensional vector of component variances. It is usually computed among a larger collection vectors.

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The standardized Euclidean distance between vectors \(u\) and \(v\).
scipy.spatial.distance.sokalmichener ( \(u, v\) )
Computes the Sokal-Michener dissimilarity between two boolean vectors \(u\) and \(v\), which is defined as
\[
\frac{R}{S+R}
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n, R=2 *\left(c_{T F}+c_{F T}\right)\) and \(S=c_{F F}+c_{T T}\).

Parameters
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Sokal-Michener dissimilarity between vectors \(u\) and \(v\).
scipy.spatial.distance.sokalsneath ( \(u, v\) )
Computes the Sokal-Sneath dissimilarity between two boolean vectors \(u\) and \(v\),
\[
\frac{R}{c_{T T}+R}
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n\) and \(R=2\left(c_{T F}+c_{F T}\right)\).
Parameters
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The Sokal-Sneath dissimilarity between vectors \(u\) and \(v\).
scipy.spatial.distance.sqeuclidean ( \(u, v\) )
Computes the squared Euclidean distance between two \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\|u-v\|_{2}^{2}
\]

\section*{Parameters}
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.

\section*{Returns}
d : double
The squared Euclidean distance between vectors \(u\) and \(v\).
scipy.spatial.distance. yule ( \(u, v\) )
Computes the Yule dissimilarity between two boolean \(n\)-vectors \(u\) and \(v\), which is defined as
\[
\frac{R}{c_{T T}+c_{F F}+\frac{R}{2}}
\]
where \(c_{i j}\) is the number of occurrences of \(\mathrm{u}[\mathrm{k}]=i\) and \(\mathrm{v}[\mathrm{k}]=j\) for \(k<n\) and \(R=2.0 *\left(c_{T F}+c_{F T}\right)\).
Parameters
\(\mathbf{u}\) : ndarray
An \(n\)-dimensional vector.
\(\mathbf{v}\) : ndarray
An \(n\)-dimensional vector.
Returns
d : double
The Yule dissimilarity between vectors \(u\) and \(v\).

\subsection*{3.17.2 References}

\subsection*{3.17.3 Copyright Notice}

Copyright (C) Damian Eads, 2007-2008. New BSD License.

\subsection*{3.18 Special functions (scipy.special)}

Nearly all of the functions below are universal functions and follow broadcasting and automatic array-looping rules. Exceptions are noted.

\subsection*{3.18.1 Error handling}

Errors are handled by returning nans, or other appropriate values. Some of the special function routines will print an error message when an error occurs. By default this printing is disabled. To enable such messages use errprint(1) To disable such messages use errprint(0).

\section*{Example:}
```

>>> print scipy.special.bdtr(-1,10,0.3)
>>> scipy.special.errprint(1)
>>> print scipy.special.bdtr(-1,10,0.3)

```
\begin{tabular}{ll}
\hline \(\left.\begin{array}{l}\text { errprint } \\
\text { errstate }\end{array} * * \mathrm{kwargs}\right)\) & errprint(\{flag\}) sets the error printing flag for special functions \\
Context manager for floating-point error handling.
\end{tabular}
errprint( \(\{\) flag \}) sets the error printing flag for special functions (from the cephesmodule). The output is the previous state. With errprint(0) no error messages are shown; the default is errprint(1). If no argument is given the current state of the flag is returned and no change occurs.
class scipy.special.errstate (**kwargs)
Context manager for floating-point error handling.
Using an instance of errstate as a context manager allows statements in that context to execute with a known error handling behavior. Upon entering the context the error handling is set with seterr and seterrcall, and upon exiting it is reset to what it was before.

\section*{Parameters}
kwargs : \{divide, over, under, invalid\}
Keyword arguments. The valid keywords are the possible floating-point exceptions. Each keyword should have a string value that defines the treatment for the particular error. Possible values are \{ 'ignore', 'warn', 'raise', 'call', 'print', 'log' \}.

\section*{See Also:}
```

seterr,geterr,seterrcall, geterrcall

```

\section*{Notes}

The with statement was introduced in Python 2.5, and can only be used there by importing it: from __future__ import with_statement. In earlier Python versions the with statement is not available.

For complete documentation of the types of floating-point exceptions and treatment options, see seterr.

\section*{Examples}
```

>>> from __future__ import with_statement \# use 'with' in Python 2.5
>>> olderr = np.seterr(all='ignore') \# Set error handling to known state.
>>> np.arange(3) / 0.
array([NaN, Inf, Inf])
>>> with np.errstate(divide='warn'):
... np.arange(3) / 0.
..
__main__:2: RuntimeWarning: divide by zero encountered in divide
array([NaN, Inf, Inf])
>>> np.sqrt(-1)
nan
>>> with np.errstate(invalid='raise'):
... np.sqrt(-1)
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
FloatingPointError: invalid value encountered in sqrt

```

Outside the context the error handling behavior has not changed:
```

>>> np.geterr()
{'over': 'ignore', 'divide': 'ignore', 'invalid': 'ignore',
'under': 'ignore'}

```

\subsection*{3.18.2 Available functions}

\section*{Airy functions}
\begin{tabular}{|c|c|}
\hline airy(out1, out2, out3) & (Ai,Aip,Bi,Bip)=airy(z) calculates the Airy functions and their derivatives \\
\hline airye(out1, out2, out3) & (Aie,Aipe, Bie,Bipe)=airye(z) calculates the exponentially scaled Airy functions and \\
\hline ai_zeros(nt) & Compute the zeros of Airy Functions \(\operatorname{Ai}(\mathrm{x})\) and \(\mathrm{Ai}^{\prime}(\mathrm{x})\), a and a' \\
\hline bi_zeros(nt) & Compute the zeros of Airy Functions \(\operatorname{Bi}(\mathrm{x})\) and \(\mathrm{Bi}^{\prime}(\mathrm{x}), \mathrm{b}\) and \(\mathrm{b}^{\prime}\) \\
\hline
\end{tabular}
scipy.special.airy (x[,out1, out 2 , out 3 , out 4\(])\)
(Ai,Aip,Bi,Bip)=airy(z) calculates the Airy functions and their derivatives evaluated at real or complex number z. The Airy functions Ai and Bi are two independent solutions of \(y^{\prime}\) ' \((x)=x y\). Aip and Bip are the first derivatives evaluated at \(x\) of \(A i\) and \(B i\) respectively.
```

scipy.special.airye (x[,outl,out 2, out 3, out4])

```
(Aie,Aipe,Bie,Bipe)=airye(z) calculates the exponentially scaled Airy functions and their derivatives evaluated at real or complex number \(z\). \(\operatorname{airye}(z)[0: 1]=\operatorname{airy}(z)[0: 1] * \exp (2.0 / 3.0 * z * \operatorname{sqrt}(z)) \operatorname{airye}(z)[2: 3]=\operatorname{airy}(z)[2: 3] *\) \(\exp \left(-\operatorname{abs}\left(\left(2.0 / 3.0 * z^{*} \operatorname{sqrt}(z)\right)\right.\right.\). real \(\left.)\right)\)
scipy.special.ai_zeros( \(n t\) )
Compute the zeros of Airy Functions \(\operatorname{Ai}(x)\) and \(\mathrm{Ai}^{\prime}(\mathrm{x})\), a and \(\mathrm{a}^{\prime}\) respectively, and the associated values of \(\operatorname{Ai}\left(\mathrm{a}^{\prime}\right)\) and \(\mathrm{Ai}^{\prime}(\mathrm{a})\).

\section*{Returns}
\(\mathrm{a}[1-1]\) - the lth zero of \(\mathrm{Ai}(\mathrm{x})\) :
ap[l-1] - the lth zero of \(\mathrm{Ai}^{\prime}(\mathrm{x})\) :
\(\mathbf{a i}[1-1]-\mathbf{A i}(\mathbf{a p}[1-1])\) :
\(\mathbf{a i p}[1-1]-\mathbf{A i}^{\prime}(\mathbf{a}[1-1])\) :
scipy.special.bi_zeros ( \(n t\) )
Compute the zeros of Airy Functions \(\operatorname{Bi}(x)\) and \(\mathrm{Bi}^{\prime}(\mathrm{x}), \mathrm{b}\) and \(\mathrm{b}^{\prime}\) respectively, and the associated values of \(\mathrm{Ai}\left(\mathrm{b}^{\prime}\right)\)
and \(\mathrm{Ai}^{\prime}(\mathrm{b})\).
```

Returns
b[l-1] - the lth zero of Bi(x):
bp[l-1] - the lth zero of Bi'(x) :
bi[l-1]-Bi(bp[l-1]) :
bip[l-1]- Bi'(b[l-1]) :

```

\section*{Elliptic Functions and Integrals}
```

ellipj(x1,out1, out2, out3) (sn,cn,dn,ph)=ellipj(u,m) calculates the Jacobian elliptic functions of
ellipk() y=ellipk(m) returns the complete integral of the first kind:
ellipkinc(x1) y=ellipkinc(phi,m) returns the incomplete elliptic integral of the first
ellipe() y=ellipe(m) returns the complete integral of the second kind:
ellipeinc(x1) y=ellipeinc(phi,m) returns the incomplete elliptic integral of the

```
scipy.special.ellipj (xl, \(x 2\) [, out1, out 2 , out 3 , out 4\(]\) )
( \(\mathrm{sn}, \mathrm{cn}, \mathrm{dn}, \mathrm{ph}\) )=ellipj \((\mathrm{u}, \mathrm{m})\) calculates the Jacobian elliptic functions of parameter m between 0 and 1 , and real
u . The returned functions are often written \(\mathrm{sn}(\mathrm{ulm}), \mathrm{cn}(\mathrm{ulm})\), and \(\mathrm{dn}(\mathrm{ulm})\). The value of ph is such that if \(\mathrm{u}=\) \(\operatorname{ellik}(\mathrm{ph}, \mathrm{m})\), then \(\operatorname{sn}(\mathrm{ulm})=\sin (\mathrm{ph})\) and \(\mathrm{cn}(\mathrm{ulm})=\cos (\mathrm{ph})\).
scipy.special.ellipk ( \(x[\), out \(]\) )
\(\mathrm{y}=\mathrm{ellipk}(\mathrm{m})\) returns the complete integral of the first kind: integral( \(1 / \mathrm{sqrt}(1-\mathrm{m} * \sin (\mathrm{t}) * * 2), \mathrm{t}=0 . . \mathrm{pi} / 2)\)
scipy.special.ellipkinc ( \(x 1, x 2[\), out \(]\) )
\(\mathrm{y}=\mathrm{ellipkinc}(\mathrm{phi}, \mathrm{m})\) returns the incomplete elliptic integral of the first kind: integral(1/sqrt(1-
\(\left.\mathrm{m} * \sin (\mathrm{t})^{* *} 2\right), \mathrm{t}=0\)..phi)
scipy.special.ellipe ( \(x[\),out \(]\) )
\(\mathrm{y}=\mathrm{ellipe}(\mathrm{m})\) returns the complete integral of the second kind: integral(sqrt( \(\left.\left.1-\mathrm{m} * \sin (\mathrm{t})^{* *} 2\right), \mathrm{t}=0 . . \mathrm{pi} / 2\right)\)
scipy.special.ellipeinc ( \(x 1, x 2[\), out \(]\) )
\(y=\) ellipeinc(phi,m) returns the incomplete elliptic integral of the second kind: integral(sqrt(1\(\left.\left.\mathrm{m}^{*} \sin (\mathrm{t})^{* *} 2\right), \mathrm{t}=0 . . \mathrm{phi}\right)\)

\section*{Bessel Functions}
\begin{tabular}{|c|c|}
\hline jn(x1) & \(\mathrm{y}=\mathrm{jv}(\mathrm{v}, \mathrm{z})\) returns the Bessel function of real order v at complex z . \\
\hline jv(x1) & \(\mathrm{y}=\mathrm{jv}(\mathrm{v}, \mathrm{z})\) returns the Bessel function of real order v at complex z . \\
\hline jve(x1) & \(y=j v e(v, z)\) returns the exponentially scaled Bessel function of real order \\
\hline yn(x1) & \(y=y n(n, x)\) returns the Bessel function of the second kind of integer \\
\hline yv(x1) & \(y=y v(v, z)\) returns the Bessel function of the second kind of real \\
\hline yve(x1) & \(y=y v e(v, z)\) returns the exponentially scaled Bessel function of the second \\
\hline kn(x1) & \(\mathrm{y}=\mathrm{kn}(\mathrm{n}, \mathrm{x})\) returns the modified Bessel function of the second kind (sometimes called the third kind) for \\
\hline kv(x1) & \(\mathrm{y}=\mathrm{kv}(\mathrm{v}, \mathrm{z})\) returns the modified Bessel function of the second kind (sometimes called the third kind) for \\
\hline kve(x1) & \(y=k v e(v, z)\) returns the exponentially scaled, modified Bessel function \\
\hline iv(x1) & \(\mathrm{y}=\mathrm{iv}(\mathrm{v}, \mathrm{z})\) returns the modified Bessel function of real order v of \\
\hline ive(x1) & \(y=\) ive ( \(v, z\) ) returns the exponentially scaled modified Bessel function \\
\hline hankel1(x1) & \(y=\) hankel1 \((v, z)\) returns the Hankel function of the first kind for real order \(v\) and complex argument z . \\
\hline hankelle(x1) & \(y=\) hankelle (v,z) returns the exponentially scaled Hankel function of the first \\
\hline hankel2(x1) & \(\mathrm{y}=\) hankel2(v,z) returns the Hankel function of the second kind for real order v and complex argument \(z\). \\
\hline hankel2e(x1) & \(y=\) hankel2e(v,z) returns the exponentially scaled Hankel function of the second \\
\hline
\end{tabular}
scipy.special.jn ( \(x 1, x 2[\), out \(]\) )
\(\mathrm{y}=\mathrm{jv}(\mathrm{v}, \mathrm{z})\) returns the Bessel function of real order v at complex z .
scipy.special.jv ( \(x 1, x 2[\), out \(]\) )
\(\mathrm{y}=\mathrm{jv}(\mathrm{v}, \mathrm{z})\) returns the Bessel function of real order v at complex z .
scipy.special.jve ( \(x 1, x 2[\), out \(]\) )
\(y=j v e(v, z)\) returns the exponentially scaled Bessel function of real order \(v\) at complex \(z: ~ j v e(v, z)=j v(v, z)\) *
\(\exp (-a b s(z . i m a g))\)
scipy.special.yn ( \(x 1, x 2[\), out \(]\) )
\(\mathrm{y}=\mathrm{yn}(\mathrm{n}, \mathrm{x})\) returns the Bessel function of the second kind of integer order n at x .
scipy.special. \(\mathrm{yv}(x 1, x 2[\), out \(])\)
\(y=y v(v, z)\) returns the Bessel function of the second kind of real order \(v\) at complex \(z\).
```

scipy.special.yve (xl, x2[,out])

```
\(y=y v e(v, z)\) returns the exponentially scaled Bessel function of the second kind of real order \(v\) at complex \(z\) :
\(y v e(v, z)=y v(v, z) * \exp (-\operatorname{abs}(z . i m a g))\)
scipy.special. kn ( \(x 1, x 2[\), out \(])\)
\(y=k n(n, x)\) returns the modified Bessel function of the second kind (sometimes called the third kind) for integer order n at x .
scipy.special.kv ( \(x 1, x 2[\), out \(])\)
\(y=k v(v, z)\) returns the modified Bessel function of the second kind (sometimes called the third kind) for real order \(v\) at complex \(z\).
scipy.special.kve ( \(x 1, x 2[\),out \(]\) )
\(y=k v e(v, z)\) returns the exponentially scaled, modified Bessel function of the second kind (sometimes called the third kind) for real order \(v\) at complex \(z\) : \(\operatorname{kve}(v, z)=\operatorname{kv}(v, z) * \exp (z)\)
scipy.special.iv ( \(x 1, x 2[\), out \(])\)
\(y=\mathrm{iv}(\mathrm{v}, \mathrm{z})\) returns the modified Bessel function of real order \(v\) of \(z\). If \(z\) is of real type and negative, \(v\) must be integer valued.
scipy.special.ive ( \(x 1, x 2[\), out \(]\) )
\(y=i v e(v, z)\) returns the exponentially scaled modified Bessel function of real order \(v\) and complex \(z\) : ive \((v, z)=\) \(\operatorname{iv}(\mathrm{v}, \mathrm{z}) * \exp (-\mathrm{abs}(\mathrm{z.real}))\)
scipy.special.hankel1 ( \(x 1, x 2[\),out \(]\) )
\(y=\) hankell \((v, z)\) returns the Hankel function of the first kind for real order \(v\) and complex argument \(z\).
scipy.special.hankel1e ( \(x 1, x 2[\), out \(]\) )
\(y=h a n k e l l e(v, z)\) returns the exponentially scaled Hankel function of the first kind for real order \(v\) and complex
\(\operatorname{argument} z: ~ h a n k e l l e(v, z)=\operatorname{hankell}(v, z) * \exp (-1 j * z)\)
scipy.special. hankel2 ( \(x 1, x 2[\), out \(]\) )
\(y=\) hankel2 \((v, z)\) returns the Hankel function of the second kind for real order \(v\) and complex argument \(z\).
scipy.special.hankel2e (xl, \(x 2[\), out \(]\) )
\(y=h a n k e l 2 e(v, z)\) returns the exponentially scaled Hankel function of the second kind for real order \(v\) and complex \(\operatorname{argument} z: ~ h a n k e l l e(v, z)=\operatorname{hankel1}(v, z) * \exp (1 j * z)\)

The following is not an universal function:
lmbda(v, x\() \quad\) Compute sequence of lambda functions with arbitrary order v and their derivatives.
scipy.special. \(\operatorname{lmbda}(v, x)\)
Compute sequence of lambda functions with arbitrary order v and their derivatives. \(\mathrm{Lv} 0(\mathrm{x}) . . \mathrm{Lv}(\mathrm{x})\) are computed with \(\mathrm{v} 0=\mathrm{v}-\operatorname{int}(\mathrm{v})\).

\section*{Zeros of Bessel Functions}

These are not universal functions:
\begin{tabular}{ll}
\hline jnjnp_zeros(nt) & Compute nt (<=1200) zeros of the bessel functions Jn and Jn’ \\
jnyn_zeros(n, nt) & Compute nt zeros of the Bessel functions Jn(x), Jn'(x), Yn(x), and \\
jn_zeros(n, nt) & Compute nt zeros of the Bessel function Jn(x). \\
jnp_zeros(n, nt) & Compute nt zeros of the Bessel function Jn'(x). \\
yn_zeros(n, nt) & Compute nt zeros of the Bessel function Yn(x). \\
ynp_zeros(n, nt) & Compute nt zeros of the Bessel function Yn'(x). \\
yo_zeros(nt[, complex]) & Returns nt (complex or real) zeros of Y0(z), z0, and the value \\
yl_zeros(nt[, complex]) & Returns nt (complex or real) zeros of Y1(z), z1, and the value \\
ylp_zeros(nt[, complex]) & Returns nt (complex or real) zeros of Y1'(z), zl', and the value \\
\hline
\end{tabular}
scipy.special.jnjnp_zeros ( \(n t\) )
Compute nt \((<=1200)\) zeros of the bessel functions Jn and Jn' and arange them in order of their magnitudes.

\section*{Returns}
zo[ \([1-1]\) : ndarray
Value of the lth zero of of \(\operatorname{Jn}(\mathrm{x})\) and \(\mathrm{Jn}^{\prime}(\mathrm{x})\). Of length \(n t\).
\(\mathbf{n}[\mathbf{l - 1 ]}\) : ndarray
Order of the \(\operatorname{Jn}(\mathrm{x})\) or \(\mathrm{Jn}^{\prime}(\mathrm{x})\) associated with lth zero. Of length \(n t\).
\(\mathbf{m}[1-1]\) : ndarray
Serial number of the zeros of \(\operatorname{Jn}(x)\) or \(\mathrm{Jn}^{\prime}(\mathrm{x})\) associated with lth zero. Of length \(n t\).
\(\mathrm{t}[1-1]\) : ndarray
0 if lth zero in zo is zero of \(\operatorname{Jn}(\mathrm{x}), 1\) if it is a zero of \(\mathrm{Jn}^{\prime}(\mathrm{x})\). Of length \(n t\).
See Also:
jn_zeros, jnp_zeros
scipy.special.jnyn_zeros \((n, n t)\)
Compute nt zeros of the Bessel functions \(\operatorname{Jn}(\mathrm{x}), \mathrm{Jn}^{\prime}(\mathrm{x}), \mathrm{Yn}(\mathrm{x})\), and \(\mathrm{Yn}^{\prime}(\mathrm{x})\), respectively. Returns 4 arrays of length nt .
See jn_zeros, jnp_zeros, yn_zeros, ynp_zeros to get separate arrays.
```

scipy.special.jn_zeros(n,nt)

```

Compute nt zeros of the Bessel function \(\operatorname{Jn}(\mathrm{x})\).
```

scipy.special.jnp_zeros(n,nt)

```

Compute nt zeros of the Bessel function \(\mathrm{Jn}^{\prime}(\mathrm{x})\).
```

scipy.special.yn_zeros (n, nt)

```

Compute nt zeros of the Bessel function \(\mathrm{Yn}(\mathrm{x})\).
scipy.special.ynp_zeros \((n, n t)\)
Compute nt zeros of the Bessel function \(\mathrm{Yn}^{\prime}(\mathrm{x})\).
```

scipy.special.y0_zeros (nt, complex=0)

```

Returns nt (complex or real) zeros of \(\mathrm{Y} 0(\mathrm{z}), \mathrm{z} 0\), and the value of \(\mathrm{Y}^{\prime}{ }^{\prime}(\mathrm{z} 0)=-\mathrm{Y} 1(\mathrm{z} 0)\) at each zero.
```

scipy.special.y1_zeros(nt, complex=0)

```

Returns nt (complex or real) zeros of \(\mathrm{Y} 1(\mathrm{z}), \mathrm{z} 1\), and the value of \(\mathrm{Y}^{\prime}{ }^{\prime}(\mathrm{z} 1)=\mathrm{Y} 0(\mathrm{z} 1)\) at each zero.
```

scipy.special.y1p_zeros(nt, complex=0)

```

Returns nt (complex or real) zeros of \(\mathrm{Y} 1^{\prime}(\mathrm{z}), \mathrm{zl}^{\prime}\), and the value of \(\mathrm{Y} 1\left(\mathrm{z} 1^{\prime}\right)\) at each zero.

\section*{Faster versions of common Bessel Functions}
\begin{tabular}{ll}
\hline\(j 0()\) & \(y=j 0(x)\) returns the Bessel function of order 0 at \(x\). \\
\(j 1()\) & \(y=j 1(x)\) returns the Bessel function of order 1 at \(x\). \\
\(y 0(\) & \(y=y 0(x)\) returns the Bessel function of the second kind of order 0 at \(x\). \\
\(y 1()\) & \(y=y 1(x)\) returns the Bessel function of the second kind of order 1 at \(x\). \\
i0( & \(y=i 0(x)\) returns the modified Bessel function of order 0 at \(x\). \\
i0e() & \(y=i 0 e(x)\) returns the exponentially scaled modified Bessel function \\
i1() & \(y=i 1(x)\) returns the modified Bessel function of order 1 at \(x\). \\
i1e() & \(y===11 e(x)\) returns the exponentially scaled modified Bessel function \\
\(k 0(\) & \(y=k 0(x)\) returns the modified Bessel function of the second kind (sometimes called the third kind) of \\
\(k 0 e()\) & \(y=k 0 e(x)\) returns the exponentially scaled modified Bessel function \\
\(k 1(\) & \(y=i 1(x)\) returns the modified Bessel function of the second kind (sometimes called the third kind) of \\
\(k 1 e()\) & \(y=k 1 e(x)\) returns the exponentially scaled modified Bessel function \\
\hline
\end{tabular}
```

scipy.special.j0(x[,out])
y=j0(x) returns the Bessel function of order 0 at x.
scipy.special.j1 (x[,out])
y=j1(x) returns the Bessel function of order 1 at x.
scipy.special.y0 (x[,out])
y=y0(x) returns the Bessel function of the second kind of order 0 at x.
scipy.special.y1(x[,out])
y=y1(x) returns the Bessel function of the second kind of order 1 at x.
scipy.special.i0 (x[,out])
y=i0(x) returns the modified Bessel function of order 0 at x.
scipy.special.i0e(x[,out])
y=i0e(x) returns the exponentially scaled modified Bessel function of order 0 at x. i0e(x)=\operatorname{exp}(-|x|) * i0(x).
scipy.special.i1(x[,out])
y=i1(x) returns the modified Bessel function of order 1 at x.
scipy.special.ile(x[,out])
y=ile(x) returns the exponentially scaled modified Bessel function of order 0 at x. ile(x)=exp(-|x|) * il(x).
scipy.special.k0 (x[,out])
y=k0(x) returns the modified Bessel function of the second kind (sometimes called the third kind) of order 0 at
x.
scipy.special.k0e(x[,out])
y=k0e(x) returns the exponentially scaled modified Bessel function of the second kind (sometimes called the
third kind) of order 0 at x. k0e(x) = exp(x)* k0(x).
scipy.special.k1 (x[,out])
y=i1(x) returns the modified Bessel function of the second kind (sometimes called the third kind) of order 1 at
x.
scipy.special.k1e(x[,out])
y=kle(x) returns the exponentially scaled modified Bessel function of the second kind (sometimes called the
third kind) of order 1 at x. k1e(x)=exp(x)* k1(x)

```

\section*{Integrals of Bessel Functions}
```

it j0y0(out1) (ij0,iy0)=itj0y0(x) returns simple integrals from 0 to x of the zeroth order

```
it j0y0(out1) (ij0,iy0)=itj0y0(x) returns simple integrals from 0 to x of the zeroth order
    it 2 j0y0(out1) (ij0,iy0)=it2j0y0(x) returns the integrals int((1-j0(t))/t,t=0..x) and
    it 2 j0y0(out1) (ij0,iy0)=it2j0y0(x) returns the integrals int((1-j0(t))/t,t=0..x) and
    itiOk0(out1) (ii0,ik0)=iti0k0(x) returns simple integrals from 0 to x of the zeroth order
    itiOk0(out1) (ii0,ik0)=iti0k0(x) returns simple integrals from 0 to x of the zeroth order
    it2i0k0(out1) (ii0,ik0)=it2i0k0(x) returns the integrals int((i0(t)-1)/t,t=0..x) and
    it2i0k0(out1) (ii0,ik0)=it2i0k0(x) returns the integrals int((i0(t)-1)/t,t=0..x) and
    besselpoly(x1, x2) y=besselpoly(a,lam,nu) returns the value of the integral:
    besselpoly(x1, x2) y=besselpoly(a,lam,nu) returns the value of the integral:
scipy.special.itj0y0 (x[,outl, out2])
scipy.special.itj0y0 (x[,outl, out2])
    (ij0,iy0)=itj0y0(x) returns simple integrals from 0 to x of the zeroth order bessel functions j0 and y0.
    (ij0,iy0)=itj0y0(x) returns simple integrals from 0 to x of the zeroth order bessel functions j0 and y0.
scipy.special.it2j0y0 (x[,out1, out2])
scipy.special.it2j0y0 (x[,out1, out2])
    (ij0,iy0)=it2j0y0(x) returns the integrals int((1-j0(t))/t,t=0..x) and int(y0(t)/t,t=x..infinitity).
    (ij0,iy0)=it2j0y0(x) returns the integrals int((1-j0(t))/t,t=0..x) and int(y0(t)/t,t=x..infinitity).
scipy.special.iti0k0 (x[,outl,out2])
scipy.special.iti0k0 (x[,outl,out2])
    (ii0,ik0)=iti0k0(x) returns simple integrals from 0 to x of the zeroth order modified bessel functions i0 and k0.
    (ii0,ik0)=iti0k0(x) returns simple integrals from 0 to x of the zeroth order modified bessel functions i0 and k0.
scipy.special.it2i0k0(x[,outl, out2])
scipy.special.it2i0k0(x[,outl, out2])
    (ii0,ik0)=it2i0k0(x) returns the integrals int((i0(t)-1)/t,t=0..x) and int(k0(t)/t,t=x..infinitity).
    (ii0,ik0)=it2i0k0(x) returns the integrals int((i0(t)-1)/t,t=0..x) and int(k0(t)/t,t=x..infinitity).
scipy.special.besselpoly (x1, x2, x3[,out])
scipy.special.besselpoly (x1, x2, x3[,out])
    y=besselpoly(a,lam,nu) returns the value of the integral: integral( }\textrm{x}**\operatorname{lam}*\textrm{jv}(\textrm{nu},2*a*x),x=0..1)
```

 y=besselpoly(a,lam,nu) returns the value of the integral: integral(}\textrm{x}**\operatorname{lam}*\textrm{jv}(\textrm{nu},2*a*x),x=0..1)
    ```

\section*{Derivatives of Bessel Functions}
\begin{tabular}{ll}
\hline\(j v p(v, z[, n])\) & Return the nth derivative of \(\operatorname{Jv}(\mathrm{z})\) with respect to z. \\
\(\operatorname{yvp}(\mathrm{v}, \mathrm{z}[, \mathrm{n}])\) & Return the nth derivative of \(\mathrm{Yv}(\mathrm{z})\) with respect to z. \\
\(\operatorname{kvp}(\mathrm{v}, \mathrm{z}[, \mathrm{n}])\) & Return the nth derivative of \(\operatorname{Kv}(\mathrm{z})\) with respect to z. \\
\(\operatorname{ivp}(\mathrm{v}, \mathrm{z}[, \mathrm{n}])\) & Return the nth derivative of \(\operatorname{Iv}(\mathrm{z})\) with respect to z. \\
\(\mathrm{h} 1 \mathrm{vp}(\mathrm{v}, \mathrm{z}[, \mathrm{n}])\) & Return the nth derivative of \(\mathrm{H} 1 \mathrm{v}(\mathrm{z})\) with respect to z. \\
\(\mathrm{h} 2 \mathrm{vp}(\mathrm{v}, \mathrm{z}[, \mathrm{n}])\) & Return the nth derivative of \(\mathrm{H} 2 \mathrm{v}(\mathrm{z})\) with respect to z. \\
\hline scipy.special. \(\operatorname{jvp}(v, z, n=1)\)
\end{tabular}
scipy.special. \(\mathrm{yvp}(v, z, n=1)\)

Return the nth derivative of \(\mathrm{Yv}(\mathrm{z})\) with respect to z .
```

scipy.special.kvp (v,z,n=l)

```

Return the nth derivative of \(\mathrm{Kv}(\mathrm{z})\) with respect to z .
```

scipy.special.ivp(v,z,n=l)

```

Return the nth derivative of \(\operatorname{Iv}(\mathrm{z})\) with respect to z .
scipy.special.h1vp ( \(v, z, n=1\) )
Return the nth derivative of \(\mathrm{H} 1 \mathrm{v}(\mathrm{z})\) with respect to z .
scipy.special.h2vp ( \(v, z, n=1\) )
Return the nth derivative of \(\mathrm{H} 2 \mathrm{v}(\mathrm{z})\) with respect to z .

\section*{Spherical Bessel Functions}

These are not universal functions:
\begin{tabular}{ll}
\hline sph_jn(n, z) & Compute the spherical Bessel function jn(z) and its derivative for \\
sph_yn(n, z) & Compute the spherical Bessel function yn(z) and its derivative for \\
sph_jnyn(n, z) & Compute the spherical Bessel functions, jn(z) and yn(z) and their \\
sph_in(n, z) & Compute the spherical Bessel function in(z) and its derivative for \\
sph_kn(n, z) & Compute the spherical Bessel function kn(z) and its derivative for \\
sph_inkn(n, z) & Compute the spherical Bessel functions, in(z) and kn(z) and their \\
\hline
\end{tabular}
scipy.special.sph_jn \((n, z)\)
Compute the spherical Bessel function \(\mathrm{jn}(\mathrm{z})\) and its derivative for all orders up to and including n .
scipy.special.sph_yn \((n, z)\)
Compute the spherical Bessel function \(\mathrm{yn}(\mathrm{z})\) and its derivative for all orders up to and including n .
```

scipy.special.sph_jnyn(n,z)

```

Compute the spherical Bessel functions, \(\mathrm{jn}(\mathrm{z})\) and \(\mathrm{yn}(\mathrm{z})\) and their derivatives for all orders up to and including n.
```

scipy.special.sph_in(n,z)

```

Compute the spherical Bessel function in \((\mathrm{z})\) and its derivative for all orders up to and including n .
```

scipy.special.sph_kn(n,z)

```

Compute the spherical Bessel function \(\mathrm{kn}(\mathrm{z})\) and its derivative for all orders up to and including n .
scipy.special.sph_inkn \((n, z)\)
Compute the spherical Bessel functions, in(z) and \(\mathrm{kn}(\mathrm{z})\) and their derivatives for all orders up to and including n.

\section*{Riccati-Bessel Functions}

These are not universal functions:
```

riccati_jn(n, x) Compute the Ricatti-Bessel function of the first kind and its
riccati_yn(n, x) Compute the Ricatti-Bessel function of the second kind and its

```
scipy.special.riccati_jn( \(n, x\) )

Compute the Ricatti-Bessel function of the first kind and its derivative for all orders up to and including \(n\).
```

scipy.special.riccati_yn(n,x)

```

Compute the Ricatti-Bessel function of the second kind and its derivative for all orders up to and including \(n\).

\section*{Struve Functions}
\begin{tabular}{|c|c|}
\hline struve(x1) & \(\mathrm{y}=\) struve( \(\mathrm{v}, \mathrm{x})\) returns the Struve function \(\operatorname{Hv}(\mathrm{x})\) of order v at \(\mathrm{x}, \mathrm{x}\) \\
\hline modstruve(x1) & \(\mathrm{y}=\) modstruve \((\mathrm{v}, \mathrm{x})\) returns the modified Struve function \(\operatorname{Lv}(\mathrm{x})\) of order \\
\hline itstruve0() & \(y=\) itstruve 0 ( \(x\) ) returns the integral of the Struve function of order 0 \\
\hline it2struve0() & \(y=\) it2struve0(x) returns the integral of the Struve function of order 0 \\
\hline itmodstruve0() & \(\mathrm{y}=\) itmodstruve \(0(\mathrm{x})\) returns the integral of the modified Struve function \\
\hline \[
\begin{array}{r}
\text { scipy.special.s } \\
y=\text { struve(v,x) re }
\end{array}
\] & \begin{tabular}{l}
ruve ( \(x 1, x 2\) [, out ]) \\
rns the Struve function \(\operatorname{Hv}(x)\) of order \(v\) at \(x\), \(x\) must be positive unles
\end{tabular} \\
\hline
\end{tabular}
\(y=\) modstruve \((v, x)\) returns the modified Struve function \(\operatorname{Lv}(x)\) of order \(v\) at \(x, x\) must be positive unless \(v\) is an integer and it is recommended that \(|v|<=20\).
```

scipy.special.itstruve0 (x[,out])

```
    \(y=i t s t r u v e 0(x)\) returns the integral of the Struve function of order 0 from 0 to \(x\) : integral \((H 0(t), t=0 . . x)\).
scipy.special.it2struve0 ( \(x\) [, out \(]\) )
    \(\mathrm{y}=\mathrm{it} 2\) struve 0 ( x ) returns the integral of the Struve function of order 0 divided by t from x to infinity: inte-
    \(\operatorname{gral}(\mathrm{H} 0(\mathrm{t}) / \mathrm{t}, \mathrm{t}=\mathrm{x} . . \mathrm{inf})\).
scipy.special.itmodstruve0 ( \(x\) [, out \(]\) )
    \(\mathrm{y}=\mathrm{itmodstruve} 0(\mathrm{x})\) returns the integral of the modified Struve function of order 0 from 0 to x : integral( \(\mathrm{L} 0(\mathrm{t})\),
    \(\mathrm{t}=0 . . \mathrm{x}\) ).

\section*{Raw Statistical Functions}

\section*{See Also:}
scipy. stats: Friendly versions of these functions.
\begin{tabular}{|c|c|}
\hline  & \begin{tabular}{l}
\(\mathrm{y}=\mathrm{bdtr}(\mathrm{k}, \mathrm{n}, \mathrm{p})\) returns the sum of the terms 0 through k of the \(y=\operatorname{bdtrc}(k, n, p)\) returns the sum of the terms \(k+1\) through \(n\) of the \(\mathrm{p}=\mathrm{bdtri}(\mathrm{k}, \mathrm{n}, \mathrm{y})\) finds the probability p such that the sum of the \(y=\operatorname{btdtr}(a, b, x)\) returns the area from zero to \(x\) under the beta \(x=b t d t r i(a, b, p)\) returns the pth quantile of the beta distribution. It is \(y=f d t r(d f n, d f d, x)\) returns the area from zero to \(x\) under the \(F\) density \(y=f d t r c(d f n, d f d, x)\) returns the complemented \(F\) distribution function. \(x=f d t r i(d f n, d f d, p)\) finds the \(F\) density argument \(x\) such that \(y=\operatorname{gdtr}(a, b, x)\) returns the integral from zero to \(x\) of the gamma \(y=\operatorname{gdtrc}(a, b, x)\) returns the integral from \(x\) to infinity of the gamma \\
\(\mathrm{y}=\mathrm{nbdtr}(\mathrm{k}, \mathrm{n}, \mathrm{p})\) returns the sum of the terms 0 through k of the
\end{tabular} \\
\hline & Continued on next page \\
\hline
\end{tabular}

Table 3.19 - continued from previous page
nbdtrc(x1, x2) \(y=n b d t r c(k, n, p)\) returns the sum of the terms \(k+1\) to infinity of the nbdtri \((x 1, x 2) \quad \mathrm{p}=\mathrm{nbdtri}(\mathrm{k}, \mathrm{n}, \mathrm{y})\) finds the argument p such that \(\operatorname{nbdtr}(\mathrm{k}, \mathrm{n}, \mathrm{p})=\mathrm{y}\). \(\operatorname{pdtr}(x 1) \quad y=\operatorname{pdtr}(k, m)\) returns the sum of the first \(k\) terms of the Poisson pdtrc(x1) \(\quad y=\operatorname{pdtrc}(k, m)\) returns the sum of the terms from \(k+1\) to infinity of the pdtri(x1) m=pdtri(k,y) returns the Poisson variable \(m\) such that the sum stdtr(x1) \(\quad \mathrm{p}=\operatorname{stdtr}(\mathrm{df}, \mathrm{t})\) returns the integral from minus infinity to t of the Student t stdtridf( x 1 ) \(\quad \mathrm{t}=\operatorname{stdtridf}(\mathrm{p}, \mathrm{t})\) returns the argument \(d f\) such that \(\operatorname{stdtr}(\mathrm{df}, \mathrm{t})\) is equal to p .
stdtrit(x1) \(\mathrm{t}=\operatorname{stdtrit}(\mathrm{df}, \mathrm{p})\) returns the argument t such that \(\operatorname{stdtr}(\mathrm{df}, \mathrm{t})\) is equal to p .
chdtr(x1)
chdtrc(x1)
chdtri(x1)
ndtr()
ndtri()
smirnov(x1)
smirnovi(x1)
kolmogorov()
kolmogi() \(\mathrm{p}=\operatorname{chdtr}(\mathrm{v}, \mathrm{x})\) Returns the area under the left hand tail (from 0 to x ) of the Chi \(\mathrm{p}=\operatorname{chdtr}(\mathrm{v}, \mathrm{x})\) returns the area under the right hand tail (from x to \(\mathrm{x}=\) chdtri \((\mathrm{v}, \mathrm{p})\) returns the argument x such that \(\operatorname{chdtrc}(\mathrm{v}, \mathrm{x})\) is equal \(\mathrm{y}=\operatorname{ndtr}(\mathrm{x})\) returns the area under the standard Gaussian probability \(\mathrm{x}=\mathrm{ndtri}(\mathrm{y})\) returns the argument x for which the area udnder the \(\mathrm{y}=\mathrm{smirnov}(\mathrm{n}, \mathrm{e})\) returns the exact Kolmogorov-Smirnov complementary \(\mathrm{e}=\operatorname{smirnovi}(\mathrm{n}, \mathrm{y})\) returns e such that \(\operatorname{smirnov}(\mathrm{n}, \mathrm{e})=y\). \(\mathrm{p}=\) kolmogorov(y) returns the complementary cumulative distribution \(y=\operatorname{kolmogi}(p)\) returns \(y\) such that \(\operatorname{kolmogorov}(y)=p\) tklmbda(x1)
scipy.special.bdtr ( \(x 1, x 2, x 3[\), out \(])\)
\(\mathrm{y}=\operatorname{bdtr}(\mathrm{k}, \mathrm{n}, \mathrm{p})\) returns the sum of the terms 0 through k of the Binomial probability density: \(\operatorname{sum}\left(\mathrm{nCj} \mathrm{p}^{* *} \mathrm{j}\right.\) \(\left.(1-p)^{* *}(\mathrm{n}-\mathrm{j}), \mathrm{j}=0 . . \mathrm{k}\right)\)
scipy.special.bdtrc ( \(x 1, x 2, x 3[\), out \(]\) )
\(\mathrm{y}=\operatorname{bdtrc}(\mathrm{k}, \mathrm{n}, \mathrm{p})\) returns the sum of the terms \(\mathrm{k}+1\) through n of the Binomial probability density: \(\operatorname{sum}\left(\mathrm{nCj} \mathrm{p}^{* *} \mathrm{j}^{2}\right.\) \(\left.(1-\mathrm{p})^{* *}(\mathrm{n}-\mathrm{j}), \mathrm{j}=\mathrm{k}+1 . . \mathrm{n}\right)\)
scipy.special.bdtri ( \(x 1, x 2, x 3[\), out \(]\) )
\(\mathrm{p}=\mathrm{bdtri}(\mathrm{k}, \mathrm{n}, \mathrm{y})\) finds the probability p such that the sum of the terms 0 through k of the Binomial probability density is equal to the given cumulative probability \(y\).
scipy.special.btdtr ( \(x 1, x 2, x 3[\),out \(]\) )
\(y=\operatorname{btdtr}(a, b, x)\) returns the area from zero to \(x\) under the beta density function:

scipy.special.btdtri ( \(x 1, x 2, x 3[\), out \(]\) )
\(\mathrm{x}=\mathrm{btdtri}(\mathrm{a}, \mathrm{b}, \mathrm{p})\) returns the pth quantile of the beta distribution. It is effectively the inverse of btdtr returning the value of \(x\) for which \(\operatorname{btdtr}(a, b, x)=p\). SEE ALSO betaincinv
scipy.special.fdtr ( \(x 1, x 2, x 3[\), out \(]\) )
\(\mathrm{y}=\mathrm{fdtr}(\mathrm{dfn}, \mathrm{dfd}, \mathrm{x})\) returns the area from zero to x under the F density function (also known as Snedcor's density
or the variance ratio density). This is the density of \(X=\) (unum/dfn)/(uden/dfd), where unum and uden are random variables having Chi square distributions with dfn and dfd degrees of freedom, respectively.
scipy.special.fdtrc ( \(x 1, x 2, x 3[\), out \(]\) )
\(\mathrm{y}=\mathrm{fdtrc}(\mathrm{dfn}, \mathrm{dfd}, \mathrm{x})\) returns the complemented F distribution function.
scipy.special.fdtri ( \(x 1, x 2, x 3[\), out \(]\) )
\(x=f d t r i(d f n, d f d, p)\) finds the \(F\) density argument \(x\) such that \(\operatorname{fdtr}(d f n, d f d, x)=p\).
scipy.special.gdtr ( \(x 1, x 2, x 3[\), out \(]\) )
\(y=g \operatorname{dtr}(a, b, x)\) returns the integral from zero to \(x\) of the gamma probability density function: \(a^{* *} b / g a m m a(b) *\)
integral( \(\left.\mathrm{t}^{* *}(\mathrm{~b}-1) \exp (-\mathrm{at}), \mathrm{t}=0 . . \mathrm{x}\right)\). The arguments a and b are used differently here than in other definitions.
scipy.special.gdtrc ( \(x 1, x 2, x 3[\), out \(]\) )
\(y=g d t r c(a, b, x)\) returns the integral from \(x\) to infinity of the gamma probability density function. SEE gdtr, gdtri
```

scipy.special.gdtria(x1, x2, x3[,out])
scipy.special.gdtrib (xl, x2, x3[,out])
scipy.special.gdtrix(xl, x2, x3[,out])

```
scipy.special.nbdtr ( \(x 1, x 2, x 3[\), out \(])\)
    \(\mathrm{y}=\mathrm{nbdtr}(\mathrm{k}, \mathrm{n}, \mathrm{p})\) returns the sum of the terms 0 through k of the negative binomial distribution: \(\operatorname{sum}((\mathrm{n}+\mathrm{j}-1) \mathrm{Cj}\)
    \(\left.p^{* *} \mathrm{n}(1-\mathrm{p})^{* *}{ }_{j}, \mathrm{j}=0 . . \mathrm{k}\right)\). In a sequence of Bernoulli trials this is the probability that k or fewer failures precede the
    nth success.
scipy.special.nbdtrc ( \(x 1, x 2, x 3[\), out \(])\)
    \(y=\operatorname{nbdtrc}(k, n, p)\) returns the sum of the terms \(k+1\) to infinity of the negative binomial distribution.
scipy.special.nbdtri ( \(x 1, x 2, x 3[\), out \(]\) )
    \(\mathrm{p}=\mathrm{nbdtri}(\mathrm{k}, \mathrm{n}, \mathrm{y})\) finds the argument p such that \(\operatorname{nbdtr}(\mathrm{k}, \mathrm{n}, \mathrm{p})=\mathrm{y}\).
scipy.special.pdtr (xl, \(x 2[\), out \(]\) )
    \(y=\operatorname{pdtr}(k, m)\) returns the sum of the first \(k\) terms of the Poisson distribution: \(\operatorname{sum}(\exp (-m) * m * * j j!, j=0 . . k)=\)
    gammaince ( \(\mathrm{k}+1, \mathrm{~m}\) ). Arguments must both be positive and k an integer.
scipy.special.pdtrc ( \(x 1, x 2[\),out \(]\) )
    \(\mathrm{y}=\operatorname{pdtrc}(\mathrm{k}, \mathrm{m})\) returns the sum of the terms from \(\mathrm{k}+1\) to infinity of the Poisson distribution: \(\operatorname{sum}\left(\exp (-m) * \mathrm{~m}^{* *} \mathrm{j}\right.\)
    \(/ \mathrm{j}!, \mathrm{j}=\mathrm{k}+1\)..inf \()=\) gammainc \((\mathrm{k}+1, \mathrm{~m})\). Arguments must both be positive and k an integer.
scipy.special.pdtri (xl, \(x 2[\),out \(]\) )
    \(\mathrm{m}=\operatorname{pdtri}(\mathrm{k}, \mathrm{y})\) returns the Poisson variable m such that the sum from 0 to k of the Poisson density is equal to the
    given probability \(y\) : calculated by gammaincinv \((k+1, y) . k\) must be a nonnegative integer and y between 0 and
    1.
scipy.special.stdtr ( \(x 1, x 2[\), out \(]\) )
    \(\mathrm{p}=\operatorname{stdtr}(\mathrm{df}, \mathrm{t})\) returns the integral from minus infinity to t of the Student t distribution with \(\mathrm{df}>0\) degrees of
    freedom: gamma \(((\mathrm{df}+1) / 2) /(\operatorname{sqrt}(\mathrm{df} * \mathrm{pi}) * \operatorname{gamma}(\mathrm{df} / 2)) * \operatorname{integral}((1+\mathrm{x} * * 2 / \mathrm{df}) * *(-\mathrm{df} / 2-1 / 2), \mathrm{x}=-\mathrm{inf} . \mathrm{t})\)
scipy.special.stdtridf ( \(x 1, x 2[\), out \(]\) )
    \(\mathrm{t}=\operatorname{stdtridf}(\mathrm{p}, \mathrm{t})\) returns the argument df such that \(\operatorname{stdtr}(\mathrm{df}, \mathrm{t})\) is equal to p .
scipy.special.stdtrit ( \(x 1, x 2[\), out \(]\) )
    \(\mathrm{t}=\) stdtrit(df,p) returns the argument t such that \(\operatorname{stdtr}(\mathrm{df}, \mathrm{t})\) is equal to p .
scipy.special.chdtr ( \(x 1, x 2[\), out \(]\) )
    \(\mathrm{p}=\operatorname{chdtr}(\mathrm{v}, \mathrm{x})\) Returns the area under the left hand tail (from 0 to x ) of the Chi square probability density function
    with v degrees of freedom: \(1 /(2 * *(\mathrm{v} / 2) * \operatorname{gamma}(\mathrm{v} / 2)) * \operatorname{integral}(\mathrm{t} * *(\mathrm{v} / 2-1) * \exp (-\mathrm{t} / 2), \mathrm{t}=0 . . \mathrm{x})\)
scipy.special. chdtrc ( \(x 1, x 2[\), out \(]\) )
    \(\mathrm{p}=\operatorname{chdtrc}(\mathrm{v}, \mathrm{x})\) returns the area under the right hand tail (from x to infinity) of the Chi square probability density
    function with v degrees of freedom: \(1 /\left(2^{* *}(\mathrm{v} / 2) * \operatorname{gamma}(\mathrm{v} / 2)\right) * \operatorname{integral}(\mathrm{t} * *(\mathrm{v} / 2-1) * \exp (-\mathrm{t} / 2), \mathrm{t}=\mathrm{x} . . \mathrm{inf})\)
scipy.special.chdtri ( \(x 1, x 2[\), out \(]\) )
    \(\mathrm{x}=\operatorname{chdtri}(\mathrm{v}, \mathrm{p})\) returns the argument x such that \(\operatorname{chdtr}(\mathrm{v}, \mathrm{x})\) is equal to p .
scipy.special.ndtr ( \(x[\),out \(]\) )
    \(\mathrm{y}=\mathrm{ndtr}(\mathrm{x})\) returns the area under the standard Gaussian probability density function, integrated from minus
    infinity to \(\mathrm{x}: 1 / \operatorname{sqrt}(2 * \mathrm{pi}) * \operatorname{integral}(\exp (-\mathrm{t} * * 2 / 2), \mathrm{t}=-\mathrm{inf} . . \mathrm{x})\)
scipy.special.ndtri ( \(x\) [, out \(]\) )
\(\mathrm{x}=\mathrm{ndtri}(\mathrm{y})\) returns the argument x for which the area udnder the Gaussian probability density function (integrated from minus infinity to \(x\) ) is equal to \(y\).
```

scipy.special.smirnov (xl, x2[,out])

```
\(\mathrm{y}=\operatorname{smirnov}(\mathrm{n}, \mathrm{e})\) returns the exact Kolmogorov-Smirnov complementary cumulative distribution function (Dn+ or Dn-) for a one-sided test of equality between an empirical and a theoretical distribution. It is equal to the probability that the maximum difference between a theoretical distribution and an empirical one based on \(n\) samples is greater than e.
```

scipy.special.smirnovi (xl, x2[,out])
e=smirnovi(n,y) returns e such that smirnov(n,e)=y.
scipy.special.kolmogorov (x[,out])
scipy.special.kolmogi (x[,out])
y=kolmogi(p) returns y such that kolmogorov (y) = p
scipy.special.tklmbda(xl, x2[,out])

```
    \(\mathrm{p}=\) kolmogorov ( y ) returns the complementary cumulative distribution function of Kolmogorov's limiting distri-
    bution ( Kn * for large n ) of a two-sided test for equality between an empirical and a theoretical distribution. It is
    equal to the (limit as \(n->\) infinity of the) probability that \(\operatorname{sqrt}(\mathrm{n}) * \max\) absolute deviation \(>y\).

\section*{Gamma and Related Functions}
\begin{tabular}{|c|c|}
\hline gamma() & \(\mathrm{y}=\mathrm{gamma}(\mathrm{z})\) returns the gamma function of the argument. The gamma \\
\hline gammaln() & \(y=\operatorname{gammaln}(\mathrm{z})\) returns the base e logarithm of the absolute value of the \\
\hline gammainc(x1) & \(y=\) gammainc ( \(\mathrm{a}, \mathrm{x}\) ) returns the incomplete gamma integral defined as \\
\hline gammaincinv(x1) & gammaincinv ( \(a, y\) ) returns \(x\) such that gammainc \((a, x)=y\). \\
\hline gammaincc(x1) & \(y=\) gammaincc \((a, x)\) returns the complemented incomplete gamma integral \\
\hline gammainccinv(x1) & \(x=\) gammainccinv \((a, y)\) returns \(x\) such that gammaincc \((a, x)=y\). \\
\hline beta(x1) & \(\mathrm{y}=\mathrm{beta}(\mathrm{a}, \mathrm{b})\) returns gamma(a)* gamma \({ }^{\text {(b) / gamma }}\) (a+b) \\
\hline betaln(x1) & \(y=\operatorname{betaln}(a, b)\) returns the natural logarithm of the absolute value of \\
\hline betainc(x1, x2) & \(y=\) betainc \((a, b, x)\) returns the incomplete beta integral of the \\
\hline betaincinv(x1, x2) & \(x=\) betaincinv \((a, b, y)\) returns \(x\) such that betainc \((a, b, x)=y\). \\
\hline psi() & \(y=p s i(z)\) is the derivative of the logarithm of the gamma function \\
\hline rgamma() & \(y=r g a m m a(z)\) returns one divided by the gamma function of \(x\). \\
\hline polygamma(n, x) & Polygamma function which is the nth derivative of the digamma (psi) \\
\hline multigammaln(a, d) & returns the log of multivariate gamma, also sometimes called the \\
\hline
\end{tabular}
scipy.special.gamma ( \(x\) [, out \(]\) )
\(y=g a m m a(z)\) returns the gamma function of the argument. The gamma function is often referred to as the generalized factorial since \(z^{*} \operatorname{gamma}(z)=\operatorname{gamma}(z+1)\) and \(\operatorname{gamma}(n+1)=n\) ! for natural number \(n\).
scipy.special.gammaln ( \(x\) [, out \(]\) )
\(\mathrm{y}=\operatorname{gammaln}(\mathrm{z})\) returns the base e logarithm of the absolute value of the gamma function of \(\mathrm{z}: \ln (|\operatorname{gamma}(\mathrm{z})|)\)
scipy.special.gammainc ( \(x 1, x 2[\), out \(]\) )
\(\mathrm{y}=\operatorname{gammainc}(\mathrm{a}, \mathrm{x})\) returns the incomplete gamma integral defined as \(1 / \operatorname{gamma}(\mathrm{a}) * \operatorname{integral}\left(\exp (-\mathrm{t}) * \mathrm{t}^{* *}(\mathrm{a}-1)\right.\), \(\mathrm{t}=0 . . \mathrm{x})\). Both arguments must be positive.
```

scipy.special.gammaincinv(xl, x2[,out])

```
\(\operatorname{gammaincinv}(\mathrm{a}, \mathrm{y})\) returns x such that gammainc \((\mathrm{a}, \mathrm{x})=\mathrm{y}\).
```

scipy.special.gammaincc (xl, x2[,out])

```
\(y=g a m m a i n c c(a, x)\) returns the complemented incomplete gamma integral defined as \(1 / \operatorname{gamma}(a) *\)
integral \(\left(\exp (-t) * t^{* *}(\mathrm{a}-1), \mathrm{t}=\mathrm{x} . . \inf \right)=1-\operatorname{gammainc}(\mathrm{a}, \mathrm{x})\). Both arguments must be positive.
```

scipy.special.gammainccinv(x1, x2[,out])

```
\(x=\operatorname{gammainccinv}(a, y)\) returns \(x\) such that gammaincc \((a, x)=y\).
```

scipy.special.beta (xl, x2[,out])
y=beta(a,b) returns gamma(a) * gamma(b)/gamma(a+b)
scipy.special.betaln (xl, x2[,out])
y=betaln(a,b) returns the natural logarithm of the absolute value of beta: 採(|beta(x)|).
scipy.special.betainc (}x1,x2,x3[,out]
y=betainc(a,b,x) returns the incomplete beta integral of the arguments, evaluated from zero to x:
gamma(a+b) / (gamma(a)*gamma(b))* integral(t**(a-1) (1-t)**(b-1), t=0..x).
scipy.special.betaincinv (}x1,x2,x3[,out]
x=betaincinv(a,b,y) returns x such that betainc(a,b,x)=y.
scipy.special.psi (x[,out])
y=psi(z) is the derivative of the logarithm of the gamma function evaluated at z (also called the digamma
function).
scipy.special.rgamma(x[,out])
y=rgamma(z) returns one divided by the gamma function of x.
scipy.special.polygamma(n, x)
Polygamma function which is the nth derivative of the digamma (psi) function.
scipy.special.multigammaln (a, d)
returns the log of multivariate gamma, also sometimes called the generalized gamma.

```

\section*{Parameters}
a : ndarray
the multivariate gamma is computed for each item of a
d : int
the dimension of the space of integration.

\section*{Returns}
res: ndarray
the values of the log multivariate gamma at the given points a.

\section*{Notes}

Reference:
R. J. Muirhead, Aspects of multivariate statistical theory (Wiley Series in probability and mathematical statistics).

\section*{Error Function and Fresnel Integrals}
```

erf() y=erf(z) returns the error function of complex argument defined as
erfc() y=erfc(x) returns 1 - erf(x).
erfinv(y)
erfcinv(y)
erf_zeros(nt) Compute nt complex zeros of the error function erf(z).
fresnel(out1) (ssa,cca)=fresnel(z) returns the fresnel sin and cos integrals: integral(sin(pi/2
fresnel_zeros(nt) Compute nt complex zeros of the sine and cosine fresnel integrals
modfresnelp(out1) (fp,kp)=modfresnelp(x) returns the modified fresnel integrals F_+(x) and K_+(x)
modfresnelm(out1) (fm,km)=modfresnelp(x) returns the modified fresnel integrals F_-(x) amd K_-(x)
scipy.special.erf (x[,out])
y=erf(z) returns the error function of complex argument defined as as 2/sqrt(pi)*integral(exp(-t**2),t=0..z)

```
```

scipy.special.erfc(x[,out])
y=erfc(x) returns 1- erf(x).
scipy.special.erfinv(y)
scipy.special.erfcinv(y)
scipy.special.erf_zeros(nt)
Compute nt complex zeros of the error function erf(z).
scipy.special.fresnel (x[,out1,out2])
(ssa,cca)=fresnel(z) returns the fresnel sin and cos integrals: integral(sin(pi/2* t**2),t=0..z) and inte-
gral(cos(pi/2*t**2),t=0..z) for real or complex z.
scipy.special.fresnel_zeros(nt)
Compute nt complex zeros of the sine and cosine fresnel integrals S(z) and C(z).
scipy.special.modfresnelp (x[,outl,out 2])
(fp,kp)=modfresnelp(x) returns the modified fresnel integrals F_++(x) and K_+(x) as
fp=integral(exp(1j*t*t),t=x..inf) and kp=1/sqrt(pi)*exp(-1j*(x*x+pi/4))*fp
scipy.special.modfresnelm(x[,out1,out2])
(fm,km)=modfresnelp(x) returns the modified fresnel integrals F_-(x) amd K_-(x) as fp=integral(exp(-
lj*t*t),t=x..inf) and kp=1/sqrt(pi)*exp(1j*(x*x+pi/4))*fp

```

These are not universal functions:
```

 fresnelc_zeros(nt) Compute nt complex zeros of the cosine fresnel integral C(z).
 fresnels_zeros(nt) Compute nt complex zeros of the sine fresnel integral S(z).
 scipy.special.fresnelc_zeros(nt)
Compute nt complex zeros of the cosine fresnel integral C(z).
scipy.special.fresnels_zeros(nt)
Compute nt complex zeros of the sine fresnel integral S(z).

```

\section*{Legendre Functions}
\begin{tabular}{ll}
\begin{tabular}{l} 
lpmv(x1, x2) \\
sph_harm
\end{tabular} & \begin{tabular}{l}
\(\mathrm{y}=\operatorname{lpmv}(\mathrm{m}, \mathrm{v}, \mathrm{x})\) returns the associated legendre function of integer order \\
Compute spherical harmonics.
\end{tabular} \\
\hline
\end{tabular}
scipy.special.lpmv ( \(x 1, x 2, x 3[\), out \(])\)
\(\mathrm{y}=\operatorname{lpmv}(\mathrm{m}, \mathrm{v}, \mathrm{x})\) returns the associated legendre function of integer order m and real degree v (s.t. \(\mathrm{v}>-\mathrm{m}-1\) or \(\mathrm{v}<\mathrm{m}):|\mathrm{x}|<=1\).
scipy.special.sph_harm
Compute spherical harmonics.
This is a ufunc and may take scalar or array arguments like any other ufunc. The inputs will be broadcasted against each other.

\section*{Parameters}
\(\mathbf{m}\) : int
\(|\mathrm{m}|<=\mathrm{n}\); the order of the harmonic.
\(\mathbf{n}\) : int
where \(n>=0\); the degree of the harmonic. This is often called 1 (lower case \(L\) ) in descriptions of spherical harmonics.
theta : float
[ \(0,2 *\) pi]; the azimuthal (longitudinal) coordinate.
phi : float
[0, pi]; the polar (colatitudinal) coordinate.

\section*{Returns}
y_mn : complex float
The harmonic \(\$ \mathrm{Y}^{\wedge} \mathrm{m} \_\mathrm{n} \$\) sampled at theta and \(p h i\)

\section*{Notes}

There are different conventions for the meaning of input arguments theta and phi. We take theta to be the azimuthal angle and phi to be the polar angle. It is common to see the opposite convention - that is theta as the polar angle and \(p h i\) as the azimuthal angle.
These are not universal functions:
\begin{tabular}{ll}
\hline\(l p n(n, z)\) & Compute sequence of Legendre functions of the first kind (polynomials), \\
\(l q n(n, z)\) & Compute sequence of Legendre functions of the second kind, \\
\(\operatorname{lpmn}(\mathrm{m}, \mathrm{n}, \mathrm{z})\) & Associated Legendre functions of the first kind, Pmn \((\mathrm{z})\) and its \\
\(\operatorname{lqmn}(\mathrm{m}, \mathrm{n}, \mathrm{z})\) & Associated Legendre functions of the second kind, Qmn \((\mathrm{z})\) and its \\
\hline scipy.special.lpn \((n, z)\)
\end{tabular}
scipy.special.lpn \((n, z)\)
Compute sequence of Legendre functions of the first kind (polynomials), \(\operatorname{Pn}(\mathrm{z})\) and derivatives for all degrees from 0 to n (inclusive).

See also special.legendre for polynomial class.
scipy.special.lqn ( \(n, z\) )
Compute sequence of Legendre functions of the second \(\operatorname{kind}, \mathrm{Qn}(\mathrm{z})\) and derivatives for all degrees from 0 to n (inclusive).
scipy.special.lpmn ( \(m, n, z\) )
Associated Legendre functions of the first kind, \(\operatorname{Pmn}(z)\) and its derivative, \(\operatorname{Pmn}{ }^{\prime}(\mathrm{z})\) of order m and degree n . Returns two arrays of size \((m+1, n+1)\) containing \(\operatorname{Pmn}(z)\) and \(\operatorname{Pmn}{ }^{\prime}(z)\) for all orders from \(0 . . \mathrm{m}\) and degrees from \(0 . . n\).
z can be complex.

\section*{Parameters}
m : int
\(|\mathrm{m}|<=\mathrm{n}\); the order of the Legendre function
\(\mathbf{n}\) : int
where \(n>=0\); the degree of the Legendre function. Often called 1 (lower case L) in descriptions of the associated Legendre function
\(\mathbf{z}\) : float or complex
input value

\section*{Returns}

Pmn_z: \((\mathrm{m}+1, \mathrm{n}+1)\) array
Values for all orders \(0 . . \mathrm{m}\) and degrees \(0 . . \mathrm{n}\)
Pmn_d_z: \((\mathrm{m}+1, \mathrm{n}+1)\) array
Derivatives for all orders \(0 . . \mathrm{m}\) and degrees \(0 . . \mathrm{n}\)
scipy.special.lqmn ( \(m, n, z\) )
Associated Legendre functions of the second \(\operatorname{kind}, \mathrm{Qmn}(\mathrm{z})\) and its derivative, Qmn ' \((\mathrm{z})\) of order m and degree n . Returns two arrays of size \((\mathrm{m}+1, \mathrm{n}+1)\) containing \(\operatorname{Qmn}(\mathrm{z})\) and Qmn ' \((\mathrm{z})\) for all orders from \(0 . . \mathrm{m}\) and degrees from 0..n.
z can be complex.

\section*{Orthogonal polynomials}

The following functions evaluate values of orthogonal polynomials:
\begin{tabular}{ll}
\hline eval_legendre & Evaluate Legendre polynomial at a point. \\
eval_chebyt & Evaluate Chebyshev T polynomial at a point. \\
eval_chebyu & Evaluate Chebyshev U polynomial at a point. \\
eval_chebyc & Evaluate Chebyshev C polynomial at a point. \\
eval_chebys & Evaluate Chebyshev S polynomial at a point. \\
eval_jacobi & Evaluate Jacobi polynomial at a point. \\
eval__laguerre & Evaluate Laguerre polynomial at a point. \\
eval_genlaguerre & Evaluate generalized Laguerre polynomial at a point. \\
eval_hermite & Evaluate Hermite polynomial at a point. \\
eval_hermitenorm & Evaluate normalized Hermite polynomial at a point. \\
eval_gegenbauer & Evaluate Gegenbauer polynomial at a point. \\
eval_sh_legendre & Evaluate shifted Legendre polynomial at a point. \\
eval_sh_chebyt & Evaluate shifted Chebyshev T polynomial at a point. \\
eval_sh_chebyu & Evaluate shifted Chebyshev U polynomial at a point. \\
eval_sh_jacobi & Evaluate shifted Jacobi polynomial at a point. \\
\hline
\end{tabular}

\section*{scipy.special.eval_legendre ()}

Evaluate Legendre polynomial at a point.
```

scipy.special.eval_chebyt()

```

Evaluate Chebyshev T polynomial at a point.
This routine is numerically stable for \(x\) in \([-1,1]\) at least up to order 10000 .
```

scipy.special.eval_chebyu()

```

Evaluate Chebyshev U polynomial at a point.
```

scipy.special.eval_chebyc()

```

Evaluate Chebyshev C polynomial at a point.
```

scipy.special.eval_chebys()

```

Evaluate Chebyshev S polynomial at a point.
scipy.special.eval_jacobi()

Evaluate Jacobi polynomial at a point.
scipy.special.eval_laguerre()
Evaluate Laguerre polynomial at a point.
```

scipy.special.eval_genlaguerre()

```

Evaluate generalized Laguerre polynomial at a point.
```

scipy.special.eval_hermite()

```

Evaluate Hermite polynomial at a point.
scipy.special.eval_hermitenorm()
Evaluate normalized Hermite polynomial at a point.
```

scipy.special.eval_gegenbauer()

```

Evaluate Gegenbauer polynomial at a point.
```

scipy.special.eval_sh_legendre()

```

Evaluate shifted Legendre polynomial at a point.
```

scipy.special.eval_sh_chebyt()

```

Evaluate shifted Chebyshev T polynomial at a point.
```

scipy.special.eval_sh_chebyu()

```

Evaluate shifted Chebyshev U polynomial at a point.
scipy.special.eval_sh_jacobi()
Evaluate shifted Jacobi polynomial at a point.
The functions below, in turn, return orthopolyld objects, which functions similarly as numpy.polyld. The orthopolyld class also has an attribute weights which returns the roots, weights, and total weights for the appropriate form of Gaussian quadrature. These are returned in an \(n \times 3\) array with roots in the first column, weights in the second column, and total weights in the final column.
\begin{tabular}{|c|c|}
\hline legendre(n[, monic]) & Returns the nth order Legendre polynomial, \(\mathrm{P} \_\mathrm{n}(\mathrm{x})\), orthogonal over \\
\hline chebyt(n[, monic]) & Return nth order Chebyshev polynomial of first kind, \(\mathrm{Tn}(\mathrm{x})\). Orthogona \\
\hline chebyu(n[, mon & Return nth order Chebyshev polynomial of second kind, Un(x). Orthogonal \\
\hline chebyc(n[, mon & Return nth order Chebyshev polynomial of first kind, \(\mathrm{Cn}(\mathrm{x})\). Orthogonal \\
\hline chebys(n[, mon & Return nth order Chebyshev polynomial of second kind, \(\operatorname{Sn}(\mathrm{x})\). Orthogonal \\
\hline jacobi(n, alpha, beta[, monic] & Returns the nth order Jacobi polynomial, \(\mathrm{P}^{\wedge}\) (alpha, beta)_n(x) \\
\hline laguerre(n[, monic]) & Return the nth order Laguerre polynoimal, L_n(x), orthogonal over \\
\hline genlaguerre(n, alpha[, & Returns the nth order generalized (associated) Laguerre polynomial, \\
\hline hermite(n[, monic]) & Return the nth order Hermite polynomial, H_n(x), orthogonal over \\
\hline hermitenorm(n[, monic]) & Return the nth order normalized Hermite polynomial, He_n(x), orthogonal \\
\hline gegenbauer(n, alpha[, monic]) & Return the nth order Gegenbauer (ultraspherical) polynomial, \\
\hline sh_legendre(n[, monic]) & Returns the nth order shifted Legendre polynomial, \(\mathrm{P}^{\wedge *}\) _n(x), orthogonal \\
\hline sh_chebyt(n[, monic]) & Return nth order shifted Chebyshev polynomial of first kind, \(\mathrm{Tn}(\mathrm{x})\). \\
\hline sh_chebyu(n[, monic]) & Return nth order shifted Chebyshev polynomial of second kind, Un(x). \\
\hline sh_jacobi(n, p, q[, monic]) & Returns the nth order Jacobi polynomial, G_n(p,q,x) \\
\hline
\end{tabular}
scipy.special.legendre ( \(n\), monic=0)
Returns the nth order Legendre polynomial, \(\mathrm{P} \_\mathrm{n}(\mathrm{x})\), orthogonal over \([-1,1]\) with weight function 1.
scipy.special. chebyt ( \(n\), monic \(=0\) )
Return nth order Chebyshev polynomial of first kind, \(\operatorname{Tn}(\mathrm{x})\). Orthogonal over \([-1,1]\) with weight function \(\left(1-x^{* *} 2\right) * *(-1 / 2)\).
scipy.special. chebyu ( \(n\), monic \(=0\) )
Return nth order Chebyshev polynomial of second kind, \(\operatorname{Un}(\mathrm{x})\). Orthogonal over \([-1,1]\) with weight function \((1-x * * 2) * *(1 / 2)\).
scipy.special. chebyc ( \(n\), monic \(=0\) )
Return nth order Chebyshev polynomial of first kind, \(\mathrm{Cn}(\mathrm{x})\). Orthogonal over [-2,2] with weight function \((1-(x / 2) * * 2) * *(-1 / 2)\).
scipy.special. chebys ( \(n\), monic \(=0\) )
Return nth order Chebyshev polynomial of second kind, \(\operatorname{Sn}(\mathrm{x})\). Orthogonal over [-2,2] with weight function \(\left(1-(\mathrm{x} /)^{* *} 2\right)^{* *}(1 / 2)\).
scipy.special.jacobi ( \(n\), alpha, beta, monic=0)
Returns the nth order Jacobi polynomial, \(\mathrm{P}^{\wedge}(\) alpha,beta \() \mathrm{n}(\mathrm{x})\) orthogonal over \([-1,1]\) with weighting function \((1-x)^{* *}\) alpha \((1+x)^{* *}\) beta with alpha, beta \(>-1\).
scipy.special.laguerre ( \(n\), monic=0)
Return the \(n\)th order Laguerre polynoimal, \(\mathrm{L} \_\mathrm{n}(\mathrm{x})\), orthogonal over [0,inf) with weighting function \(\exp (-\mathrm{x})\)
scipy.special.genlaguerre ( \(n\), alpha, monic=0)
Returns the nth order generalized (associated) Laguerre polynomial, \(\mathrm{L}^{\wedge}(\operatorname{alpha}) \_\mathrm{n}(\mathrm{x})\), orthogonal over [0,inf) with weighting function \(\exp (-x) x^{* *}\) alpha with alpha \(>-1\)
scipy.special. hermite ( \(n\), monic=0)
Return the nth order Hermite polynomial, H_n(x), orthogonal over (-inf,inf) with weighting function exp(-x**2)
scipy.special.hermitenorm ( \(n\), monic \(=0\) )
Return the nth order normalized Hermite polynomial, He_n(x), orthogonal over (-inf,inf) with weighting function \(\exp \left(-(\mathrm{x} / 2)^{* *} 2\right)\)
```

scipy.special.gegenbauer (n, alpha,monic=0)

```

Return the nth order Gegenbauer (ultraspherical) polynomial, \(\mathrm{C}^{\wedge}(\mathrm{alpha}) \_\mathrm{n}(\mathrm{x})\), orthogonal over [-1,1] with weighting function \(\left(1-x^{* *} 2\right) * *(\) alpha \(-1 / 2)\) with alpha \(>-1 / 2\)
```

scipy.special.sh_legendre(n,monic=0)

```

Returns the \(n\)th order shifted Legendre polynomial, \(\mathrm{P}^{\wedge *} \_\mathrm{n}(\mathrm{x})\), orthogonal over \([0,1]\) with weighting function 1.
scipy.special.sh_chebyt ( \(n\), monic=0)
Return nth order shifted Chebyshev polynomial of first kind, \(\operatorname{Tn}(\mathrm{x})\). Orthogonal over \([0,1]\) with weight function (x-x**2)**(-1/2).
```

scipy.special.sh_chebyu(n,monic=0)

```

Return nth order shifted Chebyshev polynomial of second kind, Un(x). Orthogonal over [0,1] with weight function ( \(\mathrm{x}-\mathrm{x} * * 2\) ) \({ }^{* *}(1 / 2)\).
scipy.special.sh_jacobi( \(n, p, q\), monic \(=0\) )
Returns the \(n\)th order Jacobi polynomial, \(G \_n(p, q, x)\) orthogonal over \([0,1]\) with weighting function \((1-x) * *(p-q)\) \((\mathrm{x})^{* *}(\mathrm{q}-1)\) with \(\mathrm{p}>\mathrm{q}-1\) and \(\mathrm{q}>0\).

Warning: Large-order polynomials obtained from these functions are numerically unstable. orthopolyld objects are converted to polyld, when doing arithmetic. numpy.polyld works in power basis and cannot represent high-order polynomials accurately, which can cause significant inaccuracy.

\section*{Hypergeometric Functions}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { hyp2f1(x1, } \\
& \text { x2, x3) }
\end{aligned}
\] & \(y=h y p 2 f 1(a, b, c, z)\) returns the gauss hypergeometric function \\
\hline \[
\begin{aligned}
& \text { hyp1f1(x1, } \\
& \text { x2) }
\end{aligned}
\] & \(y=h y p 1 f 1(a, b, x)\) returns the confluent hypergeometeric function \\
\hline \[
\begin{aligned}
& \text { hyperu(x1, } \\
& \text { x2) }
\end{aligned}
\] & \(y=h y p e r u(a, b, x)\) returns the confluent hypergeometric function of the \\
\hline hyp0f1(v, z) & Confluent hypergeometric limit function 0F1. \\
\hline hyp2f0(x1, & ( \(\mathrm{y}, \mathrm{err}\) )=hyp2f0(a,b,x,type) returns (y,err) with the hypergeometric function 2 F 0 in y and an error estimate in err. The input type determines a convergence factor and \\
\hline hyp1f2(x1, & (y,err)=hyp1f2(a,b,c,x) returns (y,err) with the hypergeometric function 1F2 in y and an error \\
\hline x2, x3, out1) & estimate in err. \\
\hline \begin{tabular}{l}
hyp 3 f 0 (x1, \\
x2, x3, out1)
\end{tabular} & ( \(\mathrm{y}, \mathrm{err}\) ) \(=\) hyp3f0(a,b,c,x) returns ( \(\mathrm{y}, \mathrm{err}\) ) with the hypergeometric function 3 F 0 in y and an error estimate in err \\
\hline x2, x3, out1) & \\
\hline
\end{tabular}
```

scipy.special.hyp1f1 (x1, x2, x3[,out])

```
\(y=h y p 1 f 1(a, b, x)\) returns the confluent hypergeometeric function ( \(1 F 1(a, b ; x)\) ) evaluated at the values \(a, b\), and x.
```

scipy.special.hyperu (}x1,x2,x3[,out]

```
    \(y=\) hyperu \((a, b, x)\) returns the confluent hypergeometric function of the second kind \(U(a, b, x)\).
scipy.special.hyp0f1 \((v, z)\)

Confluent hypergeometric limit function 0 F 1 . Limit as \(\mathrm{q}->\) infinity of \(1 \mathrm{~F} 1(\mathrm{q} ; \mathrm{a} ; \mathrm{z} / \mathrm{q})\)
scipy.special.hyp2f0 (x1, \(x 2, x 3, x 4[\), outl, out2 \(]\) )
( \(\mathrm{y}, \mathrm{err}\) )=hyp2f0(a,b,x,type) returns (y,err) with the hypergeometric function 2 F 0 in y and an error estimate in err.
The input type determines a convergence factor and can be either 1 or 2.
scipy.special.hyp1f2 (x1, \(x 2, x 3, x 4[\), outl, out 2\(]\) )
( \(\mathrm{y}, \mathrm{err}\) ) =hyp1f2(a,b,c,x) returns (y,err) with the hypergeometric function 1 F 2 in y and an error estimate in err.
scipy.special.hyp3f0 ( \(x 1, x 2, x 3, x 4[\), outl, out 2\(]\) )
\((y, e r r)=h y p 3 f 0(a, b, c, x)\) returns (y,err) with the hypergeometric function 3 F 0 in \(y\) and an error estimate in err.

\section*{Parabolic Cylinder Functions}
\(\mathrm{pbdv}(\mathrm{x} 1\), out1) \(\quad(\mathrm{d}, \mathrm{dp})=\mathrm{pbdv}(\mathrm{v}, \mathrm{x})\) returns \((\mathrm{d}, \mathrm{dp})\) with the parabolic cylinder function \(\mathrm{Dv}(\mathrm{x})\) in
\(\operatorname{pbvv}(x 1\), out1) \(\quad(v, v p)=\operatorname{pbvv}(v, x)\) returns \((v, v p)\) with the parabolic cylinder function \(V v(x)\) in
p.bwa( \(x\) 1, out1) ( \(\mathrm{w}, \mathrm{wp}\) ) = pbwa( \(\mathrm{a}, \mathrm{x}\) ) returns ( \(\mathrm{w}, \mathrm{wp}\) ) with the parabolic cylinder function \(\mathrm{W}(\mathrm{a}, \mathrm{x})\) in
scipy.special.pbdv ( \(x 1, x 2[\), outl, out 2\(]\) )
\((\mathrm{d}, \mathrm{dp})=\mathrm{pbdv}(\mathrm{v}, \mathrm{x})\) returns \((\mathrm{d}, \mathrm{dp})\) with the parabolic cylinder function \(\mathrm{Dv}(\mathrm{x})\) in d and the derivative, \(\mathrm{Dv}^{\prime}(\mathrm{x})\) in dp .
scipy.special.pbvv (xl, \(x 2\) [, outl, out2 ])
\((\mathrm{v}, \mathrm{vp})=\mathrm{pbvv}(\mathrm{v}, \mathrm{x})\) returns \((\mathrm{v}, \mathrm{vp})\) with the parabolic cylinder function \(\mathrm{Vv}(\mathrm{x})\) in v and the derivative, \(\mathrm{Vv}^{\prime}(\mathrm{x})\) in vp . scipy.special.pbwa ( \(x 1, x 2[\), outl, out 2\(]\) )
\((\mathrm{w}, \mathrm{wp})=\mathrm{pbwa}(\mathrm{a}, \mathrm{x})\) returns ( \(\mathrm{w}, \mathrm{wp}\) ) with the parabolic cylinder function \(\mathrm{W}(\mathrm{a}, \mathrm{x})\) in w and the derivative, \(\mathrm{W}^{\prime}(\mathrm{a}, \mathrm{x})\) in wp. May not be accurate for large ( \(>5\) ) arguments in a and/or \(x\).

These are not universal functions:
\begin{tabular}{ll}
\hline pbdv_seq(v, x) & Compute sequence of parabolic cylinder functions \(\operatorname{Dv}(x)\) and \\
pbvv_seq(v, x) & Compute sequence of parabolic cylinder functions \(\operatorname{Dv}(x)\) and \\
pbdn_seq(n, z) & Compute sequence of parabolic cylinder functions \(\operatorname{Dn}(z)\) and \\
\hline
\end{tabular}
scipy.special.pbdv_seq \((v, x)\)
Compute sequence of parabolic cylinder functions \(\operatorname{Dv}(x)\) and their derivatives for \(\operatorname{Dv} 0(x) . . \operatorname{Dv}(x)\) with \(v 0=v-\)
\(\operatorname{int}(\mathrm{v})\).
scipy.special.pbvv_seq \((v, x)\)
Compute sequence of parabolic cylinder functions \(\operatorname{Dv}(\mathrm{x})\) and their derivatives for \(\mathrm{Dv} 0(\mathrm{x}) . . \operatorname{Dv}(\mathrm{x})\) with \(\mathrm{v} 0=\mathrm{v}-\)
int(v).
scipy.special.pbdn_seq \((n, z)\)
Compute sequence of parabolic cylinder functions \(\operatorname{Dn}(\mathrm{z})\) and their derivatives for \(\mathrm{D} 0(\mathrm{z}) . . \mathrm{Dn}(\mathrm{z})\).

\section*{Mathieu and Related Functions}
\begin{tabular}{ll}
\hline mathieu_a(x1) & lmbda=mathieu_a(m,q) returns the characteristic value for the even solution, \\
mathieu_b(x1) & lmbda=mathieu_b(m,q) returns the characteristic value for the odd solution, \\
\hline
\end{tabular}
```

scipy.special.mathieu_a(xl, x2[,out])
lmbda=mathieu_a(m,q) returns the characteristic value for the even solution, ce_m(z,q), of Mathieu's equation
scipy.special.mathieu_b (xl, x2[,out])
lmbda=mathieu_b(m,q) returns the characteristic value for the odd solution, se_m(z,q), of Mathieu's equation
These are not universal functions:

```
```

mathieu_even_coef(m,q) Compute expansion coefficients for even mathieu functions and
mathieu_odd_coef(m,q) Compute expansion coefficients for even mathieu functions and

```
scipy.special.mathieu_even_coef \((m, q)\)
Compute expansion coefficients for even mathieu functions and modified mathieu functions.
scipy.special.mathieu_odd_coef ( \(m, q\) )
Compute expansion coefficients for even mathieu functions and modified mathieu functions.
The following return both function and first derivative:
\begin{tabular}{ll}
\hline mathieu_cem(x1, x2, out1) & \((y, y p)=\) mathieu_cem \((m, q, x)\) returns the even Mathieu function, ce_m \((x, q)\), \\
mathieu_sem \((x 1, x 2\), out1) & \((y, y p)=\) mathieu_sem \((m, q, x)\) returns the odd Mathieu function, se_m \((x, q)\), \\
mathieu_modcem1 \((x 1, x 2\), out1) & \((y, y p)=\) mathieu_modcem1 \((m, q, x)\) evaluates the even modified Matheiu function \\
mathieu_modcem2(x1, x2, out1) & \((y, y p)=\) mathieu_modcem2 \((m, q, x)\) evaluates the even modified Matheiu function \\
mathieu_modsem1 \((x 1, x 2\), out1) & \((y, y p)=\) mathieu_modsem1 \((m, q, x)\) evaluates the odd modified Matheiu function \\
mathieu_modsem2(x1, x2, out1) & \((y, y p)=\) mathieu_modsem2 \((m, q, x)\) evaluates the odd modified Matheiu function \\
\hline
\end{tabular}
scipy.special.mathieu_cem ( \(x 1, x 2, x 3[\),outl, out 2\(]\) )
\((y, y p)=\) mathieu_cem \((m, q, x)\) returns the even Mathieu function, ce_ \(m(x, q)\), of order \(m\) and parameter \(q\) evaluated at x (given in degrees). Also returns the derivative with respect to x of ce_m(x,q)
scipy.special.mathieu_sem ( \(x 1, x 2, x 3[\), outl, out 2 ])
\((y, y p)=\) mathieu_sem \((m, q, x)\) returns the odd Mathieu function, se_m \((x, q)\), of order \(m\) and parameter \(q\) evaluated at \(x\) (given in degrees). Also returns the derivative with respect to \(x\) of se_m(x,q).
scipy.special.mathieu_modcem1 ( \(x 1, x 2, x 3[\), out1, out2])
\((y, y p)=m a t h i e u \_m o d c e m 1(m, q, x)\) evaluates the even modified Matheiu function of the first kind, Mc1m(x,q), and its derivative at x for order m and parameter q .
scipy.special.mathieu_modcem2 ( \(x 1, x 2, x 3[\), out 1 , out 2\(]\) )
\((\mathrm{y}, \mathrm{yp})=\) mathieu_modcem2(m,q,x) evaluates the even modified Matheiu function of the second kind, \(\operatorname{Mc} 2 \mathrm{~m}(\mathrm{x}, \mathrm{q})\), and its derivative at x (given in degrees) for order m and parameter q .
scipy.special.mathieu_modsem1 ( \(x 1, x 2, x 3\) [, out 1 , out 2 ])
\((\mathrm{y}, \mathrm{yp})=\) mathieu_modsem1 \((\mathrm{m}, \mathrm{q}, \mathrm{x})\) evaluates the odd modified Matheiu function of the first kind, \(\mathrm{Ms} 1 \mathrm{~m}(\mathrm{x}, \mathrm{q})\), and its derivative at x (given in degrees) for order m and parameter q .
scipy.special.mathieu_modsem2 ( \(x 1, x 2, x 3[\), out 1 , out 2\(]\) )
\((\mathrm{y}, \mathrm{yp})=\) mathieu_modsem \(2(\mathrm{~m}, \mathrm{q}, \mathrm{x})\) evaluates the odd modified Matheiu function of the second kind, Ms \(2 \mathrm{~m}(\mathrm{x}, \mathrm{q})\), and its derivative at \(x\) (given in degrees) for order \(m\) and parameter \(q\).

\section*{Spheroidal Wave Functions}
\begin{tabular}{|c|c|}
\hline pro_ang1(x1, x2, x3, out1) & ( \(\mathrm{s}, \mathrm{sp}\) )=pro_ang \(1(\mathrm{~m}, \mathrm{n}, \mathrm{c}, \mathrm{x})\) computes the prolate sheroidal angular function \\
\hline pro_rad1(x1, x2, x3, out1) & \((\mathrm{s}, \mathrm{sp})=\) pro_rad1 \((\mathrm{m}, \mathrm{n}, \mathrm{c}, \mathrm{x})\) computes the prolate sheroidal radial function \\
\hline pro_rad2(x1, x2, x3, out1) & \((\mathrm{s}, \mathrm{sp})=\) pro_rad2 \((\mathrm{m}, \mathrm{n}, \mathrm{c}, \mathrm{x})\) computes the prolate sheroidal radial function \\
\hline obl_ang1(x1, x2, x3, out1) & ( \(\mathrm{s}, \mathrm{sp}\) ) =obl_ang1 (m, \(\mathrm{n}, \mathrm{c}, \mathrm{x})\) computes the oblate sheroidal angular function \\
\hline obl_rad1( \(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3\), out1) & \((\mathrm{s}, \mathrm{sp})=\) obl_rad1 ( \(\mathrm{m}, \mathrm{n}, \mathrm{c}, \mathrm{x}\) ) computes the oblate sheroidal radial function \\
\hline obl_rad2(x1, x2, x3, out1) & \((\mathrm{s}, \mathrm{sp})=\mathrm{obl}\) _rad2 \((\mathrm{m}, \mathrm{n}, \mathrm{c}, \mathrm{x})\) computes the oblate sheroidal radial function \\
\hline pro_cv(x1, x2) & \(=\) pro_cv \((\mathrm{m}, \mathrm{n}, \mathrm{c})\) computes the characteristic value of prolate spheroidal \\
\hline obl_cv(x1, x2) & \(\mathrm{cv}=\mathrm{obl} \_\mathrm{cv}(\mathrm{m}, \mathrm{n}, \mathrm{c})\) computes the characteristic value of oblate spheroidal \\
\hline pro_cv_seq(m, n, c) & Compute a sequence of characteristic values for the prolate \\
\hline obl_cv_seq(m, n, c) & Compute a sequence of characteristic values for the oblate \\
\hline
\end{tabular}
scipy.special.pro_ang1 ( \(x 1, x 2, x 3, x 4[\), out 1, out 2\(]\) )
\((\mathrm{s}, \mathrm{sp})=\) pro_ang \(1(\mathrm{~m}, \mathrm{n}, \mathrm{c}, \mathrm{x})\) computes the prolate sheroidal angular function of the first kind and its derivative (with respect to x ) for mode paramters \(\mathrm{m}>=0\) and \(\mathrm{n}>=\mathrm{m}\), spheroidal parameter c and \(|\mathrm{x}|<1.0\).
scipy.special.pro_rad1 ( \(x 1, x 2, x 3, x 4[\), out 1 , out 2\(]\) )
( \(\mathrm{s}, \mathrm{sp}\) ) \(=\) pro_rad1 \((\mathrm{m}, \mathrm{n}, \mathrm{c}, \mathrm{x})\) computes the prolate sheroidal radial function of the first kind and its derivative (with respect to x ) for mode paramters \(\mathrm{m}>=0\) and \(\mathrm{n}>=\mathrm{m}\), spheroidal parameter c and \(|\mathrm{x}|<1.0\).
scipy.special.pro_rad2 ( \(x 1, x 2, x 3, x 4[\), out1, out 2\(]\) )
\((\mathrm{s}, \mathrm{sp})=\) pro_rad2 \((\mathrm{m}, \mathrm{n}, \mathrm{c}, \mathrm{x})\) computes the prolate sheroidal radial function of the second kind and its derivative (with respect to x ) for mode paramters \(\mathrm{m}>=0\) and \(\mathrm{n}>=\mathrm{m}\), spheroidal parameter c and \(|\mathrm{x}|<1.0\).
scipy.special.obl_ang1 ( \(x 1, x 2, x 3, x 4[\), out 1 , out 2\(]\) )
\((\mathrm{s}, \mathrm{sp})=o \mathrm{obl}\) ang \(1(\mathrm{~m}, \mathrm{n}, \mathrm{c}, \mathrm{x})\) computes the oblate sheroidal angular function of the first kind and its derivative (with respect to x ) for mode paramters \(\mathrm{m}>=0\) and \(\mathrm{n}>=\mathrm{m}\), spheroidal parameter c and \(|\mathrm{x}|<1.0\).
scipy.special.obl_rad1 ( \(x 1, x 2, x 3, x 4[\), out 1, out 2\(]\) )
\((\mathrm{s}, \mathrm{sp})=\mathrm{obl}\) _rad1 \((\mathrm{m}, \mathrm{n}, \mathrm{c}, \mathrm{x})\) computes the oblate sheroidal radial function of the first kind and its derivative (with respect to x ) for mode paramters \(\mathrm{m}>=0\) and \(\mathrm{n}>=\mathrm{m}\), spheroidal parameter c and \(|\mathrm{x}|<1.0\).
scipy.special.obl_rad2 ( \(x 1, x 2, x 3, x 4[\), out 1 , out 2\(]\) )
\((\mathrm{s}, \mathrm{sp})=\mathrm{obl} \_\)rad2 \((\mathrm{m}, \mathrm{n}, \mathrm{c}, \mathrm{x})\) computes the oblate sheroidal radial function of the second kind and its derivative (with respect to x ) for mode paramters \(\mathrm{m}>=0\) and \(\mathrm{n}>=\mathrm{m}\), spheroidal parameter c and \(|\mathrm{x}|<1.0\).
scipy.special.pro_cv ( \(x 1, x 2, x 3[\), out \(])\)
\(\mathrm{cv}=\mathrm{pro} \_\mathrm{cv}(\mathrm{m}, \mathrm{n}, \mathrm{c})\) computes the characteristic value of prolate spheroidal wave functions of order \(\mathrm{m}, \mathrm{n}(\mathrm{n}>=\mathrm{m})\) and spheroidal parameter c .
scipy.special.obl_cv ( \(x 1, x 2, x 3[\), out \(])\)
\(\mathrm{cv}=\mathrm{obl} \_\mathrm{cv}(\mathrm{m}, \mathrm{n}, \mathrm{c})\) computes the characteristic value of oblate spheroidal wave functions of order \(\mathrm{m}, \mathrm{n}(\mathrm{n}>=\mathrm{m})\) and spheroidal parameter c .
```

scipy.special.pro_cv_seq(m,n,c)

```

Compute a sequence of characteristic values for the prolate spheroidal wave functions for mode \(m\) and \(n \prime=m . . n\) and spheroidal parameter c.
scipy.special.obl_cv_seq ( \(m, n, c\) )
Compute a sequence of characteristic values for the oblate spheroidal wave functions for mode \(m\) and \(n\) ' \(=m . . n\) and spheroidal parameter c .

The following functions require pre-computed characteristic value:
```

pro_ang1_cv(x1, x2, x3, x4, (s,sp)=pro_ang1_cv(m,n,c,cv,x) computes the prolate sheroidal angular
out1)
pro_rad1_cv(x1, x2, x3, x4, (s,sp)=pro_rad1_cv(m,n,c,cv,x) computes the prolate sheroidal radial
out1) function
pro_rad2_cv(x1, x2, x3, x4, (s,sp)=pro_rad2_cv(m,n,c,cv,x) computes the prolate sheroidal radial
out1)
obl_ang1_cv(x1, x2, x3, x4,
out1)
obl_rad1_cv(x1, x2, x3, x4, (s,sp)=obl_rad1_cv(m,n,c,cv,x) computes the oblate sheroidal radial
out1)
obl_rad2_cv(x1, x2, x3, x4, (s,sp)=obl_rad2_cv(m,n,c,cv,x) computes the oblate sheroidal radial
out1)

```
( \(\mathrm{s}, \mathrm{sp}\) )=pro_ang1_cv(m,n,c,cv,x) computes the prolate sheroidal angular function
\((\mathrm{s}, \mathrm{sp})=\) pro_rad1_cv(m,n,c,cv,x) computes the prolate sheroidal radial function
\((\mathrm{s}, \mathrm{sp})=\) pro_rad2_cv(m,n,c,cv,x\()\) computes the prolate sheroidal radial function
\((\mathrm{s}, \mathrm{sp})=\mathrm{obl}\) _ang1_cv(m,n,c,cv,x\()\) computes the oblate sheroidal angular function
( \(\mathrm{s}, \mathrm{sp}\) ) \(=\mathrm{obl} \_\)rad1_cv(m,n,c,cv,x) computes the oblate sheroidal radial function
( \(\mathrm{s}, \mathrm{sp}\) ) \(=\mathrm{obl}\) _rad2_cv(m,n,c,cv,x) computes the oblate sheroidal radial function
scipy.special.pro_ang1_cv (x1, x2, x3, x4, x5[,out1, out2])
\((\mathrm{s}, \mathrm{sp})=\) pro_ang1_cv(m,n,c,cv,x\()\) computes the prolate sheroidal angular function of the first kind and its derivative (with respect to \(x\) ) for mode paramters \(m>=0\) and \(n>=m\), spheroidal parameter \(c\) and \(|x|<1.0\). Requires pre-computed characteristic value.
scipy.special.pro_rad1_cv (x1, x2, x3, x4, x5[,out1, out2])
\((\mathrm{s}, \mathrm{sp})=\) pro_rad1_cv(m,n,c,cv,x) computes the prolate sheroidal radial function of the first kind and its derivative (with respect to x ) for mode paramters \(\mathrm{m}>=0\) and \(\mathrm{n}>=\mathrm{m}\), spheroidal parameter c and \(|\mathrm{x}|<1.0\). Requires pre-computed characteristic value.
scipy.special.pro_rad2_cv (x1, x2, x3, x4, x5[,out1, out2])
\((\mathrm{s}, \mathrm{sp})=\) pro_rad2_cv(m,n,c,cv,x) computes the prolate sheroidal radial function of the second kind and its derivative (with respect to \(x\) ) for mode paramters \(m>=0\) and \(n>=m\), spheroidal parameter \(c\) and \(|x|<1.0\). Requires pre-computed characteristic value.
scipy.special.obl_ang1_cv (x1, x2, x3, x4, x5[,out1, out2])
\((\mathrm{s}, \mathrm{sp})=\mathrm{obl} \_\)ang \(1 \_\mathrm{cv}(\mathrm{m}, \mathrm{n}, \mathrm{c}, \mathrm{cv}, \mathrm{x})\) computes the oblate sheroidal angular function of the first kind and its derivative (with respect to \(x\) ) for mode paramters \(m>=0\) and \(n>=m\), spheroidal parameter \(c\) and \(|x|<1.0\). Requires pre-computed characteristic value.
scipy.special.obl_rad1_cv (x1, x2, \(x 3, x 4, x 5[\), out1, out 2\(])\)
\((\mathrm{s}, \mathrm{sp})=\mathrm{obl} \_\)rad1_cv(m,n,c,cv,x\()\)computes the oblate sheroidal radial function of the first kind and its derivative (with respect to \(x\) ) for mode paramters \(m>=0\) and \(n>=m\), spheroidal parameter \(c\) and \(|x|<1.0\). Requires pre-computed characteristic value.
scipy.special.obl_rad2_cv (x1, x2, \(x 3, x 4, x 5[\), out1, out2] \()\)
\((\mathrm{s}, \mathrm{sp})=\mathrm{obl} \_\)rad2_cv(m,n,c,cv,x\()\)computes the oblate sheroidal radial function of the second kind and its derivative (with respect to x ) for mode paramters \(\mathrm{m}>=0\) and \(\mathrm{n}>=\mathrm{m}\), spheroidal parameter c and \(|\mathrm{x}|<1.0\). Requires pre-computed characteristic value.

\section*{Kelvin Functions}
```

kelvin(out1, out2, (Be, Ke, Bep, Kep)=kelvin(x) returns the tuple (Be, Ke, Bep, Kep) which containes
out3)
kelvin_zeros(nt) Compute nt zeros of all the kelvin functions returned in a length 8 tuple of arrays of
length nt.
ber() y=ber(x) returns the Kelvin function ber x
bei() y=bei(x) returns the Kelvin function bei x
berp() y=berp(x) returns the derivative of the Kelvin function ber x
beip() y=beip(x) returns the derivative of the Kelvin function bei x
ker() y=ker(x) returns the Kelvin function ker x
kei() y=kei(x) returns the Kelvin function ker x
kerp() y=kerp(x) returns the derivative of the Kelvin function ker x
keip()
y=keip(x) returns the derivative of the Kelvin function kei x
scipy.special.kelvin(x[,out1,out2,out 3, out4])
(Be, Ke, Bep, Kep)=kelvin(x) returns the tuple (Be, Ke, Bep, Kep) which containes complex numbers representing the real and imaginary Kelvin functions and their derivatives evaluated at x. For example, kelvin(x)[0].real $=$ ber x and $\operatorname{kelvin}(\mathrm{x})[0]$.imag $=$ bei x with similar relationships for ker and kei.

```
```

scipy.special.kelvin_zeros(nt)

```
scipy.special.kelvin_zeros(nt)
Compute nt zeros of all the kelvin functions returned in a length 8 tuple of arrays of length nt. The tuple containse the arrays of zeros of (ber, bei, ker, kei, ber', bei', ker', kei')
scipy.special.ber ( \(x[\), out \(]\) )
\(\mathrm{y}=\operatorname{ber}(\mathrm{x})\) returns the Kelvin function ber x
scipy.special.bei ( \(x\) [, out \(]\) )
\(y=\) bei( \(x\) ) returns the Kelvin function bei \(x\)
scipy.special.berp ( \(x[\),out \(]\) )
\(y=\operatorname{berp}(x)\) returns the derivative of the Kelvin function ber \(x\)
scipy.special.beip ( \(x[\), out \(]\) )
\(y=\) beip \((x)\) returns the derivative of the Kelvin function bei \(x\)
scipy.special. \(\boldsymbol{k e r}(x[\), out \(]\) )
\(\mathrm{y}=\operatorname{ker}(\mathrm{x})\) returns the Kelvin function ker x
scipy.special. kei ( \(x\) [, out \(]\) )
\(y=\operatorname{kei}(x)\) returns the Kelvin function ker \(x\)
scipy.special. \(\boldsymbol{k e r p}(x[\),out \(])\)
\(\mathrm{y}=\operatorname{kerp}(\mathrm{x})\) returns the derivative of the Kelvin function \(\operatorname{ker} \mathrm{x}\)
scipy.special.keip ( \(x[\), out \(]\) )
\(y=\operatorname{keip}(x)\) returns the derivative of the Kelvin function kei \(x\)
```

These are not universal functions:

| ber_zeros(nt) | Compute nt zeros of the kelvin function ber x
 bei_zeros(nt) |
| :--- | :--- |
| Compute nt zeros of the kelvin function bei x | |
| berp_zeros(nt) | Compute nt zeros of the kelvin function ber' x |
| beip_zeros(nt) | Compute nt zeros of the kelvin function bei' x |
| ker_zeros(nt) | Compute nt zeros of the kelvin function ker x |
| kei_zeros(nt) | Compute nt zeros of the kelvin function kei x |
| kerp_zeros(nt) | Compute nt zeros of the kelvin function ker' x |
| keip_zeros(nt) | Compute nt zeros of the kelvin function kei' x |

```
scipy.special.ber_zeros(nt)
```

Compute nt zeros of the kelvin function ber x

```
scipy.special.bei_zeros(nt)
```

Compute nt zeros of the kelvin function bei x

```
scipy.special.berp_zeros(nt)
```

Compute nt zeros of the kelvin function ber' x

```
scipy.special.beip_zeros(nt)
```

Compute nt zeros of the kelvin function bei' x

```
scipy.special.ker_zeros(nt)
```

Compute nt zeros of the kelvin function ker x

```
scipy.special.kei_zeros(nt)
```

Compute nt zeros of the kelvin function kei x

```
scipy.special.kerp_zeros(nt)
```

Compute nt zeros of the kelvin function ker' x
scipy.special.keip_zeros ($n t$)
Compute nt zeros of the kelvin function kei' x

Other Special Functions

| expn(x1) | $\mathrm{y}=\operatorname{expn}(\mathrm{n}, \mathrm{x})$ returns the exponential integral for integer n and |
| :---: | :---: |
| $\operatorname{expl}()$ | $\mathrm{y}=\exp 1(\mathrm{z})$ returns the exponential integral ($\mathrm{n}=1$) of complex argument |
| expi() | $\mathrm{y}=\operatorname{expi}(\mathrm{x})$ returns an exponential integral of argument x defined as |
| wofz() | $y=w o f z(z)$ returns the value of the fadeeva function for complex argument |
| dawsn() | $y=$ dawsn(x) returns dawson's integral: $\exp \left(-x^{* * 2}\right) *$ |
| shichi(out1) | (shi,chi)=shichi(x) returns the hyperbolic sine and cosine integrals: |
| sici(out1) | (si,ci) $=$ sici(x) returns in si the integral of the sinc function from 0 to x : |
| spence() | $y=$ spence (x) returns the dilogarithm integral: -integral (log t/ |
| lambertw(z[, k, tol]) | Lambert W function. |
| zeta(x1) | $y=z e t a(x, q)$ returns the Riemann zeta function of two arguments: |
| zetac() | $\mathrm{y}=\mathrm{zetac}(\mathrm{x})$ returns $1.0-$ the Riemann zeta function: $\operatorname{sum}\left(\mathrm{k}^{* *}(-\mathrm{x}), \mathrm{k}=2 . . \mathrm{inf}\right)$ |

scipy.special. expn ($x 1, x 2[$, out $]$)
$\mathrm{y}=\operatorname{expn}(\mathrm{n}, \mathrm{x})$ returns the exponential integral for integer n and non-negative x and n : integral $\left(\exp \left(-\mathrm{x}^{*} \mathrm{t}\right) / \mathrm{t} * * \mathrm{n}\right.$,
$\mathrm{t}=1$..inf).
scipy.special.exp1 ($x[$,out $]$)
$y=\exp 1(z)$ returns the exponential integral $(n=1)$ of complex $\operatorname{argument} z$: integral $\left(\exp \left(-z^{*} t\right) / t, t=1 . . i n f\right)$.
scipy.special.expi ($x[$,out $]$)
$y=\operatorname{expi}(x)$ returns an exponential integral of argument x defined as integral(exp($t) / t, t=-i n f . . x)$. See expn for a different exponential integral.
scipy.special.wofz (x[,out $]$)
$y=\operatorname{wofz}(z)$ returns the value of the fadeeva function for complex argument $z: \exp \left(-z^{* *} 2\right) * \operatorname{erfc}\left(-i^{*} z\right)$
scipy.special.dawsn (x [, out $]$)
$\mathrm{y}=$ dawsn(x) returns dawson's integral: $\exp (-\mathrm{x} * * 2) *$ integral $(\exp (\mathrm{t} * * 2), \mathrm{t}=0 . . \mathrm{x})$.
scipy.special.shichi (x [, outl, out 2$]$)
(shi,chi) $=\operatorname{shichi}(\mathrm{x})$ returns the hyperbolic sine and cosine integrals: integral $(\sinh (\mathrm{t}) / \mathrm{t}, \mathrm{t}=0 . . \mathrm{x})$ and $\mathrm{eul}+\ln \mathrm{x}+$
integral $((\cosh (\mathrm{t})-1) / \mathrm{t}, \mathrm{t}=0 . . \mathrm{x})$ where eul is Euler's Constant.
scipy.special.sici (x [, outl, out 2$]$)
$(\operatorname{si}, \mathrm{ci})=\operatorname{sici}(\mathrm{x})$ returns in si the integral of the sinc function from 0 to x : integral $(\sin (\mathrm{t}) / \mathrm{t}, \mathrm{t}=0 . . \mathrm{x})$. It returns in ci the cosine integral: eul $+\ln \mathrm{x}+\operatorname{integral}((\cos (\mathrm{t})-1) / \mathrm{t}, \mathrm{t}=0 . . \mathrm{x})$.
scipy.special.spence ($x[$, out $]$)
$y=$ spence (x) returns the dilogarithm integral: -integral $(\log t /(t-1), t=1 \ldots x)$
scipy.special. lambertw $(z, k=0, t o l=l e-8)$
Lambert W function.
The Lambert W function $W(z)$ is defined as the inverse function of $w \exp (w)$. In other words, the value of $W(z)$ is such that $z=W(z) \exp (W(z))$ for any complex number z.

The Lambert W function is a multivalued function with infinitely many branches. Each branch gives a separate solution of the equation $w \exp (w)$. Here, the branches are indexed by the integer k.

Parameters

z: array_like
Input argument
\mathbf{k} : integer, optional
Branch index
tol : float
Evaluation tolerance

Notes

All branches are supported by lambertw:

- lambertw (z) gives the principal solution (branch 0)
- lambertw (z, k) gives the solution on branch k

The Lambert W function has two partially real branches: the principal branch $(k=0)$ is real for real $z>-1 / e$, and the $k=-1$ branch is real for $-1 / e<z<0$. All branches except $k=0$ have a logarithmic singularity at $z=0$.

Possible issues

The evaluation can become inaccurate very close to the branch point at $-1 / e$. In some corner cases, lambertw might currently fail to converge, or can end up on the wrong branch.

Algorithm

Halley's iteration is used to invert $w \exp (w)$, using a first-order asymptotic approximation $(O(\log (w))$ or $O(w))$ as the initial estimate.

The definition, implementation and choice of branches is based on Corless et al, "On the Lambert W function", Adv. Comp. Math. 5 (1996) 329-359, available online here: http://www.apmaths.uwo.ca/~djeffrey/Offprints/W-adv-cm.pdf

TODO: use a series expansion when extremely close to the branch point at $-1 / e$ and make sure that the proper branch is chosen there

Examples

The Lambert W function is the inverse of $w \exp (w)$:

```
>>> from scipy.special import lambertw
>>> w = lambertw(1)
>>> w
```

$0.56714329040978387299996866221035555 \ggg{ }^{2} * \exp (w) 1.0$
Any branch gives a valid inverse:

```
>>> w = lambertw(1, k=3)
>>> W
(-2.8535817554090378072068187234910812 + 17.113535539412145912607826671159289j) >>> w*exp(w)
(1.0 + 3.5075477124212226194278700785075126e-36j)
```


Applications to equation-solving

The Lambert W function may be used to solve various kinds of equations, such as finding the value of the infinite power tower $z^{\wedge}\left\{z^{\wedge}\left\{z^{\wedge}\{\right.\right.$ ldots $\left.\left.\}\right\}\right\}$:

```
>>> def tower(z, n):
```

\ldots if $\mathrm{n}==0$: ... return $\mathrm{z} \ldots$ return z ** tower $(\mathrm{z}, \mathrm{n}-1) \ldots \ggg$ tower $(0.5,100) 0.641185744504986 \ggg$-lambertw $(-$ $\log (0.5)) / \log (0.5) 0.6411857445049859844862004821148236665628209571911$

Properties

The Lambert W function grows roughly like the natural logarithm for large arguments:

```
>>> lambertw(1000)
```

$5.2496028524016 \ggg \log (1000) 6.90775527898214 \ggg$ lambertw $\left(10^{* *} 100\right) 224.843106445119$ >>> $\log \left(10^{* *} 100\right) 230.258509299405$

The principal branch of the Lambert W function has a rational Taylor series expansion around $z=0$:

```
>>> nprint(taylor(lambertw, 0, 6), 10)
```

[0.0, 1.0, -1.0, 1.5, -2.666666667, 5.208333333, -10.8]
Some special values and limits are:
>>> lambertw (0)
 $-\inf \ggg>\operatorname{lambertw}(0, \mathrm{k}=3)-\mathrm{inf} \ggg>\operatorname{lambertw}(\mathrm{inf}, \mathrm{k}=3)(+\mathrm{inf}+18.8495559215388 \mathrm{j})$

The $k=0$ and $k=-1$ branches join at $z=-1 / e$ where $W(z)=-1$ for both branches. Since $-1 / e$ can only be represented approximately with mpmath numbers, evaluating the Lambert W function at this point only gives -1 approximately:
>>> lambertw (-1/e, 0)
-0.999999999999837133022867 >>> lambertw(-1/e, -1) -1.00000000000016286697718
If $-1 / e$ happens to round in the negative direction, there might be a small imaginary part:
>>> lambertw(-1/e)
$(-1.0+8.22007971511612 \mathrm{e}-9 \mathrm{j})$
scipy.special.zeta ($x 1, x 2[$, out $]$)
$y=z e t a(x, q)$ returns the Riemann zeta function of two arguments: $\operatorname{sum}((k+q) * *(-x), k=0 . . \inf)$
scipy.special.zetac (x [, out $]$)
$\mathrm{y}=\mathrm{zetac}(\mathrm{x})$ returns 1.0 - the Riemann zeta function: $\operatorname{sum}\left(\mathrm{k}^{* *}(-\mathrm{x}), \mathrm{k}=2 . . \inf \right)$

Convenience Functions

| cbrt() | $y=\operatorname{cbrt}(\mathrm{x})$ returns the real cube root of x . |
| :---: | :---: |
| exp10() | $y=\exp 10$ (x) returns 10 raised to the x power. |
| exp2() | $\mathrm{y}=\exp 2(\mathrm{x})$ returns 2 raised to the x power. |
| radian(x1, x2) | $y=\operatorname{radian}(\mathrm{d}, \mathrm{m}, \mathrm{s})$ returns the angle given in (d)egrees, (m)inutes, and |
| cosdg() | $y=\operatorname{cosdg}(\mathrm{x})$ calculates the cosine of the angle x given in degrees. |
| sindg() | $y=\operatorname{sindg}(x)$ calculates the sine of the angle x given in degrees. |
| tandg() | $y=\operatorname{tandg}(\mathrm{x})$ calculates the tangent of the angle x given in degrees. |
| $\operatorname{cotdg}()$ | $y=\operatorname{cotdg}(x)$ calculates the cotangent of the angle x given in degrees. |
| $\log 1 \mathrm{p}()$ | $y=\log 1 p(x)$ calculates $\log (1+x)$ for use when x is near zero. |
| expm1() | $y=\operatorname{expm1}(\mathrm{x})$ calculates $\exp (\mathrm{x})-1$ for use when x is near zero. |
| $\operatorname{cosm1()}$ | $y=$ calculates $\cos (x)-1$ for use when x is near zero. |
| round() | $\mathrm{y}=$ Returns the nearest integer to x as a double precision |

scipy.special.cbrt ($x[$,out $]$)
$y=\operatorname{cbrt}(x)$ returns the real cube root of x.
scipy.special.exp10 (x[,out $]$)
$\mathrm{y}=\exp 10(\mathrm{x})$ returns 10 raised to the x power.
scipy.special.exp2 (x[,out $]$)
$\mathrm{y}=\exp 2(\mathrm{x})$ returns 2 raised to the x power.
scipy.special.radian ($x 1, x 2, x 3[$, out $]$)
$\mathrm{y}=\operatorname{radian}(\mathrm{d}, \mathrm{m}, \mathrm{s})$ returns the angle given in (d)egrees, (m)inutes, and (s)econds in radians.
scipy.special.cosdg ($x[$, out $]$)
$y=\operatorname{cosdg}(x)$ calculates the cosine of the angle x given in degrees.
scipy.special.sindg ($x[$, out $]$)
$\mathrm{y}=\operatorname{sindg}(\mathrm{x})$ calculates the sine of the angle x given in degrees.

```
scipy.special.tandg (x[,out ])
```

$y=\operatorname{tandg}(x)$ calculates the tangent of the angle x given in degrees.

```
scipy.special. cotdg (x[,out])
```

$y=\operatorname{cotdg}(x)$ calculates the cotangent of the angle x given in degrees.
scipy.special. log1p ($x[$, out $]$)
$y=\log 1 p(x)$ calculates $\log (1+x)$ for use when x is near zero.
scipy.special.expm1 ($x[$, out $]$)
$y=\operatorname{expm} 1(x)$ calculates $\exp (x)-1$ for use when x is near zero.
scipy.special. cosm1 ($x[$,out $]$)
$y=$ calculates $\cos (x)-1$ for use when x is near zero.
scipy.special. round ($x[$, out $]$)
$y=$ Returns the nearest integer to x as a double precision floating point result. If x ends in 0.5 exactly, the nearest
even integer is chosen.

3.19 Statistical functions (scipy.stats)

This module contains a large number of probability distributions as well as a growing library of statistical functions.
Each included continuous distribution is an instance of the class rv_continous:

| ```rv_continuous([momtype, a, b, xa, xb, xtol, ...])``` | A generic continuous random variable class meant for subclassing. |
| :---: | :---: |
| rv_continuous.rvs(*args, **kwds) | Random variates of given type. |
| rv_continuous.pdf(x, *args, **kwds) | Probability density function at x of the given RV. |
| rv_continuous.logpdf(x, *args, **kwds) | Log of the probability density function at x of the given RV. |
| rv_continuous.cdf(x, *args, **kwds) | Cumulative distribution function at x of the given RV. |
| rv_continuous.logcdf(x, *args, **kwds) | Log of the cumulative distribution function at x of the given RV. |
| rv_continuous.sf(x, *args, **kwds) | Survival function (1-cdf) at x of the given RV. |
| rv_continuous. $\operatorname{logsf}\left(\mathrm{x}, * \operatorname{args}\right.$, ${ }^{*}$ kwds) | Log of the Survival function $\log (1-\mathrm{cdf})$ at x of the given RV. |
| rv_continuous.ppf(q, *args, **kwds) | Percent point function (inverse of cdf) at q of the given RV. |
| rv_continuous.isf(q, *args, **kwds) | Inverse survival function at q of the given RV. |
| rv_continuous.moment(n, *args, **kwds) | n'th order non-central moment of distribution |
| rv_continuous.stats(*args, **kwds) | Some statistics of the given RV |
| rv_continuous.entropy(*args, **kwds) | Differential entropy of the RV. |
| rv_continuous.fit(data, *args, **kwds) | Return MLEs for shape, location, and scale parameters from data. |
| rv_continuous.expect(**kwds[, func, args, ...]) | calculate expected value of a function with respect to the distribution |
| rv_continuous.median(*args, **kwds) | Median of the distribution. |
| rv_continuous.mean(*args, **kwds) | Mean of the distribution |
| rv_continuous.var(*args, **kwds) | Variance of the distribution |
| rv_continuous.std(*args, **kwds) | Standard deviation of the distribution. |
| rv_continuous.interval(alpha, *args, **kwds) | Confidence interval with equal areas around the median |

class scipy.stats.rv_continuous (momtype $=1, a=$ None, $b=N o n e, x a=-10.0, x b=10.0, x t o l=1 e-14$, badvalue $=$ None, name $=$ None, longname $=$ None, shapes $=$ None, extradoc $=$ None)
A generic continuous random variable class meant for subclassing.
$r v _c o n t i n u o u s ~ i s ~ a ~ b a s e ~ c l a s s ~ t o ~ c o n s t r u c t ~ s p e c i f i c ~ d i s t r i b u t i o n ~ c l a s s e s ~ a n d ~ i n s t a n c e s ~ f r o m ~ f o r ~ c o n t i n u o u s ~ r a n d o m ~$ variables. It cannot be used directly as a distribution.

Parameters

momtype : int, optional
The type of generic moment calculation to use: 0 for pdf, 1 (default) for ppf.
a : float, optional
Lower bound of the support of the distribution, default is minus infinity.
b : float, optional
Upper bound of the support of the distribution, default is plus infinity.
xa : float, optional
Lower bound for fixed point calculation for generic ppf.
$\mathbf{x b}$: float, optional
Upper bound for fixed point calculation for generic ppf.
xtol : float, optional
The tolerance for fixed point calculation for generic ppf.
badvalue : object, optional

The value in a result arrays that indicates a value that for which some argument restriction is violated, default is np.nan.
name : str, optional
The name of the instance. This string is used to construct the default example for distributions.
longname : str, optional
This string is used as part of the first line of the docstring returned when a subclass has no docstring of its own. Note: longname exists for backwards compatibility, do not use for new subclasses.
shapes : str, optional
The shape of the distribution. For example " m, n " for a distribution that takes two integers as the two shape arguments for all its methods.
extradoc: str, optional, deprecated
This string is used as the last part of the docstring returned when a subclass has no docstring of its own. Note: extradoc exists for backwards compatibility, do not use for new subclasses.

Notes

Frozen Distribution

Alternatively, the object may be called (as a function) to fix the shape, location, and scale parameters returning a "frozen" continuous RV object:

rv $=\operatorname{generic}(<\operatorname{shape}(s)>$, loc=0, scale=1)

frozen RV object with the same methods but holding the given shape, location, and scale fixed

Subclassing

New random variables can be defined by subclassing rv_continuous class and re-defining at least the _pdf or the _cdf method (normalized to location 0 and scale 1) which will be given clean arguments (in between a and b) and passing the argument check method

If postive argument checking is not correct for your RV then you will also need to re-define

```
_argcheck
```

Correct, but potentially slow defaults exist for the remaining methods but for speed and/or accuracy you can over-ride

```
_logpdf, _cdf, _logcdf, _ppf, _rvs, _isf, _sf, _logsf
```

Rarely would you override _isf, _sf, and _logsf but you could.
Statistics are computed using numerical integration by default. For speed you can redefine this using

_stats

- take shape parameters and return $\mathrm{mu}, \mathrm{mu} 2, \mathrm{~g} 1, \mathrm{~g} 2$
- If you can't compute one of these, return it as None
- Can also be defined with a keyword argument moments=<str> where <str> is a string composed of ' m ', ' v ', ' s ', and/or ' k '. Only the components appearing in string should be computed and returned in the order ' m ', ' v ', ' s ', or ' k ' with missing values returned as None

OR
You can override
_munp
takes n and shape parameters and returns the nth non-central moment of the distribution.

Examples

To create a new Gaussian distribution, we would do the following:

```
class gaussian_gen(rv_continuous):
    "Gaussian distribution"
    def _pdf:
```


Methods

rv_continuous.rvs (*args, **kwds)
Random variates of given type.

Parameters

$\arg 1, \arg 2, \arg 3, \ldots$: array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
defining number of random variates $($ default=1)

Returns

rvs : array_like
random variates of given size
rv_continuous.pdf (x, *args, **kwds)
Probability density function at x of the given RV.

Parameters

\mathbf{x} : array_like
quantiles
$\arg 1, \arg 2, \arg 3, \ldots$. : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)

Returns

pdf : array_like
Probability density function evaluated at x
rv_continuous.logpdf (x, *args, **kwds)
Log of the probability density function at x of the given RV.
This uses a more numerically accurate calculation if available.
Parameters
\mathbf{x} : array_like
quantiles
arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)

Returns

logpdf : array_like
Log of the probability density function evaluated at x
rv_continuous.cdf (x, *args, **kwds)
Cumulative distribution function at x of the given RV.

Parameters

\mathbf{x} : array_like
quantiles
$\arg 1, \arg 2, \arg 3, \ldots$. : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)

Returns

cdf : array_like
Cumulative distribution function evaluated at x
rv_continuous.logcdf (x, *args, **kwds)
Log of the cumulative distribution function at x of the given RV.

Parameters

\mathbf{x} : array_like
quantiles
$\arg 1, \arg 2, \arg 3, \ldots$. : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)

Returns

logedf : array_like
Log of the cumulative distribution function evaluated at x
rv_continuous.sf($x, * \operatorname{args}, * * k w d s)$
Survival function (1-cdf) at x of the given RV.

Parameters

\mathbf{x} : array_like
quantiles
arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)

Returns

sf : array_like
Survival function evaluated at x
rv_continuous.logsf($x, * \operatorname{args}, * * k w d s$)
Log of the Survival function $\log (1-c d f)$ at x of the given RV.

Parameters

\mathbf{x} : array_like
quantiles
$\arg 1, \arg 2, \arg 3, \ldots$. : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)

Returns

logsf : array_like
Log of the survival function evaluated at x
rv_continuous.ppf ($q, * \operatorname{args}, * * k w d s)$
Percent point function (inverse of cdf) at q of the given RV.
Parameters
\mathbf{q} : array_like
lower tail probability
$\arg 1, \arg 2, \arg 3, \ldots$. : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)

Returns

\mathbf{x} : array_like
quantile corresponding to the lower tail probability q.
rv_continuous.isf ($q, * \operatorname{args}, * * k w d s$)
Inverse survival function at q of the given RV.

Parameters

\mathbf{q} : array_like
upper tail probability
$\arg 1, \arg 2, \arg 3, \ldots$. : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)

Returns

\mathbf{x} : array_like
quantile corresponding to the upper tail probability q .
rv_continuous.moment ($n, * \operatorname{args}, * * k w d s$)
n 'th order non-central moment of distribution
Parameters
n : int, $\mathrm{n}>=\mathbf{1}$:
order of moment
$\arg 1, \arg 2, \arg 3, \ldots$: float
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : float, optional
location parameter (default=0)
scale : float, optional
scale parameter (default=1)
rv_continuous.stats (*args, **kwds)
Some statistics of the given RV
Parameters
$\arg 1, \arg 2, \arg 3, \ldots$. : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter $($ default $=0$)
scale : array_like, optional
scale parameter (default=1)
moments : string, optional
composed of letters ['mvsk'] defining which moments to compute: 'm' = mean, 'v'
$=$ variance, 's' = (Fisher's) skew, 'k' = (Fisher's) kurtosis. (default='mv')

Returns

stats : sequence
of requested moments.

```
rv_continuous.entropy (*args, **kwds)
    Differential entropy of the RV.
        Parameters
            arg1, arg2, arg3,... : array_like
```

The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
rv_continuous.fit (data, *args, **kwds)
Return MLEs for shape, location, and scale parameters from data.
MLE stands for Maximum Likelihood Estimate. Starting estimates for the fit are given by input arguments; for any arguments not provided with starting estimates, self._fitstart (data) is called to generate such.
One can hold some parameters fixed to specific values by passing in keyword arguments $£ 0, f 1, \ldots, f n$ (for shape parameters) and floc and fscale (for location and scale parameters, respectively).

Parameters

data : array_like
Data to use in calculating the MLEs
args : floats, optional
Starting value(s) for any shape-characterizing arguments (those not provided will be determined by a call to _fitstart (data)). No default value.
kwds : floats, optional
Starting values for the location and scale parameters; no default. Special keyword arguments are recognized as holding certain parameters fixed:
f0...fn : hold respective shape parameters fixed.
floc : hold location parameter fixed to specified value.
fscale : hold scale parameter fixed to specified value.
optimizer
[The optimizer to use. The optimizer must take func,] and starting position as the first two arguments, plus args (for extra arguments to pass to the function to be optimized) and disp $=0$ to suppress output as keyword arguments.

Returns

shape, loc, scale : tuple of floats
MLEs for any shape statistics, followed by those for location and scale.
rv_continuous. expect (func $=$ None, $\operatorname{args}=(), l o c=0$, scale $=1, l b=$ None, $u b=$ None, conditional $=$ False, **kwds)
calculate expected value of a function with respect to the distribution
location and scale only tested on a few examples

Parameters

all parameters are keyword parameters :
func : function (default: identity mapping)
Function for which integral is calculated. Takes only one argument.
args : tuple
argument (parameters) of the distribution
$\mathbf{l b}$, ub: numbers
lower and upper bound for integration, default is set to the support of the distribution
conditional : boolean (False)
If true then the integral is corrected by the conditional probability of the integration interval. The return value is the expectation of the function, conditional on being in the given interval.

Additional keyword arguments are passed to the integration routine. :

Returns

expected value : float

Notes

This function has not been checked for it's behavior when the integral is not finite. The integration behavior is inherited from integrate.quad.
rv_continuous.median (*args, **kwds)
Median of the distribution.

Parameters

$\arg 1, \arg 2, \arg 3, \ldots$: array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)

Returns

median : float
the median of the distribution.

See Also:

self.ppf
rv_continuous.mean (*args, **kwds)
Mean of the distribution

Parameters

arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)

Returns

mean : float
the mean of the distribution
rv_continuous.var (*args, **kwds)
Variance of the distribution
Parameters
$\arg 1, \arg 2, \arg 3, \ldots .$. : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)

Returns

var: float
the variance of the distribution
rv_continuous.std (*args, **kwds)
Standard deviation of the distribution.
Parameters
arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)

Returns

std : float
standard deviation of the distribution
rv_continuous.interval (alpha, *args, **kwds)
Confidence interval with equal areas around the median

Parameters

alpha : array_like float in [0,1]
Probability that an rv will be drawn from the returned range
arg1, arg2, ... : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc: array_like, optioal :
location parameter (deafult $=0$)
scale : array_like, optional
scale paramter $($ default $=1)$

Returns

a, b: array_like (float) :
end-points of range that contain alpha \% of the rvs
Each discrete distribution is an instance of the class rv_discrete:

| rv_discrete([a, b, name, badvalue, ...]) | A generic discrete random variable class meant for subclassing. |
| :---: | :---: |
| rv_discrete.rvs(*args, **kwargs) | Random variates of given type. |
| rv_discrete.pmf(k, *args, **kwds) | Probability mass function at k of the given RV. |
| rv_discrete.logpmf(k, *args, **kwds) | Log of the probability mass function at k of the given RV. |
| rv_discrete.cdf(k, *args, **kwds) | Cumulative distribution function at k of the given RV |
| rv_discrete.logcdf(k, *args, **kwds) | Log of the cumulative distribution function at k of the given RV |
| rv_discrete.sf(k, *args, **kwds) | Survival function (1-cdf) at k of the given RV |
| rv_discrete.logsf(k, *args, **kwds) | Log of the survival function (1-cdf) at k of the given RV |
| rv_discrete.ppf(q, *args, **kwds) | Percent point function (inverse of cdf) at q of the given RV |
| rv_discrete.isf(q, *args, **kwds) | Inverse survival function (1-sf) at q of the given RV |
| rv_discrete.stats(*args, **kwds) | Some statistics of the given discrete RV |
| rv_discrete.moment(n, *args, **kwds) | n'th non-central moment of the distribution |
| rv_discrete.entropy(*args, **kwds) | |
| rv_discrete.expect([func, args, loc, lb, ...]) | calculate expected value of a function with respect to the distribution |
| rv_discrete.median(*args, **kwds) | Median of the distribution. |
| rv_discrete.mean(*args, **kwds) | Mean of the distribution |
| rv_discrete.var(*args, **kwds) | Variance of the distribution |
| rv_discrete.std(*args, **kwds) | Standard deviation of the distribution. |
| rv_discrete.interval(alpha, *args, **kwds) | Confidence interval with equal areas around the median |

class scipy.stats.rv_discrete $(a=0, b=i n f$, name $=$ None, badvalue $=$ None, moment_tol $=1 e-08$, values $=$ None, inc $=1$, longname $=$ None, shapes $=$ None, extradoc $=$ None $)$
A generic discrete random variable class meant for subclassing.
 variables. rv_discrete can be used to construct an arbitrary distribution with defined by a list of support points and the corresponding probabilities.

Parameters

a : float, optional
Lower bound of the support of the distribution, default: 0
b : float, optional
Upper bound of the support of the distribution, default: plus infinity
moment_tol : float, optional
The tolerance for the generic calculation of moments
values : tuple of two array_like
(xk, pk) where xk are points (integers) with positive probability pk with $\operatorname{sum}(\mathrm{pk})=1$
inc : integer
increment for the support of the distribution, default: 1 other values have not been tested
badvalue : object, optional
The value in (masked) arrays that indicates a value that should be ignored.
name : str, optional
The name of the instance. This string is used to construct the default example for distributions.
longname : str, optional
This string is used as part of the first line of the docstring returned when a subclass has no docstring of its own. Note: longname exists for backwards compatibility, do not use for new subclasses.
shapes : str, optional
The shape of the distribution. For example " m, n " for a distribution that takes two integers as the first two arguments for all its methods.
extradoc : str, optional
This string is used as the last part of the docstring returned when a subclass has no docstring of its own. Note: extradoc exists for backwards compatibility, do not use for new subclasses.

Notes

Alternatively, the object may be called (as a function) to fix the shape and location parameters returning a "frozen" discrete RV object:
myrv $=\operatorname{generic}(<$ shape $(s)>, \operatorname{loc}=0)$

- frozen RV object with the same methods but holding the given shape and location fixed.

You can construct an aribtrary discrete rv where $\mathrm{P}\{\mathrm{X}=\mathrm{xk}\}=\mathrm{pk}$ by passing to the rv_discrete initialization method (through the values=keyword) a tuple of sequences (xk, pk) which describes only those values of $\mathrm{X}(\mathrm{xk})$ that occur with nonzero probability (pk).
To create a new discrete distribution, we would do the following:

```
class poisson_gen(rv_continuous):
    #"Poisson distribution"
    def _pmf(self, k, mu):
```

and create an instance

```
poisson = poisson_gen(name="poisson", shapes="mu", longname='A Poisson')
```

The docstring can be created from a template.

Examples

```
>>> import matplotlib.pyplot as plt
>>> numargs = generic.numargs
>>> [ <shape(s)> ] = ['Replace with resonable value', ]*numargs
```

Display frozen pmf:

```
>>> rv = generic(<shape(s) >)
>>> x = np.arange(0, np.min(rv.dist.b, 3)+1)
>>> h = plt.plot(x, rv.pmf(x))
```

Check accuracy of cdf and ppf:

```
>>> prb = generic.cdf(x, <shape(s) >)
>>> h = plt.semilogy(np.abs(x-generic.ppf(prb, <shape(s)>))+1e-20)
```

Random number generation:

```
>>> R = generic.rvs(<shape(s)>, size=100)
```

Custom made discrete distribution:

```
>>> vals = [arange(7), (0.1, 0.2, 0.3, 0.1, 0.1, 0.1, 0.1)]
>>> custm = rv_discrete(name='custm', values=vals)
>>> h = plt.plot(vals[0], custm.pmf(vals[0]))
```


Methods

| generic.rvs(<shape(s)>, loc=0, size=1) | random variates |
| :--- | :--- |
| generic.pmf(x, <shape(s)>, loc=0) | probability mass function |
| logpmf(x, <shape(s)>, loc=0) | log of the probability density function |
| generic.cdf(x, <shape(s) $>, \operatorname{loc}=0)$ | cumulative density function |
| generic.logcdf(x, <shape(s)>, loc=0) | log of the cumulative density function |
| generic.sf(x, <shape(s)>, loc=0) | survival function (1-cdf - sometimes more accurate) |
| generic.logsf(x, <shape(s)>, loc=0, scale=1) | log of the survival function |
| generic.ppf(q, <shape(s)>, loc=0) | percent point function (inverse of cdf -percentiles) |
| generic.isf(q, <shape(s)>, loc=0) | inverse survival function (inverse of sf) |
| generic.moment(n, <shape(s)>, loc=0) | non-central n-th moment of the distribution. May not work |
| | for array arguments. |
| generic.stats(<shape(s)>, loc=0, | mean('m', axis=0), variance('v'), skew('s'), and/or |
| moments='mv') | kurtosis('k') |
| generic.entropy(<shape(s)>, loc=0) | entropy of the RV |
| generic.fit(data, <shape(s)>, loc=0) | Parameter estimates for generic data |
| generic.expect(func=None, args=(), loc=0, | Expected value of a function with respect to the distribution. |
| lb=None, ub=None, conditional=False) | Additional kwd arguments passed to integrate.quad |
| generic.median(<shape(s)>, loc=0) | Median of the distribution. |
| generic.mean(<shape(s)>, loc=0) | Mean of the distribution. |
| generic.std(<shape(s)>, loc=0) | Standard deviation of the distribution. |
| generic.var(<shape(s)>, loc=0) | Variance of the distribution. |
| generic.interval(alpha, <shape(s)>, loc=0) | Interval that with alpha percent probability contains a |
| | random realization of this distribution. |
| generic(<shape(s)>, loc=0) | calling a distribution instance returns a frozen distribution |

```
rv_discrete.rvs(*args, **kwargs)
```

Random variates of given type.

Parameters

$\arg 1, \arg 2, \arg 3, \ldots$: array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
size : int or tuple of ints, optional
defining number of random variates (default=1)

Returns

rvs : array_like
random variates of given size
rv_discrete.pmf (k, *args, **kwds)
Probability mass function at k of the given RV.

Parameters

\mathbf{k} : array_like
quantiles
$\arg 1, \arg 2, \arg 3, \ldots$. : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)

Returns

pmf : array_like
Probability mass function evaluated at k
rv_discrete.logpmf (k, *args, **kwds)
Log of the probability mass function at k of the given RV.
Parameters
\mathbf{k} : array_like
quantiles
$\arg 1, \arg 2, \arg 3, \ldots$: array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)

Returns

logpmf : array_like
Log of the probability mass function evaluated at k

```
rv_discrete.cdf (k, *args, **kwds)
```

Cumulative distribution function at k of the given RV

Parameters

\mathbf{k} : array_like, int
quantiles
$\arg 1, \arg 2, \arg 3, \ldots$. : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)

Returns

cdf : array_like
Cumulative distribution function evaluated at k
rv_discrete. $\operatorname{logcdf}(k, * \operatorname{args}, * * k w d s)$
Log of the cumulative distribution function at k of the given RV

Parameters

k: array_like, int
quantiles
arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)

Returns

logedf : array_like
Log of the cumulative distribution function evaluated at k
rv_discrete.sf(k, *args, **kwds)
Survival function (1-cdf) at k of the given RV

Parameters

\mathbf{k} : array_like
quantiles
$\arg 1, \arg 2, \arg 3, \ldots$. : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)

Returns

sf : array_like
Survival function evaluated at k

```
rv_discrete.logsf(k, *args, **kwds)
```

Log of the survival function (1-cdf) at k of the given RV

Parameters

\mathbf{k} : array_like
quantiles
$\arg 1, \arg 2, \arg 3, \ldots$. : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)

Returns

sf : array_like
Survival function evaluated at k
rv_discrete.ppf ($q, * \operatorname{args}, * * k w d s$)
Percent point function (inverse of cdf) at q of the given RV

Parameters

\mathbf{q} : array_like
lower tail probability
$\arg 1, \arg 2, \arg 3, \ldots$. array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
scale: array_like, optional :
scale parameter (default=1)

Returns

k: array_like
quantile corresponding to the lower tail probability, q.
rv_discrete.isf (q, *args, **kwds)
Inverse survival function (1-sf) at q of the given RV
Parameters
\mathbf{q} : array_like
upper tail probability
arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter $($ default $=0)$

Returns

k: array_like
quantile corresponding to the upper tail probability, q.
rv_discrete.stats (*args, **kwds)
Some statistics of the given discrete RV
Parameters
arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
moments : string, optional
composed of letters ['mvsk'] defining which moments to compute: 'm' = mean, 'v'
$=$ variance, 's' = (Fisher's) skew, ' k ' = (Fisher's) kurtosis. (default='mv')

Returns

stats : sequence
of requested moments.
rv_discrete.moment (n, *args, **kwds)
n'th non-central moment of the distribution
Parameters
n : int, $\mathrm{n}>=1$:
order of moment
$\arg 1, \arg 2, \arg 3, \ldots$: float :
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : float, optional
location parameter (default=0)
scale : float, optional
scale parameter (default=1)
rv_discrete.entropy (*args, **kwds)
rv_discrete. expect ($f u n c=$ None, $\arg s=($), loc=0, $l b=$ None, $u b=$ None, conditional $=$ False)
calculate expected value of a function with respect to the distribution for discrete distribution

Parameters

fn : function (default: identity mapping)
Function for which sum is calculated. Takes only one argument.
args : tuple
argument (parameters) of the distribution
optional keyword parameters :
lb, ub : numbers
lower and upper bound for integration, default is set to the support of the distribution, lb and ub are inclusive ($\mathrm{ul}<=\mathrm{k}<=\mathrm{ub}$)
conditional : boolean (False)
If true then the expectation is corrected by the conditional probability of the integration interval. The return value is the expectation of the function, conditional on being in the given interval (k such that $\mathrm{ul}<=\mathrm{k}<=\mathrm{ub}$).

Returns

expected value : float

Notes

-function is not vectorized
-accuracy: uses self.moment_tol as stopping criterium
for heavy tailed distribution e.g. zipf(4), accuracy for mean, variance in example is only $1 \mathrm{e}-5$, increasing precision (moment_tol) makes zipf very slow
-suppnmin=100 internal parameter for minimum number of points to evaluate
could be added as keyword parameter, to evaluate functions with non-monotonic shapes, points include integers in (-suppnmin, suppnmin)
-uses maxcount $=1000$ limits the number of points that are evaluated
to break loop for infinite sums (a maximum of suppnmin +1000 positive plus suppnmin +1000 negative integers are evaluated)
rv_discrete.median (*args, **kwds)
Median of the distribution.
Parameters
$\arg 1, \arg 2, \arg 3, \ldots$: array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter $($ default=1)

Returns

median : float
the median of the distribution.
See Also:
self.ppf
rv_discrete.mean (*args, **kwds)
Mean of the distribution

Parameters

$\arg 1, \arg 2, \arg 3, \ldots$. : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)

Returns

mean : float
the mean of the distribution
rv_discrete.var (*args, **kwds)
Variance of the distribution

Parameters

arg1, arg2, arg3,... : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)

Returns

var : float
the variance of the distribution
rv_discrete.std(*args, **kwds)
Standard deviation of the distribution.

Parameters

$\arg 1, \arg 2, \arg 3, \ldots$. : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)

Returns

std : float
standard deviation of the distribution
rv_discrete.interval (alpha, *args, **kwds)
Confidence interval with equal areas around the median

Parameters

alpha : array_like float in [0,1]
Probability that an rv will be drawn from the returned range
arg1, arg2, ... : array_like
The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc: array_like, optioal :
location parameter $($ deafult $=0)$
scale : array_like, optional
scale paramter $($ default $=1)$

Returns

a, b: array_like (float) :
end-points of range that contain alpha $\%$ of the rvs

3.19.1 Continuous distributions

Table 3.21 - continued from previous page

scipy.stats.norm

A normal continuous random variable.
The location (loc) keyword specifies the mean. The scale (scale) keyword specifies the standard deviation.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
\mathbf{q} : array_like
lower or upper tail probability
loc : array_like, optional location parameter (default=0)
scale : array_like, optional scale parameter (default=1)
size : int or tuple of ints, optional shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' = (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')
Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a "frozen" continuous RV object: :
$\mathbf{r v}=\operatorname{norm}(\operatorname{loc}=0$, scale $=1)$:

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

The probability density function for norm is:

```
norm.pdf(x) = exp(-x**2/2)/sqrt(2*pi)
```


Examples

```
>>> from scipy.stats import norm
>>> numargs = norm.numargs
>>> [ ] = [0.9,] * numargs
>>> rv = norm()
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = norm.cdf(x, )
>>> h = plt.semilogy(np.abs(x - norm.ppf(prb, )) + 1e-20)
```

Random number generation

```
>>> R = norm.rvs(size=100)
```


Methods

| rvs(loc=0, scale $=1$, size $=1$) | Random variates. |
| :---: | :---: |
| $\operatorname{pdf}(\mathrm{x}, \mathrm{loc}=0, \mathrm{scale}=1)$ | Probability density function. |
| $\operatorname{logpdf}(x, \operatorname{loc}=0$, scale $=1$) | Log of the probability density function. |
| $\operatorname{cdf}(\mathrm{x}, \mathrm{loc}=0$, scale=1) | Cumulative density function. |
| $\operatorname{logcdf}(\mathrm{x}, \operatorname{loc}=0$, scale $=1$) | Log of the cumulative density function. |
| $\mathrm{sf}(\mathrm{x}, \mathrm{loc}=0$, scale $=1$) | Survival function (1-cdf - sometimes more accurate). |
| $\operatorname{logsf}(\mathrm{x}, \mathrm{loc}=0$, scale $=1)$ | Log of the survival function. |
| $\operatorname{ppf}(\mathrm{q}, \mathrm{loc}=0$, scale=1) | Percent point function (inverse of cdf - percentiles). |
| $\operatorname{isf}(\mathrm{q}, \mathrm{loc}=0$, scale $=1$) | Inverse survival function (inverse of sf). |
| moment($\mathrm{n}, \mathrm{loc}=0$, scale=1) | Non-central moment of order n |
| stats($\mathrm{loc}=0$, scale $=1$, moments='mv') | Mean('m'), variance(' v '), skew('s'), and/or kurtosis('k'). |
| entropy $(\mathrm{loc}=0$, scale $=1$) | (Differential) entropy of the RV. |
| fit(data, loc $=0$, scale $=1$) | Parameter estimates for generic data. |
| $\operatorname{expect}($ func, $l o c=0$, $s c a l e=1, l b=$ None, $u b=$ None, conditional=False, ***kwds) | Expected value of a function (of one argument) with respect to the distribution. |
| median $($ loc $=0$, scale $=1$) | Median of the distribution. |
| mean (loc=0, scale=1) | Mean of the distribution. |
| $\operatorname{var}(\mathrm{loc}=0$, scale $=1$) | Variance of the distribution. |
| $\operatorname{std}(\mathrm{loc}=0$, scale $=1$) | Standard deviation of the distribution. |
| interval(alpha, loc=0, scale=1) | Endpoints of the range that contains alpha percent of the distribution |

scipy.stats.alpha
An alpha continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
q: array_like
lower or upper tail probability
a : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' = (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv $=\operatorname{alpha}(\mathrm{a}$, loc=0, scale $=1)$:

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

The probability density function for alpha is:

```
alpha.pdf(x,a) = 1/(x**2*Phi(a)*sqrt(2*pi)) * exp(-1/2 * (a-1/x)**2),
```

where Phi(alpha) is the normal CDF, $\mathrm{x}>0$, and $\mathrm{a}>0$.

Examples

```
>>> from scipy.stats import alpha
>>> numargs = alpha.numargs
>>> [ a ] = [0.9,] * numargs
>>> rv = alpha(a)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf
>>> prb = alpha.cdf (x, a)
$\ggg h=p l t . \operatorname{semilogy}(n p \cdot a b s(x-a l p h a \cdot p p f(p r b, a))+1 e-20)$
Random number generation

```
>>> R = alpha.rvs(a, size=100)
```


Methods

| $\begin{aligned} & \text { rvs(a, loc=0, scale=1, size=1) } \\ & \operatorname{pdf}(x, a, \operatorname{loc}=0, \text { scale }=1) \end{aligned}$ | Random variates.
 Probability density function. |
| :---: | :---: |
| $\operatorname{logpdf}(\mathrm{x}, \mathrm{a}, \mathrm{loc}=0$, scale $=1)$ | Log of the probability density function. |
| $\operatorname{cdf}(\mathrm{x}, \mathrm{a}, \mathrm{loc}=0$, scale=1) | Cumulative density function. |
| $\operatorname{logcdf}(\mathrm{x}, \mathrm{a}, \mathrm{loc}=0, \mathrm{scale}=1)$ | Log of the cumulative density function. |
| $\operatorname{sf}(\mathrm{x}, \mathrm{a}, \mathrm{loc}=0$, scale $=1)$ | Survival function (1-cdf - sometimes more accurate). |
| $\operatorname{logsf}(\mathrm{x}, \mathrm{a}, \operatorname{loc}=0$, scale $=1)$ | Log of the survival function. |
| $\operatorname{ppf}(\mathrm{q}, \mathrm{a}, \mathrm{loc}=0$, scale $=1)$ | Percent point function (inverse of cdf percentiles). |
| $\operatorname{isf}(\mathrm{q}, \mathrm{a}, \mathrm{loc}=0$, scale $=1)$ | Inverse survival function (inverse of sf). |
| moment($\mathrm{n}, \mathrm{a}, \mathrm{loc}=0$, scale=1) | Non-central moment of order n |
| stats($\mathrm{a}, \mathrm{loc}=0$, scale $=1$, moments='mv') | Mean(' m '), variance(' v '), skew(' s '), and/or kurtosis('k'). |
| entropy $(\mathrm{a}, \mathrm{loc}=0$, scale $=1)$ | (Differential) entropy of the RV. |
| fit(data, a, loc $=0$, scale $=1$) | Parameter estimates for generic data. |
| expect(func, $\mathrm{a}, \mathrm{loc}=0$, scale $=1, \mathrm{lb}=$ None, $\mathrm{ub}=$ None, conditional=False, **kwds) | Expected value of a function (of one argument) with respect to the distribution. |
| $\operatorname{median}(\mathrm{a}, \mathrm{loc}=0$, scale $=1$) | Median of the distribution. |
| mean $(\mathrm{a}, \mathrm{loc}=0$, scale $=1$) | Mean of the distribution. |
| $\operatorname{var}(\mathrm{a}, \mathrm{loc}=0$, scale=1) | Variance of the distribution. |
| $\operatorname{std}(\mathrm{a}, \mathrm{loc}=0$, scale $=1)$ | Standard deviation of the distribution. |
| interval(alpha, a, loc=0, scale=1) | Endpoints of the range that contains alpha percent of the distribution |

scipy.stats.anglit
An anglit continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
\mathbf{q} : array_like
lower or upper tail probability
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' $=$ (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a "frozen" continuous RV object: :
rv = anglit $(\operatorname{loc}=0$, scale $=1$) :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

The probability density function for anglit is:

```
anglit.pdf(x) = sin(2*x + pi/2) = cos(2*x),
for-pi/4 <= x <= pi/4.
Examples
>>> from scipy.stats import anglit
>>> numargs = anglit.numargs
>>> [ ] = [0.9,] * numargs
>>> rv = anglit()
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = anglit.cdf(x, )
>>> h = plt.semilogy(np.abs(x - anglit.ppf(prb, )) + 1e-20)
```

Random number generation

```
>>> R = anglit.rvs(size=100)
```


Methods

```
rvs(loc=0, scale=1, size=1)
pdf(x, loc=0, scale=1)
logpdf(x, loc=0, scale=1)
cdf(x, loc=0, scale=1)
logcdf(x, loc=0, scale=1)
sf(x, loc=0, scale=1)
logsf(x, loc=0, scale=1)
ppf(q, loc=0, scale=1)
isf(q, loc=0, scale=1)
moment(n, loc=0, scale=1)
stats(loc=0, scale=1, moments='mv')
entropy(loc=0, scale=1)
fit(data, loc=0, scale=1)
expect(func, loc=0, scale=1, lb=None, ub=None,
conditional=False, **kwds)
median(loc=0, scale=1)
mean(loc=0, scale=1)
var(loc=0, scale=1)
std(loc=0, scale=1)
interval(alpha, loc=0, scale=1)
```

Random variates.
Probability density function.
Log of the probability density function.
Cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more accurate).
Log of the survival function.
Percent point function (inverse of cdf - percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order n
Mean('m’), variance('v’), skew('s'), and/or kurtosis('k').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument) with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent of the distribution
scipy.stats.arcsine
An arcsine continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
q: array_like
lower or upper tail probability
loc : array_like, optional
location parameter (default $=0$)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' = variance, ' s ' = (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
$r v=\operatorname{arcsine}(\operatorname{loc}=0$, scale $=1):$

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

The probability density function for arcsine is:

```
arcsine.pdf(x) = 1/(pi*sqrt(x*(1-x)))
for 0 < x < 1.
```


Examples

```
>>> from scipy.stats import arcsine
>>> numargs = arcsine.numargs
>>> [ ] = [0.9,] * numargs
>>> rv = arcsine()
```

Display frozen pdf
>>> $x=n p . l i n s p a c e(0, n p . m i n i m u m(r v . d i s t . b, ~ 3))$ >>> h = plt.plot(x, rv.pdf(x))

Check accuracy of cdf and ppf

```
>>> prb = arcsine.cdf(x, )
>>> h = plt.semilogy(np.abs(x - arcsine.ppf(prb, )) + 1e-20)
```

Random number generation

```
>>> R = arcsine.rvs(size=100)
```


Methods

| rvs(loc=0, scale $=1$, size $=1$) | Random variates. |
| :---: | :---: |
| $\operatorname{pdf}(\mathrm{x}, \mathrm{loc}=0$, scale $=1$) | Probability density function. |
| $\operatorname{logpdf}(\mathrm{x}, \mathrm{loc}=0$, scale $=1$) | Log of the probability density function. |
| $\operatorname{cdf}(\mathrm{x}, \mathrm{loc}=0$, scale=1) | Cumulative density function. |
| $\operatorname{logcdf}(\mathrm{x}, \operatorname{loc}=0$, scale $=1$) | Log of the cumulative density function. |
| $\operatorname{sf}(\mathrm{x}, \mathrm{loc}=0$, scale $=1$) | Survival function (1-cdf - sometimes more accurate). |
| $\operatorname{logsf}(\mathrm{x}, \operatorname{loc}=0$, scale $=1)$ | Log of the survival function. |
| $\operatorname{ppf}(\mathrm{q}, \mathrm{loc}=0$, scale $=1$) | Percent point function (inverse of cdf - percentiles). |
| $\operatorname{isf}(\mathrm{q}, \mathrm{loc}=0$, scale $=1$) | Inverse survival function (inverse of sf). |
| moment($\mathrm{n}, \mathrm{loc}=0$, scale $=1$) | Non-central moment of order n |
| stats($\mathrm{loc}=0$, scale $=1$, moments='mv') | Mean('m'), variance(' v '), skew('s'), and/or kurtosis('k'). |
| entropy $(\mathrm{loc}=0$, scale $=1)$ | (Differential) entropy of the RV. |
| fit(data, loc $=0$, scale $=1$) | Parameter estimates for generic data. |
| $\operatorname{expect}($ func, loc $=0$, scale $=1, \mathrm{lb}=$ None, $\mathrm{ub}=$ None, conditional=False, **kwds) | Expected value of a function (of one argument) with respect to the distribution. |
| median(loc $=0$, scale $=1$) | Median of the distribution. |
| mean $(\mathrm{loc}=0$, scale $=1$) | Mean of the distribution. |
| $\operatorname{var}(\mathrm{loc}=0$, scale $=1$) | Variance of the distribution. |
| $\operatorname{std}(\mathrm{loc}=0$, scale $=1$) | Standard deviation of the distribution. |
| interval(alpha, loc=0, scale=1) | Endpoints of the range that contains alpha percent of the distribution |

scipy.stats.beta
A beta continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
\mathbf{q} : array_like
lower or upper tail probability
a, b: array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter $($ default $=1)$
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' = (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv $=\operatorname{beta}(a, b, l o c=0$, scale $=1)$:

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

The probability density function for beta is:

```
beta.pdf(x, a, b) = gamma(a+b)/(gamma(a) *gamma(b)) * x**(a-1) *
(1-x) ** (b-1),
for 0< x < 1,a>0,b>0.
Examples
```

```
>>> from scipy.stats import beta
>>> numargs = beta.numargs
>>> [ a, b ] = [0.9,] * numargs
>>> rv = beta(a, b)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = beta.cdf(x, a, b)
>>> h = plt.semilogy(np.abs(x - beta.ppf(prb, a, b)) + 1e-20)
```

Random number generation
>>> R = beta.rvs (a, b, size=100)

Methods

| $\operatorname{rvs}(\mathrm{a}, \mathrm{b}$, loc=0, scale $=1$, size $=1$) | Random variates. |
| :---: | :---: |
| $\operatorname{pdf}(\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{loc}=0$, scale=1) | Probability density function. |
| $\operatorname{logpdf}(\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{loc}=0, \mathrm{scale}=1)$ | Log of the probability density function. |
| $\operatorname{cdf}(\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{loc}=0$, scale=1) | Cumulative density function. |
| $\operatorname{logcdf}(\mathrm{x}, \mathrm{a}, \mathrm{b}, \operatorname{loc}=0$, scale $=1$) | Log of the cumulative density function. |
| $\operatorname{sf}(\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{loc}=0$, scale $=1)$ | Survival function (1-cdf - sometimes more accurate). |
| $\operatorname{logsf}(\mathrm{x}, \mathrm{a}, \mathrm{b}, \operatorname{loc}=0$, scale $=1)$ | Log of the survival function. |
| $\operatorname{ppf}(\mathrm{q}, \mathrm{a}, \mathrm{b}, \mathrm{loc}=0$, scale=1) | Percent point function (inverse of cdf percentiles). |
| $\operatorname{isf}(\mathrm{q}, \mathrm{a}, \mathrm{b}, \mathrm{loc}=0$, scale $=1)$ | Inverse survival function (inverse of sf). |
| $\operatorname{moment}(\mathrm{n}, \mathrm{a}, \mathrm{b}, \mathrm{loc}=0$, scale=1) | Non-central moment of order n |
| stats($\mathrm{a}, \mathrm{b}, \mathrm{loc}=0$, scale $=1$, moments='mv') | Mean('m'), variance(' v '), skew('s'), and/or kurtosis(' k '). |
| entropy (a, b, loc $=0$, scale $=1$) | (Differential) entropy of the RV. |
| fit(data, a, b, loc=0, scale $=1$) | Parameter estimates for generic data. |
| $\operatorname{expect}(f u n c, a, b, l o c=0$, scale $=1, l b=$ None, $\mathrm{ub}=$ None, conditional=False, **kwds) | Expected value of a function (of one argument) with respect to the distribution. |
| median (a, b, loc=0, scale $=1$) | Median of the distribution. |
| mean (a, b, loc=0, scale=1) | Mean of the distribution. |
| $\operatorname{var}(\mathrm{a}, \mathrm{b}, \mathrm{loc}=0$, scale=1) | Variance of the distribution. |
| $\operatorname{std}(\mathrm{a}, \mathrm{b}, \mathrm{loc}=0$, scale $=1)$ | Standard deviation of the distribution. |
| interval(alpha, a, b, loc=0, scale=1) | Endpoints of the range that contains alpha percent of the distribution |

scipy.stats.betaprime
A beta prima continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
\mathbf{q} : array_like
lower or upper tail probability
a, b: array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' = (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
$r v=$ betaprime $(a, b, l o c=0$, scale $=1)$:

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

The probability density function for betaprime is:

```
betaprime.pdf(x, a, b) =
    gamma(a+b) / (gamma(a)*gamma(b)) * x**(a-1) * (1-x) **(-a-b)
for x > 0,a > 0,b > 0.
```


Examples

```
>>> from scipy.stats import betaprime
>>> numargs = betaprime.numargs
>>> [ a, b ] = [0.9,] * numargs
>>> rv = betaprime(a, b)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = betaprime.cdf(x, a, b)
>>> h = plt.semilogy(np.abs(x - betaprime.ppf(prb, a, b)) + le-20)
```

Random number generation

```
>>> R = betaprime.rvs(a, b, size=100)
```


Methods

```
rvs(a, b, loc=0, scale=1, size=1)
pdf(x, a, b, loc=0, scale=1)
logpdf(x, a, b, loc=0, scale=1)
cdf(x, a, b, loc=0, scale=1)
logcdf(x, a, b, loc=0, scale=1)
sf(x, a, b, loc=0, scale=1)
logsf(x, a, b, loc=0, scale=1)
ppf(q,a,b, loc=0, scale=1)
isf(q, a, b, loc=0, scale=1)
moment(n, a, b, loc=0, scale=1)
stats(a, b, loc=0, scale=1, moments='mv')
entropy(a, b, loc=0, scale=1)
fit(data, a, b, loc=0, scale=1)
expect(func, a, b, loc=0, scale=1,lb=None,
ub=None, conditional=False, **kwds)
median(a, b, loc=0, scale=1)
mean(a, b, loc=0, scale=1)
var(a,b, loc=0, scale=1)
std(a, b, loc=0, scale=1)
interval(alpha, a, b, loc=0, scale=1)
```

Random variates.
Probability density function.
Log of the probability density function. Cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more accurate).
Log of the survival function.
Percent point function (inverse of cdf percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order n
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument)
with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent of the distribution

```
scipy.stats.bradford
A Bradford continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
```


Parameters

\mathbf{x} : array_like
quantiles
q: array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' = (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv $=\operatorname{bradford}(\mathbf{c}, \operatorname{loc}=0$, scale $=1)$:

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

The probability density function for bradford is:
bradford.pdf(x, c) = c / (k * (1+c*x)),
for $0<\mathrm{x}<1, \mathrm{c}>0$ and $\mathrm{k}=\log (1+c)$.

Examples

```
>>> from scipy.stats import bradford
>>> numargs = bradford.numargs
>>> [ c ] = [0.9,] * numargs
>>> rv = bradford(c)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
```

>>> h = plt.plot(x, rv.pdf(x))

Check accuracy of cdf and ppf

```
>>> prb = bradford.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - bradford.ppf(prb, c)) + 1e-20)
```

Random number generation

```
>>> R = bradford.rvs(c, size=100)
```


Methods

scipy.stats.burr
A Burr continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
q: array_like
lower or upper tail probability
c, d : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' = (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv $=\operatorname{burr}(c, d, \operatorname{loc}=0$, scale=1) :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

The probability density function for burr is:
burr.pdf(x, c, d) = c * d * $x * *(-c-1)$ * (1+x**(-c)) **(-d-1)
for $\mathrm{x}>0$.

Examples

```
>>> from scipy.stats import burr
>>> numargs = burr.numargs
>>> [ c, d ] = [0.9,] * numargs
>>> rv = burr(c, d)
```

Display frozen pdf
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
Check accuracy of cdf and ppf

```
>>> prb = burr.cdf(x, c, d)
>>> h = plt.semilogy(np.abs(x - burr.ppf(prb, c, d)) + 1e-20)
```

Random number generation

```
>>> R = burr.rvs(c, d, size=100)
```


Methods

| $\begin{aligned} & \text { rvs(c, }, \text { loc= }=\text {, scale }=1, \text { size }=1) \\ & \operatorname{pdf}(x, c, d, l o c=0, \text { scale }=1) \end{aligned}$ | Random variates.
 Probability density function. |
| :---: | :---: |
| $\operatorname{logpdf}(\mathrm{x}, \mathrm{c}, \mathrm{d}, \mathrm{loc}=0, \mathrm{scale}=1)$ | Log of the probability density function. |
| $\operatorname{cdf}(\mathrm{x}, \mathrm{c}, \mathrm{d}, \mathrm{loc}=0$, scale=1) | Cumulative density function. |
| $\operatorname{logcdf}(\mathrm{x}, \mathrm{c}, \mathrm{d}, \mathrm{loc}=0, \mathrm{scale}=1)$ | Log of the cumulative density function. |
| $\mathrm{sf}(\mathrm{x}, \mathrm{c}, \mathrm{d}, \mathrm{loc}=0, \mathrm{scale}=1)$ | Survival function (1-cdf - sometimes more accurate). |
| $\operatorname{logsf}(\mathrm{x}, \mathrm{c}, \mathrm{d}, \mathrm{loc}=0$, scale $=1)$ | Log of the survival function. |
| $\operatorname{ppf}(\mathrm{q}, \mathrm{c}, \mathrm{d}, \mathrm{loc}=0$, scale=1) | Percent point function (inverse of cdf percentiles). |
| $\operatorname{isf}(\mathrm{q}, \mathrm{c}, \mathrm{d}, \mathrm{loc}=0$, scale $=1$) | Inverse survival function (inverse of sf). |
| $\operatorname{moment}(\mathrm{n}, \mathrm{c}, \mathrm{d}, \mathrm{loc}=0$, scale=1) | Non-central moment of order n |
| stats(c, d, loc=0, scale $=1$, moments='mv') | Mean('m'), variance('v'), skew('s'), and/or kurtosis('k'). |
| entropy (c, d, loc=0, scale $=1$) | (Differential) entropy of the RV. |
| fit(data, c, d, loc=0, scale=1) | Parameter estimates for generic data. |
| $\operatorname{expect}(f u n c, c, d, l o c=0$, scale $=1, l b=$ None, ub=None, conditional=False, **kwds) | Expected value of a function (of one argument) with respect to the distribution. |
| median(c, d, loc=0, scale=1) | Median of the distribution. |
| mean $(\mathrm{c}, \mathrm{d}, \mathrm{loc}=0$, scale $=1$) | Mean of the distribution. |
| $\operatorname{var}(\mathrm{c}, \mathrm{d}, \mathrm{loc}=0$, scale=1) | Variance of the distribution. |
| $\operatorname{std}(\mathrm{c}, \mathrm{d}, \mathrm{loc}=0$, scale $=1$) | Standard deviation of the distribution. |
| interval(alpha, c, d, loc=0, scale=1) | Endpoints of the range that contains alpha percent of the distribution |

A Fisk continuous random variable.
The Fisk distribution is also known as the log-logistic distribution, and equals the Burr distribution with $\mathrm{d}=1$.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

$\mathbf{x}:$ array_like
quantiles
q: array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' = (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')
Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a "frozen" continuous RV object: :
$r v=\operatorname{fisk}(c, l o c=0$, scale $=1)$:

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

See Also:

burr

Examples

```
>>> from scipy.stats import fisk
>>> numargs = fisk.numargs
>>> [ c ] = [0.9,] * numargs
>>> rv = fisk(c)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = fisk.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - fisk.ppf(prb, c)) + 1e-20)
```

Random number generation

```
>>> R = fisk.rvs(c, size=100)
```


Methods

| $\operatorname{rvs}(\mathrm{c}, \mathrm{loc}=0$, scale $=1$, size $=1$) | Random variates. |
| :---: | :---: |
| $\operatorname{pdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0, \mathrm{scale}=1)$ | Probability density function. |
| $\operatorname{logpdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1$) | Log of the probability density function. |
| $\operatorname{cdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Cumulative density function. |
| $\operatorname{logcdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0, \mathrm{scale}=1)$ | Log of the cumulative density function. |
| $\operatorname{sf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale $=1)$ | Survival function (1-cdf - sometimes more accurate). |
| $\operatorname{logsf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1)$ | Log of the survival function. |
| $\operatorname{ppf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0$, scale $=1)$ | Percent point function (inverse of cdf percentiles). |
| $\operatorname{isf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Inverse survival function (inverse of sf). |
| moment($\mathrm{n}, \mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Non-central moment of order n |
| stats($\mathrm{c}, \mathrm{loc}=0$, scale $=1$, moments='mv') | Mean('m'), variance('v'), skew('s'), and/or kurtosis('k'). |
| entropy $(\mathrm{c}, \mathrm{loc}=0$, scale $=1$) | (Differential) entropy of the RV. |
| fit(data, c, loc=0, scale $=1$) | Parameter estimates for generic data. |
| $\operatorname{expect}($ func, $c, l o c=0$, scale $=1, l b=$ None, $u b=$ None, conditional=False, $* *$ kwds) | Expected value of a function (of one argument) with respect to the distribution. |
| median(c, loc=0, scale=1) | Median of the distribution. |
| mean(c, loc=0, scale=1) | Mean of the distribution. |
| $\operatorname{var}(\mathrm{c}, \mathrm{loc}=0$, scale=1) | Variance of the distribution. |
| $\operatorname{std}(\mathrm{c}, \mathrm{loc}=0$, scale=1) | Standard deviation of the distribution. |
| interval(alpha, $\mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Endpoints of the range that contains alpha percent of the distribution |

scipy.stats.cauchy
A Cauchy continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
q: array_like
lower or upper tail probability
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' $=$ (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a "frozen" continuous RV object: :
rv $=$ cauchy $(l o c=0$, scale=1) :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

The probability density function for cauchy is:

```
cauchy.pdf(x) = 1 / (pi * (1 + x**2))
```


Examples

```
>>> from scipy.stats import cauchy
>>> numargs = cauchy.numargs
>>> [ ] = [0.9,] * numargs
>>> rv = cauchy()
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = cauchy.cdf(x, )
>>> h = plt.semilogy(np.abs(x - cauchy.ppf(prb, )) + 1e-20)
```

Random number generation

```
>>> R = cauchy.rvs(size=100)
```


Methods

```
rvs(loc=0, scale=1, size=1)
pdf(x, loc=0, scale=1)
logpdf(x, loc=0, scale=1)
cdf(x, loc=0, scale=1)
logcdf(x, loc=0, scale=1)
sf(x, loc=0, scale=1)
logsf(x, loc=0, scale=1)
ppf(q, loc=0, scale=1)
isf(q, loc=0, scale=1)
moment(n, loc=0, scale=1)
stats(loc=0, scale=1, moments='mv')
entropy(loc=0, scale=1)
fit(data, loc=0, scale=1)
expect(func, loc=0, scale=1,lb=None, ub=None,
conditional=False, **kwds)
median(loc=0, scale=1)
mean(loc=0, scale=1)
var(loc=0, scale=1)
std(loc=0, scale=1)
interval(alpha, loc=0, scale=1)
```

Random variates.
Probability density function.
Log of the probability density function.
Cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more accurate).
Log of the survival function.
Percent point function (inverse of cdf - percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order n
Mean('m’), variance('v’), skew('s'), and/or kurtosis('k').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument) with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent of the distribution

```
scipy.stats.chi
```

A chi continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
q: array_like
lower or upper tail probability
df : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' = (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv $=\operatorname{chi}(d f, l o c=0$, scale $=1)$:

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

The probability density function for $c h i$ is:

```
chi.pdf(x,df) = x**(df-1) * exp(-x**2/2) / (2**(df/2-1) * gamma(df/2))
```

for $\mathrm{x}>0$.

Examples

```
>>> from scipy.stats import chi
>>> numargs = chi.numargs
>>> [ df ] = [0.9,] * numargs
>>> rv = chi(df)
```

Display frozen pdf
>>> $x=n p . l i n s p a c e(0, n p . m i n i m u m(r v . d i s t . b, ~ 3))$
>>> h = plt.plot(x, rv.pdf(x))
Check accuracy of cdf and ppf

```
>>> prb = chi.cdf(x, df)
>>> h = plt.semilogy(np.abs(x - chi.ppf(prb, df)) + 1e-20)
```

Random number generation

```
>>> R = chi.rvs(df, size=100)
```


Methods

| rvs(df, loc=0, scale=1, size=1) | Random variates. |
| :---: | :---: |
| $\mathrm{pdf}(\mathrm{x}, \mathrm{df}, \mathrm{loc}=0$, scale=1) | Probability density function. |
| $\operatorname{logpdf}(\mathrm{x}, \mathrm{df}, \operatorname{loc}=0$, scale $=1$) | Log of the probability density function. |
| $\operatorname{cdf}(\mathrm{x}, \mathrm{df}, \mathrm{loc}=0, \mathrm{scale}=1)$ | Cumulative density function. |
| $\operatorname{logcdf}(\mathrm{x}, \mathrm{df}, \mathrm{loc}=0$, scale $=1)$ | Log of the cumulative density function. |
| $\operatorname{sf}(\mathrm{x}, \mathrm{df}, \mathrm{loc}=0, \mathrm{scale}=1)$ | Survival function (1-cdf - sometimes more accurate). |
| $\operatorname{logsf}(\mathrm{x}, \mathrm{df}, \operatorname{loc}=0$, scale $=1$) | Log of the survival function. |
| $\operatorname{ppf}(\mathrm{q}, \mathrm{df}, \mathrm{loc}=0$, scale $=1)$ | Percent point function (inverse of cdf percentiles). |
| $\operatorname{isf}(\mathrm{q}, \mathrm{df}, \mathrm{loc}=0$, scale=1) | Inverse survival function (inverse of sf). |
| moment($\mathrm{n}, \mathrm{df}, \mathrm{loc}=0$, scale=1) | Non-central moment of order n |
| stats(df, loc=0, scale $=1$, moments=' mv ') | Mean('m'), variance(' v '), skew('s'), and/or kurtosis('k'). |
| entropy $(\mathrm{df}, \mathrm{loc}=0$, scale $=1$) | (Differential) entropy of the RV. |
| fit(data, df, loc=0, scale=1) | Parameter estimates for generic data. |
| $\operatorname{expect}(f u n c, d f, \operatorname{loc}=0$, scale $=1, \mathrm{lb}=$ None, $\mathrm{ub}=$ None, conditional=False, ${ }^{* *}$ kwds) | Expected value of a function (of one argument) with respect to the distribution. |
| median(df, loc=0, scale=1) | Median of the distribution. |
| mean(df, loc=0, scale=1) | Mean of the distribution. |
| $\operatorname{var}(\mathrm{df}, \mathrm{loc}=0, \mathrm{scale}=1)$ | Variance of the distribution. |
| $\operatorname{std}(\mathrm{df}, \mathrm{loc}=0, \mathrm{scale}=1)$ | Standard deviation of the distribution. |
| interval(alpha, df, loc=0, scale=1) | Endpoints of the range that contains alpha percent of the distribution |

scipy.stats.chi2
A chi-squared continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
q: array_like
lower or upper tail probability
df : array_like
shape parameters
loc : array_like, optional
location parameter (default $=0$)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' = (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv $=\operatorname{chi} 2(d f, l o c=0$, scale $=1)$:

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

The probability density function for chi 2 is:

```
chi2.pdf(x,df) = 1 / (2*gamma(df/2)) * (x/2)**(df/2-1) * exp(-x/2)
```


Examples

```
>>> from scipy.stats import chi2
>>> numargs = chi2.numargs
>>> [ df ] = [0.9,] * numargs
>>> rv = chi2(df)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = chi2.cdf(x, df)
>>> h = plt.semilogy(np.abs(x - chi2.ppf(prb, df)) + 1e-20)
```

Random number generation

```
>>> R = chi2.rvs(df, size=100)
```


Methods

```
rvs(df, loc=0, scale=1, size=1)
pdf(x, df, loc=0, scale=1)
logpdf(x, df, loc=0, scale=1)
cdf(x, df, loc=0, scale=1)
logcdf(x, df, loc=0, scale=1)
sf(x, df, loc=0, scale=1)
logsf(x, df, loc=0, scale=1)
ppf(q, df, loc=0, scale=1)
isf(q, df, loc=0, scale=1)
moment(n, df, loc=0, scale=1)
stats(df, loc=0, scale=1, moments='mv')
entropy(df, loc=0, scale=1)
fit(data, df, loc=0, scale=1)
expect(func, df, loc=0, scale=1, lb=None, ub=None,
conditional=False, **kwds)
median(df, loc=0, scale=1)
mean(df, loc=0, scale=1)
var(df, loc=0, scale=1)
std(df, loc=0, scale=1)
interval(alpha, df, loc=0, scale=1)
```

Random variates.
Probability density function.
Log of the probability density function.
Cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more
accurate).
Log of the survival function.
Percent point function (inverse of cdf -
percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order n
Mean('m'), variance('v'), skew('s'), and/or
kurtosis('k').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument)
with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent
of the distribution
scipy.stats.cosine
A cosine continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
\mathbf{q} : array_like
lower or upper tail probability
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' $=$ (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

```
Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a "frozen" continuous RV object: :
rv = cosine(loc=0, scale=1) :
```

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

The cosine distribution is an approximation to the normal distribution. The probability density function for cosine is:

```
cosine.pdf(x) = 1/(2*pi) * (1+cos(x))
for -pi <= x <= pi.
```


Examples

```
>>> from scipy.stats import cosine
>>> numargs = cosine.numargs
>>> [ ] = [0.9,] * numargs
>>> rv = cosine()
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = cosine.cdf(x, )
>>> h = plt.semilogy(np.abs(x - cosine.ppf(prb, )) + 1e-20)
```

Random number generation

```
>>> R = cosine.rvs(size=100)
```


Methods

| $\operatorname{rvs}(\mathrm{loc}=0$, scale $=1$, size $=1$) | Random variates. |
| :---: | :---: |
| $\operatorname{pdf}(\mathrm{x}, \mathrm{loc}=0$, scale $=1$) | Probability density function. |
| $\operatorname{logpdf}(\mathrm{x}, \operatorname{loc}=0$, scale $=1$) | Log of the probability density function. |
| $\operatorname{cdf}(\mathrm{x}, \mathrm{loc}=0$, scale $=1$) | Cumulative density function. |
| $\operatorname{logcdf}(\mathrm{x}, \operatorname{loc}=0$, scale $=1$) | Log of the cumulative density function. |
| $\mathrm{sf}(\mathrm{x}, \mathrm{loc}=0$, scale $=1$) | Survival function (1-cdf - sometimes more accurate). |
| $\operatorname{logsf}(\mathrm{x}, \operatorname{loc}=0$, scale $=1)$ | Log of the survival function. |
| $\operatorname{ppf}(\mathrm{q}, \mathrm{loc}=0$, scale=1) | Percent point function (inverse of cdf - percentiles). |
| $\operatorname{isf}(\mathrm{q}, \mathrm{loc}=0$, scale $=1$) | Inverse survival function (inverse of sf). |
| moment($\mathrm{n}, \mathrm{loc}=0$, scale $=1$) | Non-central moment of order n |
| stats($\mathrm{loc}=0$, scale $=1$, moments='mv') | Mean('m'), variance(' v '), skew('s'), and/or kurtosis('k'). |
| entropy $(\mathrm{loc}=0$, scale $=1$) | (Differential) entropy of the RV. |
| fit(data, loc=0, scale $=1$) | Parameter estimates for generic data. |
| $\operatorname{expect}($ func, loc $=0$, scale $=1, \mathrm{lb}=$ None, $\mathrm{ub}=$ None, conditional=False, ***kwds) | Expected value of a function (of one argument) with respect to the distribution. |
| median(loc $=0$, scale $=1$) | Median of the distribution. |
| mean $(\mathrm{loc}=0$, scale $=1$) | Mean of the distribution. |
| $\operatorname{var}(\mathrm{loc}=0$, scale $=1$) | Variance of the distribution. |
| $\operatorname{std}(\mathrm{loc}=0$, scale $=1$) | Standard deviation of the distribution. |
| interval(alpha, loc=0, scale=1) | Endpoints of the range that contains alpha percent of the distribution |

scipy.stats.dgamma
A double gamma continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
q: array_like
lower or upper tail probability
a : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' = (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv $=\operatorname{dgamma}(\mathbf{a}, \operatorname{loc}=0$, scale $=1)$:

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

The probability density function for dgamma is:

```
dgamma.pdf(x, a) = 1 / (2*gamma(a)) * abs(x) **(a-1) * exp(-abs(x))
```

for a >0.

Examples

```
>>> from scipy.stats import dgamma
>>> numargs = dgamma.numargs
>>> [ a ] = [0.9,] * numargs
>>> rv = dgamma(a)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf
>>> prb = dgamma.cdf(x, a)
>>> $h=p l t . \operatorname{semilogy}(n p . a b s(x-d g a m m a . p p f(p r b, a))+1 e-20)$
Random number generation

```
>>> R = dgamma.rvs(a, size=100)
```


Methods

| $\operatorname{rvs}(\mathrm{a}, \mathrm{loc}=0$, scale $=1$, size $=1$) | Random variates. |
| :---: | :---: |
| $\operatorname{pdf}(\mathrm{x}, \mathrm{a}, \mathrm{loc}=0$, scale $=1$) | Probability density function. |
| $\operatorname{logpdf}(\mathrm{x}, \mathrm{a}, \operatorname{loc}=0$, scale $=1$) | Log of the probability density function. |
| $\operatorname{cdf}(\mathrm{x}, \mathrm{a}, \mathrm{loc}=0$, scale $=1$) | Cumulative density function. |
| $\operatorname{logcdf}(\mathrm{x}, \mathrm{a}, \operatorname{loc}=0$, scale $=1$) | Log of the cumulative density function. |
| $\operatorname{sf}(\mathrm{x}, \mathrm{a}, \mathrm{loc}=0$, scale $=1)$ | Survival function (1-cdf - sometimes more accurate). |
| $\operatorname{logsf}(\mathrm{x}, \mathrm{a}, \operatorname{loc}=0$, scale $=1)$ | Log of the survival function. |
| $\operatorname{ppf}(\mathrm{q}, \mathrm{a}, \mathrm{loc}=0$, scale $=1)$ | Percent point function (inverse of cdf percentiles). |
| $\operatorname{isf}(\mathrm{q}, \mathrm{a}, \mathrm{loc}=0$, scale $=1$) | Inverse survival function (inverse of sf). |
| moment($\mathrm{n}, \mathrm{a}, \mathrm{loc}=0$, scale $=1$) | Non-central moment of order n |
| stats(a, loc=0, scale $=1$, moments='mv') | Mean('m'), variance('v'), skew('s'), and/or kurtosis('k'). |
| entropy $(\mathrm{a}, \mathrm{loc}=0$, scale $=1$) | (Differential) entropy of the RV. |
| fit(data, a, loc=0, scale $=1$) | Parameter estimates for generic data. |
| expect(func, $\mathrm{a}, \mathrm{loc}=0$, scale $=1, \mathrm{lb}=$ None, $\mathrm{ub}=$ None, conditional=False, ${ }^{* *}$ kwds) | Expected value of a function (of one argument) with respect to the distribution. |
| median $(\mathrm{a}, \mathrm{loc}=0$, scale $=1$) | Median of the distribution. |
| mean $(\mathrm{a}, \mathrm{loc}=0$, scale $=1$) | Mean of the distribution. |
| $\operatorname{var}(\mathrm{a}, \mathrm{loc}=0$, scale=1) | Variance of the distribution. |
| $\operatorname{std}(\mathrm{a}, \mathrm{loc}=0$, scale $=1)$ | Standard deviation of the distribution. |
| interval(alpha, a, loc=0, scale=1) | Endpoints of the range that contains alpha percent of the distribution |

scipy.stats.dweibull
A double Weibull continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
\mathbf{q} : array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' = (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv $=$ dweibull $(c, \operatorname{loc}=0$, scale $=1)$:

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

The probability density function for d weibull is:

```
dweibull.pdf(x, c) = c / 2 * abs(x) **(c-1) * exp(-abs(x)**c)
```


Examples

```
>>> from scipy.stats import dweibull
>>> numargs = dweibull.numargs
>>> [ c ] = [0.9,] * numargs
>>> rv = dweibull(c)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = dweibull.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - dweibull.ppf(prb, c)) + le-20)
```

Random number generation

```
>>> R = dweibull.rvs(c, size=100)
```


Methods

| rvs(c, loc=0, scale $=1$, size $=1$) | Random variates. |
| :---: | :---: |
| $\operatorname{pdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0, \mathrm{scale}=1)$ | Probability density function. |
| $\operatorname{logpdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1$) | Log of the probability density function. |
| $\operatorname{cdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Cumulative density function. |
| $\operatorname{logcdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1$) | Log of the cumulative density function. |
| $\mathrm{sf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0, \mathrm{scale}=1)$ | Survival function (1-cdf - sometimes more accurate). |
| $\operatorname{logsf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1$) | Log of the survival function. |
| $\operatorname{ppf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0$, scale $=1)$ | Percent point function (inverse of cdf percentiles). |
| $\operatorname{isf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Inverse survival function (inverse of sf). |
| moment($\mathrm{n}, \mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Non-central moment of order n |
| stats($\mathrm{c}, \mathrm{loc}=0$, scale $=1$, moments='mv') | Mean('m'), variance(' v '), skew('s'), and/or kurtosis(' k '). |
| entropy (c, loc=0, scale=1) | (Differential) entropy of the RV. |
| fit(data, c, loc=0, scale=1) | Parameter estimates for generic data. |
| $\operatorname{expect}(f u n c, c, l o c=0$, scale $=1, l b=$ None, $u b=$ None, conditional=False, ${ }^{* *}$ kwds) | Expected value of a function (of one argument) with respect to the distribution. |
| median (c, loc=0, scale $=1$) | Median of the distribution. |
| mean (c, loc $=0$, scale $=1$) | Mean of the distribution. |
| $\operatorname{var}(\mathrm{c}, \mathrm{loc}=0$, scale=1) | Variance of the distribution. |
| $\operatorname{std}(\mathrm{c}, \mathrm{loc}=0$, scale=1) | Standard deviation of the distribution. |
| interval(alpha, $\mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Endpoints of the range that contains alpha percent of the distribution |

scipy.stats.erlang
An Erlang continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
q: array_like
lower or upper tail probability
n : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' = (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv $=\operatorname{erlang}(n, l o c=0$, scale $=1)$:

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

The Erlang distribution is a special case of the Gamma distribution, with the shape parameter an integer.

Examples

```
>>> from scipy.stats import erlang
>>> numargs = erlang.numargs
>>> [ n ] = [0.9,] * numargs
>>> rv = erlang(n)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = erlang.cdf(x, n)
>>> h = plt.semilogy(np.abs(x - erlang.ppf(prb, n)) + 1e-20)
```

Random number generation

```
>>> R = erlang.rvs(n, size=100)
```


Methods

scipy.stats.expon
An exponential continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
q: array_like
lower or upper tail probability
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' $=$ (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a "frozen" continuous RV object: :
rv $=\operatorname{expon}(l o c=0$, scale=1) :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

The probability density function for expon is:

```
expon.pdf(x) = exp(-x)
```

for $\mathrm{x}>=0$.
The scale parameter is equal to scale $=1.0 /$ lambda.

Examples

```
>>> from scipy.stats import expon
>>> numargs = expon.numargs
>>> [ ] = [0.9,] * numargs
>>> rv = expon()
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = expon.cdf(x, )
>>> h = plt.semilogy(np.abs(x - expon.ppf(prb, )) + 1e-20)
```

Random number generation

```
>>> R = expon.rvs(size=100)
```


Methods

scipy.stats.exponweib
An exponentiated Weibull continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
q: array_like lower or upper tail probability
a, c: array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' = (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
$r v=\operatorname{exponweib}(a, c, l o c=0$, scale $=1)$:

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

The probability density function for exponweib is:

```
exponweib.pdf(x, a, c) =
    a * c * (1-exp (-x**c)) **(a-1) * exp (-x**c) *x**(c-1)
```

for $\mathrm{x}>0, \mathrm{a}>0, \mathrm{c}>0$.

Examples

```
>>> from scipy.stats import exponweib
>>> numargs = exponweib.numargs
>>> [ a, c ] = [0.9,] * numargs
>>> rv = exponweib(a, c)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = exponweib.cdf(x, a, c)
>>> h = plt.semilogy(np.abs(x - exponweib.ppf(prb, a, c)) + le-20)
```

Random number generation

```
>>> R = exponweib.rvs(a, c, size=100)
```


Methods

```
rvs(a, c, loc=0, scale=1, size=1)
pdf(x, a, c, loc=0, scale=1)
logpdf(x, a, c, loc=0, scale=1)
cdf(x, a, c, loc=0, scale=1)
logcdf(x, a, c, loc=0, scale=1)
sf(x, a, c, loc=0, scale=1)
logsf(x, a, c, loc=0, scale=1)
ppf(q, a, c, loc=0, scale=1)
isf(q, a, c, loc=0, scale=1)
moment(n, a, c, loc=0, scale=1)
stats(a, c, loc=0, scale=1, moments='mv')
entropy(a, c, loc=0, scale=1)
fit(data, a, c, loc=0, scale=1)
expect(func, a, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)
median(a, c, loc=0, scale=1)
mean(a, c, loc=0, scale=1)
var(a, c, loc=0, scale=1)
std(a, c, loc=0, scale=1)
interval(alpha, a, c, loc=0, scale=1)
```

Random variates.

```
Random variates.
Probability density function.
Probability density function.
Log of the probability density function.
Log of the probability density function.
Cumulative density function.
Cumulative density function.
Log of the cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more
Survival function (1-cdf - sometimes more
accurate).
accurate).
Log of the survival function.
Log of the survival function.
Percent point function (inverse of cdf -
Percent point function (inverse of cdf -
percentiles).
percentiles).
Inverse survival function (inverse of sf).
Inverse survival function (inverse of sf).
Non-central moment of order n
Non-central moment of order n
Mean('m'), variance('v'), skew('s'), and/or
Mean('m'), variance('v'), skew('s'), and/or
kurtosis('k').
kurtosis('k').
(Differential) entropy of the RV.
(Differential) entropy of the RV.
Parameter estimates for generic data.
Parameter estimates for generic data.
Expected value of a function (of one argument)
Expected value of a function (of one argument)
with respect to the distribution.
with respect to the distribution.
Median of the distribution.
Median of the distribution.
Mean of the distribution.
Mean of the distribution.
Variance of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent
Endpoints of the range that contains alpha percent
of the distribution
```

```
of the distribution
```

```
scipy.stats.exponpow
An exponential power continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
b: array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
rv \(=\operatorname{exponpow}(b, l o c=0\), scale \(=1)\) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for exponpow is:
```

exponpow.pdf(x, b) = b * x**(b-1) * exp(1+x**b - exp(x**b))

```
for \(\mathrm{x}>=0, \mathrm{~b}>0\).

\section*{Examples}
```

>>> from scipy.stats import exponpow
>>> numargs = exponpow.numargs
>>> [b] = [0.9,] * numargs
>>> rv = exponpow(b)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
>>> prb \(=\) exponpow.cdf( \(x, b)\)
\(\ggg h=p l t \cdot \operatorname{semilogy}(n p \cdot a b s(x-\operatorname{exponpow} \cdot p p f(p r b, b))+1 e-20)\)
Random number generation
```

>>> R = exponpow.rvs(b, size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline \(\operatorname{rvs}(\mathrm{b}, \mathrm{loc}=0\), scale \(=1\), size \(=1\) ) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{b}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \mathrm{b}, \operatorname{loc}=0\), scale \(=1\) ) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{b}, \mathrm{loc}=0\), scale=1) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \mathrm{b}, \operatorname{loc}=0\), scale \(=1)\) & Log of the cumulative density function. \\
\hline \(\operatorname{sf}(\mathrm{x}, \mathrm{b}, \mathrm{loc}=0\), scale \(=1)\) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \mathrm{b}, \operatorname{loc}=0\), scale \(=1)\) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{b}, \mathrm{loc}=0\), scale \(=1)\) & Percent point function (inverse of cdf percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{b}, \mathrm{loc}=0\), scale \(=1)\) & Inverse survival function (inverse of sf). \\
\hline moment( \(\mathrm{n}, \mathrm{b}, \mathrm{loc}=0\), scale \(=1\) ) & Non-central moment of order n \\
\hline stats( \(\mathrm{b}, \mathrm{loc}=0\), scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis(' \(k\) '). \\
\hline entropy (b, loc=0, scale=1) & (Differential) entropy of the RV. \\
\hline fit(data, \(\mathrm{b}, \mathrm{loc}=0\), scale \(=1\) ) & Parameter estimates for generic data. \\
\hline \(\operatorname{expect}(f u n c, b, l o c=0\), scale \(=1, l b=\) None, \(u b=\) None, conditional=False, \(* *\) kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median(b, loc=0, scale \(=1\) ) & Median of the distribution. \\
\hline mean(b, loc=0, scale=1) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{b}, \mathrm{loc}=0\), scale=1) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{b}, \mathrm{loc}=0\), scale=1) & Standard deviation of the distribution. \\
\hline interval(alpha, \(\mathrm{b}, \mathrm{loc}=0\), scale \(=1\) ) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.fatiguelife
A fatigue-life (Birnbaum-Sanders) continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
\(\mathbf{q}\) : array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
\(r v=\) fatiguelife \((\mathbf{c}, \operatorname{loc}=0\), scale \(=1)\) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for fatiguelife is:
```

fatiguelife.pdf(x,c) =
(x+1) / (2*c*sqrt (2*pi*x**3)) * exp(-(x-1)**2/(2*x*c**2))

```
for \(\mathrm{x}>0\).

\section*{Examples}
```

>>> from scipy.stats import fatiguelife
>>> numargs = fatiguelife.numargs
>>> [c] = [0.9,] * numargs
>>> rv = fatiguelife(c)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = fatiguelife.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - fatiguelife.ppf(prb, c)) + le-20)

```

Random number generation
```

>>> R = fatiguelife.rvs(c, size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline rvs(c, loc=0, scale \(=1\), size \(=1\) ) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1\) ) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1\) ) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1\) ) & Log of the cumulative density function. \\
\hline \(\mathrm{sf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1\) ) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1)\) & Percent point function (inverse of cdf percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1\) ) & Inverse survival function (inverse of sf). \\
\hline moment( \(\mathrm{n}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1\) ) & Non-central moment of order n \\
\hline stats( \(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis( ' k '). \\
\hline entropy (c, loc=0, scale=1) & (Differential) entropy of the RV. \\
\hline fit(data, c, loc=0, scale=1) & Parameter estimates for generic data. \\
\hline \(\operatorname{expect}(f u n c, c, l o c=0\), scale \(=1, l b=\) None, \(u b=\) None, conditional=False, \({ }^{* *}\) kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median (c, loc=0, scale \(=1\) ) & Median of the distribution. \\
\hline mean (c, loc \(=0\), scale \(=1\) ) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{c}, \mathrm{loc}=0\), scale=1) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{c}, \mathrm{loc}=0\), scale=1) & Standard deviation of the distribution. \\
\hline interval(alpha, \(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\) ) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.foldcauchy
A folded Cauchy continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
rv = foldcauchy (c, loc=0, scale=1) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for foldcauchy is:
```

foldcauchy.pdf(x, c) = 1/(pi*(1+(x-c)**2)) + 1/(pi*(1+(x+c)**2))

```
for \(x>=0\).

\section*{Examples}
```

>>> from scipy.stats import foldcauchy
>>> numargs = foldcauchy.numargs
>>> [c] = [0.9,] * numargs
>>> rv = foldcauchy(c)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = foldcauchy.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - foldcauchy.ppf(prb, c)) + 1e-20)

```

Random number generation
```

>>> R = foldcauchy.rvs(c, size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline rvs(c, loc=0, scale=1, size=1) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0\), scale=1) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0\), scale=1) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1)\) & Log of the cumulative density function. \\
\hline \(\operatorname{sf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1)\) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1)\) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Percent point function (inverse of cdf percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1\) ) & Inverse survival function (inverse of sf). \\
\hline moment( \(\mathrm{n}, \mathrm{c}, \mathrm{loc}=0\), scale=1) & Non-central moment of order \(n\) \\
\hline stats( \(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis( ' \(k\) '). \\
\hline entropy \((\mathrm{c}, \mathrm{loc}=0\), scale \(=1\) ) & (Differential) entropy of the RV. \\
\hline fit(data, c, loc=0, scale \(=1\) ) & Parameter estimates for generic data. \\
\hline \(\operatorname{expect}(\) func, \(\mathrm{c}, \mathrm{loc}=0\), scale \(=1, \mathrm{lb}=\) None, \(\mathrm{ub}=\) None, conditional=False, \({ }^{* *}\) kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median(c, loc \(=0\), scale \(=1\) ) & Median of the distribution. \\
\hline mean (c, loc \(=0\), scale \(=1\) ) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{c}, \mathrm{loc}=0\), scale=1) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\) ) & Standard deviation of the distribution. \\
\hline interval(alpha, \(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\) ) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.f
An F continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
dfn, dfd : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
\(r v=f(d f n, d f d, l o c=0\), scale \(=1):\)
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for \(f\) is:
```

 df2**(df2/2) * df1**(df1/2) * x**(df1/2-1)
 F.pdf(x, df1, df2) = ---
(df2+df1*x)**((df1+df2)/2) * B(df1/2, df2/2)

```
for \(\mathrm{x}>0\).

\section*{Examples}
```

>>> from scipy.stats import f
>>> numargs = f.numargs
>>> [dfn, dfd] = [0.9,] * numargs
>>> rv = f(dfn, dfd)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = f.cdf(x, dfn, dfd)
>>> h = plt.semilogy(np.abs(x - f.ppf(prb, dfn, dfd)) + 1e-20)

```

Random number generation
```

>>> R = f.rvs(dfn, dfd, size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline rvs(dfn, dfd, loc=0, scale \(=1\), size \(=1\) ) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{dfn}\), dfd, loc=0, scale=1) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \mathrm{dfn}, \mathrm{dfd}, \mathrm{loc}=0\), scale=1) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(x, d f n\), dfd, loc=0, scale=1) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \mathrm{dfn}, \mathrm{dfd}, \operatorname{loc}=0\), scale=1) & Log of the cumulative density function. \\
\hline \(\operatorname{sf}(\mathrm{x}, \mathrm{dfn}, \mathrm{dfd}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \mathrm{dfn}, \mathrm{dfd}, \operatorname{loc}=0\), scale \(=1)\) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{dfn}, \mathrm{dfd}, \mathrm{loc}=0\), scale \(=1\) ) & Percent point function (inverse of cdf percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{dfn}, \mathrm{dfd}, \mathrm{loc}=0\), scale=1) & Inverse survival function (inverse of sf). \\
\hline moment( \(\mathrm{n}, \mathrm{dfn}, \mathrm{dfd}, \mathrm{loc}=0\), scale \(=1\) ) & Non-central moment of order \(n\) \\
\hline stats(dfn, dfd, loc=0, scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis('k'). \\
\hline entropy (dfn, dfd, loc=0, scale=1) & (Differential) entropy of the RV. \\
\hline fit(data, dfn, dfd, loc=0, scale=1) & Parameter estimates for generic data. \\
\hline expect(func, \(\mathrm{dfn}, \mathrm{dfd}, \mathrm{loc}=0\), scale \(=1, \mathrm{lb}=\) None, ub=None, conditional=False, \(* *\) kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median(dfn, dfd, loc=0, scale=1) & Median of the distribution. \\
\hline mean (dfn, dfd, loc=0, scale \(=1\) ) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{dfn}, \mathrm{dfd}, \mathrm{loc}=0\), scale \(=1\) ) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{dfn}, \mathrm{dfd}, \mathrm{loc}=0\), scale \(=1\) ) & Standard deviation of the distribution. \\
\hline interval(alpha, dfn, dfd, loc=0, scale=1) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.foldnorm
A folded normal continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
rv \(=\) foldnorm \((c, l o c=0\), scale \(=1)\) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for foldnorm is:
```

foldnormal.pdf(x, c) = sqrt(2/pi) * cosh(c*x) * exp(-(x**2+c**2)/2)

```
for \(c>=0\).

\section*{Examples}
```

>>> from scipy.stats import foldnorm
>>> numargs = foldnorm.numargs
>>> [c] = [0.9,] * numargs
>>> rv = foldnorm(c)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))

```
\(\ggg h=p l t \cdot p l o t(x, r v \cdot p d f(x))\)

Check accuracy of cdf and ppf
```

>>> prb = foldnorm.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - foldnorm.ppf(prb, c)) + 1e-20)

```

Random number generation
```

>>> R = foldnorm.rvs(c, size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline \(\operatorname{rvs}(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\), size \(=1\) ) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0\), scale=1) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1\) ) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0\), scale=1) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1\) ) & Log of the cumulative density function. \\
\hline \(\operatorname{sf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1)\) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1)\) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0\), scale=1) & Percent point function (inverse of cdf percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1)\) & Inverse survival function (inverse of sf). \\
\hline \(\operatorname{moment}(\mathrm{n}, \mathrm{c}, \mathrm{loc}=0\), scale=1) & Non-central moment of order \(n\) \\
\hline stats( \(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis('k'). \\
\hline entropy \((\mathrm{c}, \mathrm{loc}=0\), scale \(=1\) ) & (Differential) entropy of the RV. \\
\hline fit(data, \(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\) ) & Parameter estimates for generic data. \\
\hline \(\operatorname{expect}(\) func, \(c, l o c=0\), scale \(=1, l b=\) None, \(u b=\) None, conditional=False, **kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median(c, loc \(=0\), scale \(=1\) ) & Median of the distribution. \\
\hline \(\operatorname{mean}(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\) ) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\) ) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\) ) & Standard deviation of the distribution. \\
\hline interval(alpha, \(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\) ) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.genlogistic
A generalized logistic continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
\(\mathbf{q}\) : array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
rv \(=\operatorname{genlogistic}(\mathbf{c}, \operatorname{loc}=0\), scale \(=1)\) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for genlogistic is:
```

genlogistic.pdf(x, c) = c * exp(-x) / (1 + exp(-x))**(c+1)

```
for \(\mathrm{x}>0, \mathrm{c}>0\).

\section*{Examples}
```

>>> from scipy.stats import genlogistic
>>> numargs = genlogistic.numargs
>>> [c] = [0.9,] * numargs
>>> rv = genlogistic(c)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
>>> prb = genlogistic.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - genlogistic.ppf(prb, c)) + 1e-20)
Random number generation
```

>>> R = genlogistic.rvs(c, size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline rvs(c, loc=0, scale \(=1\), size \(=1\) ) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1\) ) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1\) ) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1\) ) & Log of the cumulative density function. \\
\hline \(\mathrm{sf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1\) ) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1)\) & Percent point function (inverse of cdf percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1\) ) & Inverse survival function (inverse of sf). \\
\hline moment( \(\mathrm{n}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1\) ) & Non-central moment of order n \\
\hline stats( \(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis( ' k '). \\
\hline entropy (c, loc=0, scale=1) & (Differential) entropy of the RV. \\
\hline fit(data, c, loc=0, scale=1) & Parameter estimates for generic data. \\
\hline \(\operatorname{expect}(f u n c, c, l o c=0\), scale \(=1, l b=\) None, \(u b=\) None, conditional=False, \({ }^{* *}\) kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median (c, loc=0, scale \(=1\) ) & Median of the distribution. \\
\hline mean (c, loc \(=0\), scale \(=1\) ) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{c}, \mathrm{loc}=0\), scale=1) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{c}, \mathrm{loc}=0\), scale=1) & Standard deviation of the distribution. \\
\hline interval(alpha, \(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\) ) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.genpareto
A generalized Pareto continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
\(r v=\operatorname{genpareto}(c, \operatorname{loc}=0\), scale \(=1)\) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for genpareto is:
```

genpareto.pdf(x, c) = (1 + c * x)**(-1 - 1/c)

```
for c ! \(=0\), and for \(\mathrm{x}>=0\) for all c , and \(\mathrm{x}<1 / \mathrm{abs}(\mathrm{c})\) for \(\mathrm{c}<0\).

\section*{Examples}
```

>>> from scipy.stats import genpareto
>>> numargs = genpareto.numargs
>>> [c] = [0.9,] * numargs
>>> rv = genpareto(c)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
>>> prb = genpareto.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - genpareto.ppf(prb, c)) + le-20)
Random number generation
```

>>> R = genpareto.rvs(c, size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline ```
rvs(c, loc=0, scale=1, size=1)
\(\operatorname{pdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale=1)
\(\operatorname{logpdf}(x, c, \operatorname{loc}=0\), scale \(=1)\)
\(\operatorname{cdf}(x, \mathrm{c}, \operatorname{loc}=0\), scale \(=1)\)
\(\operatorname{logcdf}(x, c, \operatorname{loc}=0\), scale \(=1)\)
\(\operatorname{sf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), \(\mathrm{scale}=1)\)
\(\operatorname{logsf}(x, c, \operatorname{loc}=0\), scale \(=1)\)
\(\operatorname{ppf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0\), scale=1)
\(\operatorname{isf}(\mathrm{q}, \mathrm{c}\), loc \(=0\), scale \(=1)\)
\(\operatorname{moment}(\mathrm{n}, \mathrm{c}, \mathrm{loc}=0\), scale=1)
stats ( \(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\), moments='mv')
entropy \((\mathrm{c}\), loc \(=0\), scale \(=1\) )
fit(data, c, loc \(=0\), scale \(=1\) )
\(\operatorname{expect}(\) func, \(c, l o c=0\), scale \(=1, \mathrm{lb}=\) None, \(\mathrm{ub}=\) None,
conditional=False, \(* *\) kwds)
median \((\mathrm{c}, \mathrm{loc}=0\), scale \(=1\) )
mean \((\mathrm{c}\), loc \(=0\), scale \(=1\) )
\(\operatorname{var}(\mathrm{c}, \mathrm{loc}=0\), scale=1)
\(\operatorname{std}(\mathrm{c}, \operatorname{loc}=0\), scale \(=1)\)
interval(alpha, \(c\), loc \(=0\), scale \(=1\) )
``` & \begin{tabular}{l}
Random variates. \\
Probability density function. \\
Log of the probability density function. \\
Cumulative density function. \\
Log of the cumulative density function. \\
Survival function (1-cdf - sometimes more accurate). \\
Log of the survival function. \\
Percent point function (inverse of cdf percentiles). \\
Inverse survival function (inverse of sf). \\
Non-central moment of order \(n\) \\
Mean('m'), variance('v'), skew('s'), and/or \\
kurtosis(' k '). \\
(Differential) entropy of the RV. \\
Parameter estimates for generic data. \\
Expected value of a function (of one argument) with respect to the distribution. \\
Median of the distribution. \\
Mean of the distribution. \\
Variance of the distribution. \\
Standard deviation of the distribution. \\
Endpoints of the range that contains alpha percent of the distribution
\end{tabular} \\
\hline
\end{tabular}
scipy.stats.genexpon
A generalized exponential continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
a, b, c: array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
\(r v=\operatorname{genexpon}(a, b, c, l o c=0\), scale \(=1)\) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for genexpon is:
```

genexpon.pdf(x, a, b, c) = (a + b * (1 - exp(-c*x))) *

```
for \(\mathrm{x}>=0, a, b, c>0\).

\section*{References}
"An Extension of Marshall and Olkin's Bivariate Exponential Distribution", H.K. Ryu, Journal of the American Statistical Association, 1993.
"The Exponential Distribution: Theory, Methods and Applications", N. Balakrishnan, Asit P. Basu.

\section*{Examples}
```

>>> from scipy.stats import genexpon
>>> numargs = genexpon.numargs
>>> [ a, b, c ] = [0.9,] * numargs
>>> rv = genexpon(a, b, c)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = genexpon.cdf(x, a, b, c)
>>> h = plt.semilogy(np.abs(x - genexpon.ppf(prb, a, b, c)) + 1e-20)

```

Random number generation
```

>>> R = genexpon.rvs(a, b, c, size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \operatorname{rvs}(a, b, c, \operatorname{loc}=0, \text { scale }=1, \text { size }=1) \\
& \operatorname{pdf}(x, a, b, c, l o c=0, \text { scale }=1)
\end{aligned}
\] & Random variates. Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{loc}=0\), scale=1) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{loc}=0\), scale=1) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1)\) & Log of the cumulative density function. \\
\hline \(\operatorname{sf}(\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1)\) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1)\) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Percent point function (inverse of cdf percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1)\) & Inverse survival function (inverse of sf). \\
\hline moment(n, a, b, c, loc=0, scale=1) & Non-central moment of order \(n\) \\
\hline stats(a, b, c, loc=0, scale \(=1\), moments \(=\) 'mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis('k'). \\
\hline entropy (a, b, c, loc=0, scale \(=1\)) & (Differential) entropy of the RV. \\
\hline fit(data, a, b, c, loc=0, scale=1) & Parameter estimates for generic data. \\
\hline \(\operatorname{expect}(f u n c, a, b, c, l o c=0\), scale \(=1, \mathrm{lb}=\) None, ub=None, conditional=False, **kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline \(\operatorname{median}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{loc}=0\), scale=1) & Median of the distribution. \\
\hline mean (a, b, c, loc \(=0\), scale \(=1\)) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{loc}=0\), scale=1) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1)\) & Standard deviation of the distribution. \\
\hline interval(alpha, a, b, c, loc=0, scale=1) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.genextreme
A generalized extreme value continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional location parameter (default=0)
scale : array_like, optional scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' \(=\) (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
\(r v=\operatorname{genextreme}(c, l o c=0\), scale \(=1)\) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{See Also:}
```

gumbel_r

```

\section*{Notes}

For \(\mathrm{c}=0\), genextreme is equal to gumbel_r. The probability density function for genextreme is:
```

genextreme.pdf(x, c) =
exp(-exp(-x))*exp(-x), for c==0
exp(-(1-c*x)**(1/c))*(1-c*x)**(1/c-1), for x <= 1/c, c > 0

```

\section*{Examples}
```

>>> from scipy.stats import genextreme
>>> numargs = genextreme.numargs
>>> [ c ] = [0.9,] * numargs
>>> rv = genextreme(c)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = genextreme.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - genextreme.ppf(prb, c)) + 1e-20)

```

Random number generation
```

>>> R = genextreme.rvs(c, size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline rvs(c, loc=0, scale \(=1\), size \(=1\)) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1\)) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1\)) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1\)) & Log of the cumulative density function. \\
\hline \(\mathrm{sf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1\)) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1)\) & Percent point function (inverse of cdf percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1\)) & Inverse survival function (inverse of sf). \\
\hline moment(\(\mathrm{n}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1\)) & Non-central moment of order n \\
\hline stats(\(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis(' k '). \\
\hline entropy (c, loc=0, scale=1) & (Differential) entropy of the RV. \\
\hline fit(data, c, loc=0, scale=1) & Parameter estimates for generic data. \\
\hline \(\operatorname{expect}(f u n c, c, l o c=0\), scale \(=1, l b=\) None, \(u b=\) None, conditional=False, \({ }^{* *}\) kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median (c, loc=0, scale \(=1\)) & Median of the distribution. \\
\hline mean (c, loc \(=0\), scale \(=1\)) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{c}, \mathrm{loc}=0\), scale=1) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{c}, \mathrm{loc}=0\), scale=1) & Standard deviation of the distribution. \\
\hline interval(alpha, \(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\)) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.gausshyper
A Gauss hypergeometric continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
\(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{z}\) : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
\(r v=\operatorname{gausshyper}(a, b, c, z, l o c=0\), scale=1) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for gausshyper is:
```

gausshyper.pdf(x, a, b, c, z) =
C * x**(a-1) * (1-x)**(b-1) * (1+z*x) ** (-c)
for 0 <= x <= 1,a > 0,b > 0, and C = 1 / (B (a,b) F[2,1](c, a; a+b; -z))
Examples

```
```

>>> from scipy.stats import gausshyper
>>> numargs = gausshyper.numargs
>>> [ a, b, c, z ] = [0.9,] * numargs
>>> rv = gausshyper(a, b, c, z)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = gausshyper.cdf(x, a, b, c, z)
>>> h = plt.semilogy(np.abs(x - gausshyper.ppf(prb, a, b, c, z)) + 1e-20)

```

Random number generation
```

>>> R = gausshyper.rvs(a, b, c, z, size=100)

```

\section*{Methods}
```

rvs(a, b, c, z, loc=0, scale=1, size=1)
pdf(x, a, b, c, z, loc=0, scale=1)
logpdf(x, a, b, c, z, loc=0, scale=1)
cdf(x, a, b, c, z, loc=0, scale=1)
logcdf(x, a, b, c, z, loc=0, scale=1)
sf(x, a, b, c, z, loc=0, scale=1)
logsf(x, a, b, c, z, loc=0, scale=1)
ppf(q, a, b, c, z, loc=0, scale=1)
isf(q, a, b, c, z, loc=0, scale=1)
moment(n, a, b, c, z, loc=0, scale=1)
stats(a, b, c, z, loc=0, scale=1, moments='mv')
entropy(a, b, c, z, loc=0, scale=1)
fit(data, a, b, c, z, loc=0, scale=1)
expect(func, a, b, c, z, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)
median(a,b, c, z, loc=0, scale=1)
mean(a, b, c, z, loc=0, scale=1)
var(a, b, c, z, loc=0, scale=1)
std(a, b, c, z, loc=0, scale=1)
interval(alpha, a, b, c, z, loc=0, scale=1)

```

Random variates.
Probability density function.
Log of the probability density function.
Cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more accurate).
Log of the survival function.
Percent point function (inverse of cdf percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order \(n\)
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument)
with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent of the distribution
scipy.stats.gamma
A gamma continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
a : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
\(r v=\operatorname{gamma}(a, l o c=0\), scale \(=1)\) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{See Also:}
```

erlang, expon

```

\section*{Notes}

When \(a\) is an integer, this is the Erlang distribution, and for \(a=1\) it is the exponential distribution.
The probability density function for gamma is:
```

gamma.pdf(x, a) = x**(a-1) * exp(-x) / gamma(a)

```
for \(\mathrm{x}>=0, \mathrm{a}>0\).

\section*{Examples}
```

>>> from scipy.stats import gamma
>>> numargs = gamma.numargs
>>> [ a ] = [0.9,] * numargs
>>> rv = gamma(a)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = gamma.cdf(x, a)
>>> h = plt.semilogy(np.abs(x - gamma.ppf(prb, a)) + 1e-20)

```

Random number generation
```

>>> R = gamma.rvs(a, size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { rvs(a, loc=0, scale=1, size=1) } \\
& \operatorname{pdf}(x, a, \operatorname{loc}=0, \text { scale }=1)
\end{aligned}
\] & \begin{tabular}{l}
Random variates. \\
Probability density function.
\end{tabular} \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \mathrm{a}, \mathrm{loc}=0\), scale \(=1)\) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{a}, \mathrm{loc}=0\), scale=1) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \mathrm{a}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Log of the cumulative density function. \\
\hline \(\operatorname{sf}(\mathrm{x}, \mathrm{a}, \mathrm{loc}=0\), scale \(=1)\) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \mathrm{a}, \operatorname{loc}=0\), scale \(=1)\) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{a}, \mathrm{loc}=0\), scale \(=1)\) & Percent point function (inverse of cdf percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{a}, \mathrm{loc}=0\), scale \(=1)\) & Inverse survival function (inverse of sf). \\
\hline moment(\(\mathrm{n}, \mathrm{a}, \mathrm{loc}=0\), scale=1) & Non-central moment of order \(n\) \\
\hline stats(\(\mathrm{a}, \mathrm{loc}=0\), scale \(=1\), moments='mv') & Mean(' \(m\) '), variance(' \(v\) '), skew(' \(s\) '), and/or kurtosis('k'). \\
\hline entropy \((\mathrm{a}, \mathrm{loc}=0\), scale \(=1)\) & (Differential) entropy of the RV. \\
\hline fit(data, a, loc \(=0\), scale \(=1\)) & Parameter estimates for generic data. \\
\hline expect(func, \(\mathrm{a}, \mathrm{loc}=0\), scale \(=1, \mathrm{lb}=\) None, \(\mathrm{ub}=\) None, conditional=False, **kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline \(\operatorname{median}(\mathrm{a}, \mathrm{loc}=0\), scale \(=1\)) & Median of the distribution. \\
\hline mean \((\mathrm{a}, \mathrm{loc}=0\), scale \(=1\)) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{a}, \mathrm{loc}=0\), scale=1) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{a}, \mathrm{loc}=0\), scale \(=1)\) & Standard deviation of the distribution. \\
\hline interval(alpha, a, loc=0, scale=1) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.gengamma
A generalized gamma continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
\(\mathbf{q}\) : array_like
lower or upper tail probability
a, c: array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
rv \(=\operatorname{gengamma}(\mathbf{a}, \mathrm{c}, \operatorname{loc}=0\), scale=1) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for gengamma is:
```

gengamma.pdf(x, a, c) = abs(c) * x**(c*a-1) * exp(-x**c) / gamma(a)
for x > 0, a > 0, and c != 0.

```

\section*{Examples}
```

>>> from scipy.stats import gengamma
>>> numargs = gengamma.numargs
>>> [ a, c ] = [0.9,] * numargs
>>> rv = gengamma (a,c)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
>>> prb = gengamma.cdf(x, a, c)

Random number generation
```

>>> R = gengamma.rvs(a, c, size=100)

```

\section*{Methods}
```

rvs(a, c, loc=0, scale=1, size=1)
pdf(x, a, c, loc=0, scale=1)
logpdf(x, a, c, loc=0, scale=1)
cdf(x, a, c, loc=0, scale=1)
logcdf(x, a, c, loc=0, scale=1)
sf(x, a, c, loc=0, scale=1)
logsf(x, a, c, loc=0, scale=1)
ppf(q, a, c, loc=0, scale=1)
isf(q, a, c, loc=0, scale=1)
moment(n, a, c, loc=0, scale=1)
stats(a, c, loc=0, scale=1, moments='mv')
entropy(a, c, loc=0, scale=1)
fit(data, a, c, loc=0, scale=1)
expect(func, a, c, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)
median(a, c, loc=0, scale=1)
mean(a, c, loc=0, scale=1)
var(a, c, loc=0, scale=1)
std(a, c, loc=0, scale=1)
interval(alpha, a, c, loc=0, scale=1)

```

Random variates.
Probability density function.
Log of the probability density function.
Cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more accurate).
Log of the survival function.
Percent point function (inverse of cdf percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order \(n\)
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument)
with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent of the distribution
scipy.stats.genhalflogistic
A generalized half-logistic continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
\(\mathbf{q}\) : array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
rv = genhalflogistic \((\mathbf{c}, \operatorname{loc}=\mathbf{0}\), scale \(=1)\) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for genhalflogistic is:
```

genhalflogistic.pdf(x, c) = 2 * (1-c*x)**(1/c-1) / (1+(1-c*x)**(1/c))**2

```
for \(0<=x<=1 / c\), and \(c>0\).

\section*{Examples}
```

>>> from scipy.stats import genhalflogistic
>>> numargs = genhalflogistic.numargs
>>> [ c ] = [0.9,] * numargs
>>> rv = genhalflogistic(c)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = genhalflogistic.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - genhalflogistic.ppf(prb, c)) + le-20)

```

Random number generation
```

>>> R = genhalflogistic.rvs(c, size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline \(\operatorname{rvs}(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\), size \(=1\)) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1\)) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1\)) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0, \mathrm{scale}=1)\) & Log of the cumulative density function. \\
\hline \(\operatorname{sf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1)\) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1)\) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1)\) & Percent point function (inverse of cdf percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1\)) & Inverse survival function (inverse of sf). \\
\hline moment(\(\mathrm{n}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1\)) & Non-central moment of order n \\
\hline stats(\(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\), moments='mv') & Mean('m'), variance('v'), skew('s'), and/or kurtosis('k'). \\
\hline entropy \((\mathrm{c}, \mathrm{loc}=0\), scale \(=1\)) & (Differential) entropy of the RV. \\
\hline fit(data, c, loc=0, scale \(=1\)) & Parameter estimates for generic data. \\
\hline \(\operatorname{expect}(\) func, \(c, l o c=0\), scale \(=1, l b=\) None, \(u b=\) None, conditional=False, \(* *\) kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median(c, loc=0, scale=1) & Median of the distribution. \\
\hline mean(c, loc=0, scale=1) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{c}, \mathrm{loc}=0\), scale=1) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{c}, \mathrm{loc}=0\), scale=1) & Standard deviation of the distribution. \\
\hline interval(alpha, \(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\)) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.gompertz
A Gompertz (or truncated Gumbel) continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
\(r v=\operatorname{gompertz}(c, \operatorname{loc}=0\), scale \(=1)\) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for gompertz is:
```

gompertz.pdf(x, c) = c * exp(x) * exp(-c* (exp (x)-1))

```
for \(\mathrm{x}>=0, \mathrm{c}>0\).

\section*{Examples}
```

>>> from scipy.stats import gompertz
>>> numargs = gompertz.numargs
>>> [ c ] = [0.9,] * numargs
>>> rv = gompertz(c)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
>>> prb = gompertz.cdf(x, c)
>>> \(h=p l t . \operatorname{semilogy}(n p \cdot a b s(x-g o m p e r t z \cdot p p f(p r b, c))+1 e-20)\)
Random number generation
```

>>> R = gompertz.rvs(c, size=100)

```

\section*{Methods}
```

rvs(c, loc=0, scale=1, size=1)
pdf(x, c, loc=0, scale=1)
logpdf(x, c, loc=0, scale=1)
cdf(x, c, loc=0, scale=1)
logcdf(x, c, loc=0, scale=1)
sf(x, c, loc=0, scale=1)
logsf(x, c, loc=0, scale=1)
ppf(q, c, loc=0, scale=1)
isf(q, c, loc=0, scale=1)
moment(n, c, loc=0, scale=1)
stats(c, loc=0, scale=1, moments='mv')
entropy(c, loc=0, scale=1)
fit(data, c, loc=0, scale=1)
expect(func, c, loc=0, scale=1, lb=None, ub=None,
conditional=False, **kwds)
median(c, loc=0, scale=1)
mean(c, loc=0, scale=1)
var(c, loc=0, scale=1)
std(c, loc=0, scale=1)
interval(alpha, c, loc=0, scale=1)

```

Random variates.
Probability density function.
Log of the probability density function. Cumulative density function.
Log of the cumulative density function. Survival function (1-cdf - sometimes more accurate).
Log of the survival function.
Percent point function (inverse of cdf percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order \(n\)
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument) with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent of the distribution
```

scipy.stats.gumbel_r
A right-skewed Gumbel continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

```

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' = variance, ' \(s\) ' \(=\) (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a "frozen" continuous RV object: :
\(\mathbf{r v}=\) gumbel \(_\mathbf{r}(\mathbf{l o c}=\mathbf{0}\), scale \(=1)\) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{See Also:}
gumbel_l, gompertz, genextreme

\section*{Notes}

The probability density function for gumbel_ \(r\) is:
```

gumbel_r.pdf(x) = exp(-(x + exp(-x)))

```

The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett distribution. It is also related to the extreme value distribution, log-Weibull and Gompertz distributions.

\section*{Examples}
```

>>> from scipy.stats import gumbel_r
>>> numargs = gumbel_r.numargs
>>> [ ] = [0.9,] * numargs
>>> rv = gumbel_r()

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))

```
>>> h = plt.plot(x, rv.pdf(x))

Check accuracy of cdf and ppf
```

>>> prb = gumbel_r.cdf(x, )
>>> h = plt.semilogy(np.abs(x - gumbel_r.ppf(prb, )) + 1e-20)

```

Random number generation
```

>>> R = gumbel_r.rvs(size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline rvs(loc=0, scale \(=1\), size \(=1\)) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1\)) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1\)) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{loc}=0\), scale=1) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1\)) & Log of the cumulative density function. \\
\hline \(\mathrm{sf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1\)) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1)\) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{loc}=0\), scale \(=1)\) & Percent point function (inverse of cdf - percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{loc}=0\), scale \(=1\)) & Inverse survival function (inverse of sf). \\
\hline moment(\(\mathrm{n}, \mathrm{loc}=0\), scale \(=1\)) & Non-central moment of order \(n\) \\
\hline stats(\(\mathrm{loc}=0\), scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis(' \(k\) '). \\
\hline entropy \((\mathrm{loc}=0\), scale \(=1)\) & (Differential) entropy of the RV. \\
\hline fit(data, loc=0, scale \(=1\)) & Parameter estimates for generic data. \\
\hline expect(func, loc \(=0\), scale \(=1, l b=\) None, \(u b=\) None, conditional=False, ***kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median(loc \(=0\), scale \(=1\)) & Median of the distribution. \\
\hline mean \((\mathrm{loc}=0\), scale \(=1\)) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{loc}=0\), scale \(=1\)) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{loc}=0\), scale \(=1)\) & Standard deviation of the distribution. \\
\hline interval(alpha, loc=0, scale=1) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.gumbel_l
A left-skewed Gumbel continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
loc : array_like, optional
location parameter (default \(=0\))
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
\(\mathbf{r v}=\) gumbel \(_\)l \((\operatorname{loc}=0\), scale \(=1)\) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{See Also:}
gumbel_r, gompertz, genextreme

\section*{Notes}

The probability density function for gumbel_ \(l\) is:
```

gumbel_l.pdf(x) = exp(x - exp(x))

```

The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett distribution. It is also related to the extreme value distribution, log-Weibull and Gompertz distributions.

\section*{Examples}
```

>>> from scipy.stats import gumbel_l
>>> numargs = gumbel_l.numargs
>>> [ ] = [0.9,] * numargs
>>> rv = gumbel_l()

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = gumbel_l.cdf(x, )
>>> h = plt.semilogy(np.abs(x - gumbel_l.ppf(prb, )) + le-20)

```

Random number generation
```

>>> R = gumbel_l.rvs(size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline \(\operatorname{rvs}(\mathrm{loc}=0\), scale \(=1\), size \(=1)\) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1\)) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1\)) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1\)) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1\)) & Log of the cumulative density function. \\
\hline \(\mathrm{sf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1\)) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1)\) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{loc}=0\), scale \(=1)\) & Percent point function (inverse of cdf - percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{loc}=0\), scale \(=1\)) & Inverse survival function (inverse of sf). \\
\hline moment(\(\mathrm{n}, \mathrm{loc}=0\), scale \(=1\)) & Non-central moment of order n \\
\hline stats(\(\mathrm{loc}=0\), scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis(' \(k\) '). \\
\hline entropy \((\mathrm{loc}=0\), scale \(=1)\) & (Differential) entropy of the RV. \\
\hline fit(data, loc=0, scale \(=1\)) & Parameter estimates for generic data. \\
\hline \(\operatorname{expect}(\) func, \(l o c=0\), scale \(=1, l b=\) None, \(u b=\) None, conditional=False, ***kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median \((\) loc \(=0\), scale \(=1\)) & Median of the distribution. \\
\hline mean \((\mathrm{loc}=0\), scale \(=1)\) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{loc}=0\), scale \(=1\)) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{loc}=0\), scale \(=1\)) & Standard deviation of the distribution. \\
\hline interval(alpha, loc=0, scale=1) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.halfcauchy
A Half-Cauchy continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
loc : array_like, optional
location parameter (default \(=0\))
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' \(=\) (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: : rv = halfcauchy (loc=0, scale=1) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for halfcauchy is:
```

halfcauchy.pdf(x) = 2 / (pi * (1 + x**2))

```
for \(x>=0\).

\section*{Examples}
```

>>> from scipy.stats import halfcauchy
>>> numargs = halfcauchy.numargs
>>> [ ] = [0.9,] * numargs
>>> rv = halfcauchy()

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = halfcauchy.cdf(x, )
>>> h = plt.semilogy(np.abs(x - halfcauchy.ppf(prb, )) + le-20)

```

Random number generation
```

>>> R = halfcauchy.rvs(size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline \(\operatorname{rvs}(\mathrm{loc}=0\), scale \(=1\), size \(=1\)) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1\)) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1\)) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1\)) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1\)) & Log of the cumulative density function. \\
\hline \(\mathrm{sf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1\)) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1)\) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{loc}=0\), scale=1) & Percent point function (inverse of cdf - percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{loc}=0\), scale \(=1\)) & Inverse survival function (inverse of sf). \\
\hline moment(\(\mathrm{n}, \mathrm{loc}=0\), scale \(=1\)) & Non-central moment of order n \\
\hline stats(\(\mathrm{loc}=0\), scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis('k'). \\
\hline entropy \((\mathrm{loc}=0\), scale \(=1\)) & (Differential) entropy of the RV. \\
\hline fit(data, loc=0, scale \(=1\)) & Parameter estimates for generic data. \\
\hline \(\operatorname{expect}(\) func, loc \(=0\), scale \(=1, \mathrm{lb}=\) None, \(\mathrm{ub}=\) None, conditional=False, ***kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median(loc \(=0\), scale \(=1\)) & Median of the distribution. \\
\hline mean \((\mathrm{loc}=0\), scale \(=1\)) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{loc}=0\), scale \(=1\)) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{loc}=0\), scale \(=1\)) & Standard deviation of the distribution. \\
\hline interval(alpha, loc=0, scale=1) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.halflogistic
A half-logistic continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
loc : array_like, optional location parameter (default=0)
scale : array_like, optional scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where 'm' \(=\) mean, ' \(v\) ' = variance, 's' = (Fisher's) skew and ' \(k\) ' = (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: : rv = halflogistic(loc=0, scale=1) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for halflogistic is:
```

halflogistic.pdf(x) = 2 * exp(-x) / (1+exp(-x))**2 = 1/2 * sech(x/2)**2

```
for \(x>=0\).

\section*{Examples}
```

>>> from scipy.stats import halflogistic
>>> numargs = halflogistic.numargs
>>> [ ] = [0.9,] * numargs
>>> rv = halflogistic()

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = halflogistic.cdf(x, )
>>> h = plt.semilogy(np.abs(x - halflogistic.ppf(prb, )) + 1e-20)

```

Random number generation
```

>>> R = halflogistic.rvs(size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline rvs(loc=0, scale=1, size=1) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1\)) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1\)) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1\)) & Log of the cumulative density function. \\
\hline \(\mathrm{sf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1\)) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1)\) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{loc}=0\), scale=1) & Percent point function (inverse of cdf - percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{loc}=0\), scale=1) & Inverse survival function (inverse of sf). \\
\hline moment(\(\mathrm{n}, \mathrm{loc}=0\), scale=1) & Non-central moment of order n \\
\hline stats (\(\mathrm{loc}=0\), scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis('k'). \\
\hline entropy \((\mathrm{loc}=0\), scale \(=1\)) & (Differential) entropy of the RV. \\
\hline fit(data, loc \(=0\), scale \(=1\)) & Parameter estimates for generic data. \\
\hline \(\operatorname{expect}(\) func, \(l o c=0\), scale \(=1, l b=\) None, \(u b=\) None, conditional=False, **kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median \((\mathrm{loc}=0\), scale \(=1)\) & Median of the distribution. \\
\hline mean(loc=0, scale=1) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{loc}=0\), scale=1) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{loc}=0\), scale \(=1\)) & Standard deviation of the distribution. \\
\hline interval(alpha, loc=0, scale=1) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.halfnorm
A half-normal continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
loc : array_like, optional
location parameter (default \(=0\))
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: : rv = halfnorm (loc=0, scale=1) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for halfnorm is:
```

halfnorm.pdf(x) = sqrt(2/pi) * exp(-x**2/2)

```
for \(x>0\).

\section*{Examples}
```

>>> from scipy.stats import halfnorm
>>> numargs = halfnorm.numargs
>>> [ ] = [0.9,] * numargs
>>> rv = halfnorm()

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = halfnorm.cdf(x, )
>>> h = plt.semilogy(np.abs(x - halfnorm.ppf(prb, )) + 1e-20)

```

Random number generation
```

>>> R = halfnorm.rvs(size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline \(\operatorname{rvs}(\mathrm{loc}=0\), scale \(=1\), size \(=1\)) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1\)) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1\)) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1\)) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1\)) & Log of the cumulative density function. \\
\hline \(\mathrm{sf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1\)) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1)\) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{loc}=0\), scale=1) & Percent point function (inverse of cdf - percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{loc}=0\), scale \(=1\)) & Inverse survival function (inverse of sf). \\
\hline moment(\(\mathrm{n}, \mathrm{loc}=0\), scale \(=1\)) & Non-central moment of order n \\
\hline stats(\(\mathrm{loc}=0\), scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis('k'). \\
\hline entropy \((\mathrm{loc}=0\), scale \(=1\)) & (Differential) entropy of the RV. \\
\hline fit(data, loc=0, scale \(=1\)) & Parameter estimates for generic data. \\
\hline \(\operatorname{expect}(\) func, loc \(=0\), scale \(=1, \mathrm{lb}=\) None, \(\mathrm{ub}=\) None, conditional=False, ***kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median(loc \(=0\), scale \(=1\)) & Median of the distribution. \\
\hline mean \((\mathrm{loc}=0\), scale \(=1\)) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{loc}=0\), scale \(=1\)) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{loc}=0\), scale \(=1\)) & Standard deviation of the distribution. \\
\hline interval(alpha, loc=0, scale=1) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.hypsecant
A hyperbolic secant continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}

\section*{location, and scale parameters returning a "frozen" continuous RV object: :}
rv = hypsecant (loc=0, scale=1) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for hypsecant is:
```

hypsecant.pdf(x) = 1/pi * sech(x)

```

\section*{Examples}
```

>>> from scipy.stats import hypsecant
>>> numargs = hypsecant.numargs
>>> [ ] = [0.9,] * numargs
>>> rv = hypsecant()

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = hypsecant.cdf(x, )
>>> h = plt.semilogy(np.abs(x - hypsecant.ppf(prb, )) + 1e-20)

```

Random number generation
```

>>> R = hypsecant.rvs(size=100)

```

\section*{Methods}

\section*{scipy.stats.invgamma}

An inverted gamma continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
a : array_like
shape parameters
loc : array_like, optional
location parameter (default \(=0\))
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where 'm' \(=\) mean, ' \(v\) ' = variance, ' \(s\) ' \(=\) (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
rv = invgamma (a, loc=0, scale=1) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for invgamma is:
```

invgamma.pdf(x, a) = x**(-a-1) / gamma(a) * exp(-1/x)

```
for \(\mathrm{x}>0, \mathrm{a}>0\).

\section*{Examples}
```

>>> from scipy.stats import invgamma
>>> numargs = invgamma.numargs
>>> [ a ] = [0.9,] * numargs
>>> rv = invgamma(a)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = invgamma.cdf(x, a)
>>> h = plt.semilogy(np.abs(x - invgamma.ppf(prb, a)) + 1e-20)

```

Random number generation
```

>>> R = invgamma.rvs(a, size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline rvs(a, loc=0, scale \(=1\), size \(=1\)) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{a}, \mathrm{loc}=0\), scale \(=1\)) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \mathrm{a}, \operatorname{loc}=0\), scale \(=1\)) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{a}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \mathrm{a}, \operatorname{loc}=0, \mathrm{scale}=1)\) & Log of the cumulative density function. \\
\hline \(\operatorname{sf}(\mathrm{x}, \mathrm{a}, \mathrm{loc}=0\), scale \(=1\)) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \mathrm{a}, \operatorname{loc}=0\), scale \(=1)\) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{a}, \mathrm{loc}=0\), scale \(=1)\) & Percent point function (inverse of cdf percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{a}, \mathrm{loc}=0\), scale=1) & Inverse survival function (inverse of sf). \\
\hline moment(n, a, loc=0, scale=1) & Non-central moment of order n \\
\hline stats(a, loc=0, scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis('k'). \\
\hline entropy (\(\mathrm{a}, \mathrm{loc}=0\), scale \(=1\)) & (Differential) entropy of the RV. \\
\hline fit(data, a, loc=0, scale \(=1\)) & Parameter estimates for generic data. \\
\hline expect(func, \(\mathrm{a}, \mathrm{loc}=0\), scale \(=1, \mathrm{lb}=\) None, \(\mathrm{ub}=\) None, conditional=False, \({ }^{* *}\) kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median (\(\mathrm{a}, \mathrm{loc}=0\), scale \(=1\)) & Median of the distribution. \\
\hline mean \((\mathrm{a}, \mathrm{loc}=0\), scale \(=1\)) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{a}, \mathrm{loc}=0\), scale=1) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{a}, \mathrm{loc}=0\), scale \(=1)\) & Standard deviation of the distribution. \\
\hline interval(alpha, a, loc=0, scale=1) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.invweibull
An inverted Weibull continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
\(\mathbf{q}\) : array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' \(m\) ' \(=\) mean, ' \(v\) ' = variance, ' \(s\) ' \(=\) (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a "frozen" continuous RV object: :
rv = invweibull(c, loc=0, scale=1) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for invweibull is:
```

invweibull.pdf(x, c) = c * x** (-c-1) * exp (-x** (-c))

```
for \(\mathrm{x}>0, \mathrm{c}>0\).

\section*{Examples}
```

>>> from scipy.stats import invweibull
>>> numargs = invweibull.numargs
>>> [ c ] = [0.9,] * numargs
>>> rv = invweibull(c)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = invweibull.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - invweibull.ppf(prb, c)) + 1e-20)

```

Random number generation
```

>>> R = invweibull.rvs(c, size=100)

```

\section*{Methods}
```

rvs(c, loc=0, scale=1, size=1)
pdf(x, c, loc=0, scale=1)
logpdf(x, c, loc=0, scale=1)
cdf(x, c, loc=0, scale=1)
logcdf(x, c, loc=0, scale=1)
sf(x, c, loc=0, scale=1)
logsf(x, c, loc=0, scale=1)
ppf(q, c, loc=0, scale=1)
isf(q, c, loc=0, scale=1)
moment(n, c, loc=0, scale=1)
stats(c, loc=0, scale=1, moments='mv')
entropy(c, loc=0, scale=1)
fit(data, c, loc=0, scale=1)
expect(func, c, loc=0, scale=1, lb=None, ub=None,
conditional=False, **kwds)
median(c, loc=0, scale=1)
mean(c, loc=0, scale=1)
var(c, loc=0, scale=1)
std(c, loc=0, scale=1)
interval(alpha, c, loc=0, scale=1)

```

Random variates.
Probability density function.
Log of the probability density function. Cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more accurate).
Log of the survival function.
Percent point function (inverse of cdf percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order \(n\)
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument) with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent of the distribution
scipy.stats.johnsonsb
A Johnson SB continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
\(\mathbf{q}\) : array_like
lower or upper tail probability
\(\mathbf{a}, \mathbf{b}\) : array_like shape parameters
loc : array_like, optional location parameter (default=0)
scale : array_like, optional scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' = variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' = (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
rv \(=j\) johnsonb(\(a, b\), loc=0, scale=1) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{See Also:}

\section*{johnsonsu}

\section*{Notes}

The probability density function for johnsonsb is:
```

johnsonsb.pdf(x, a, b) = b / (x*(1-x)) * phi(a + b * log(x/(1-x)))

```
for \(0<x<1\) and \(a, b>0\), and phi is the normal pdf.

\section*{Examples}
```

>>> from scipy.stats import johnsonb
>>> numargs = johnsonb.numargs
>>> [ a, b ] = [0.9,] * numargs
>>> rv = johnsonb(a, b)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = johnsonb.cdf(x, a, b)
>>> h = plt.semilogy(np.abs(x - johnsonb.ppf(prb, a, b)) + 1e-20)

```

Random number generation
```

>>> R = johnsonb.rvs(a, b, size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline \(\operatorname{rvs}(\mathrm{a}, \mathrm{b}\), loc=0, scale \(=1\), size \(=1\)) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{loc}=0\), scale=1) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{loc}=0\), scale=1) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{loc}=0\), scale \(=1\)) & Log of the cumulative density function. \\
\hline \(\operatorname{sf}(\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{loc}=0\), scale \(=1)\) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{loc}=0\), scale \(=1)\) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{a}, \mathrm{b}, \mathrm{loc}=0\), scale \(=1)\) & Percent point function (inverse of cdf percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{a}, \mathrm{b}, \mathrm{loc}=0\), scale \(=1\)) & Inverse survival function (inverse of sf). \\
\hline moment(\(\mathrm{n}, \mathrm{a}, \mathrm{b}, \mathrm{loc}=0\), scale=1) & Non-central moment of order \(n\) \\
\hline stats(a, b, loc=0, scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis('k'). \\
\hline entropy (a, b, loc \(=0\), scale \(=1\)) & (Differential) entropy of the RV. \\
\hline fit(data, a, b, loc=0, scale=1) & Parameter estimates for generic data. \\
\hline expect(func, \(\mathrm{a}, \mathrm{b}, \mathrm{loc}=0\), scale \(=1, \mathrm{lb}=\mathrm{None}\), ub=None, conditional=False, **kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline \(\operatorname{median}(\mathrm{a}, \mathrm{b}, \mathrm{loc}=0\), scale \(=1\)) & Median of the distribution. \\
\hline mean (a, b, loc \(=0\), scale \(=1\)) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{a}, \mathrm{b}, \mathrm{loc}=0\), scale=1) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{a}, \mathrm{b}, \mathrm{loc}=0\), scale=1) & Standard deviation of the distribution. \\
\hline interval(alpha, a, b, loc=0, scale=1) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.johnsonsu
A Johnson SU continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
a, b: array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' = variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' = (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
\(\mathbf{r v}=\mathbf{j o h n s o n s u}(\mathbf{a}, \mathbf{b}\), loc=0, scale=1) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{See Also:}
```

johnsonsb

```

\section*{Notes}

The probability density function for johnsonsu is:
```

johnsonsu.pdf(x, a, b) = b / sqrt(x**2 + 1) *
phi(a + b * log(x + sqrt(x**2 + 1)))

```
for all \(\mathrm{x}, \mathrm{a}, \mathrm{b}>0\), and \(p h i\) is the normal pdf.

\section*{Examples}
```

>>> from scipy.stats import johnsonsu
>>> numargs = johnsonsu.numargs
>>> [ a, b ] = [0.9,] * numargs
>>> rv = johnsonsu(a, b)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = johnsonsu.cdf(x, a, b)
>>> h = plt.semilogy(np.abs(x - johnsonsu.ppf(prb, a, b)) + le-20)

```

Random number generation
```

>>> R = johnsonsu.rvs(a, b, size=100)

```

\section*{Methods}
```

rvs(a, b, loc=0, scale=1, size=1)
pdf(x, a, b, loc=0, scale=1)
logpdf(x, a, b, loc=0, scale=1)
cdf(x, a, b, loc=0, scale=1)
logcdf(x, a, b, loc=0, scale=1)
sf(x, a, b, loc=0, scale=1)
logsf(x, a, b, loc=0, scale=1)
ppf(q,a,b, loc=0, scale=1)
isf(q, a, b, loc=0, scale=1)
moment(n, a, b, loc=0, scale=1)
stats(a, b, loc=0, scale=1, moments='mv')
entropy(a, b, loc=0, scale=1)
fit(data, a, b, loc=0, scale=1)
expect(func, a, b, loc=0, scale=1,lb=None,
ub=None, conditional=False, **kwds)
median(a, b, loc=0, scale=1)
mean(a, b, loc=0, scale=1)
var(a, b, loc=0, scale=1)
std(a, b, loc=0, scale=1)
interval(alpha, a, b, loc=0, scale=1)

```

Random variates.
Probability density function.
Log of the probability density function. Cumulative density function.
Log of the cumulative density function. Survival function (1-cdf - sometimes more accurate).
Log of the survival function.
Percent point function (inverse of cdf percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order \(n\)
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument)
with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent of the distribution
```

scipy.stats.laplace
A Laplace continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

```

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
loc : array_like, optional
location parameter (default \(=0\))
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' = variance, ' \(s\) ' \(=\) (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a "frozen" continuous RV object: :
rv = laplace (loc=0, scale=1) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for laplace is:
```

laplace.pdf(x) = 1/2 * exp(-abs(x))

```

\section*{Examples}
```

>>> from scipy.stats import laplace
>>> numargs = laplace.numargs
>>> [ ] = [0.9,] * numargs
>>> rv = laplace()

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = laplace.cdf(x, )
>>> h = plt.semilogy(np.abs(x - laplace.ppf(prb, )) + le-20)

```

Random number generation
```

>>> R = laplace.rvs(size=100)

```

\section*{Methods}
```

rvs(loc=0, scale=1, size=1)
pdf(x, loc=0, scale=1)
logpdf(x, loc=0, scale=1)
cdf(x, loc=0, scale=1)
logcdf(x, loc=0, scale=1)
sf(x, loc=0, scale=1)
logsf(x, loc=0, scale=1)
ppf(q, loc=0, scale=1)
isf(q, loc=0, scale=1)
moment(n, loc=0, scale=1)
stats(loc=0, scale=1, moments='mv')
entropy(loc=0, scale=1)
fit(data, loc=0, scale=1)
expect(func, loc=0, scale=1,lb=None, ub=None,
conditional=False, **kwds)
median(loc=0, scale=1)
mean(loc=0, scale=1)
var(loc=0, scale=1)
std(loc=0, scale=1)
interval(alpha, loc=0, scale=1)

```

Random variates.
Probability density function.
Log of the probability density function.
Cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more accurate).
Log of the survival function.
Percent point function (inverse of cdf - percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order \(n\)
Mean('m’), variance('v’), skew('s'), and/or kurtosis('k').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument) with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent of the distribution
scipy.stats.logistic
A logistic continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
loc : array_like, optional
location parameter (default \(=0\))
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' = variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')
Alternatively, the object may be called (as a function) to fix the shape, :

\section*{location, and scale parameters returning a "frozen" continuous RV object: :}
rv \(=\operatorname{logistic}(\operatorname{loc}=0\), scale=1) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for logistic is:
```

logistic.pdf(x) = exp(-x) / (1+exp(-x))**2

```

\section*{Examples}
```

>>> from scipy.stats import logistic
>>> numargs = logistic.numargs
>>> [ ] = [0.9,] * numargs
>>> rv = logistic()

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = logistic.cdf(x, )
>>> h = plt.semilogy(np.abs(x - logistic.ppf(prb, )) + 1e-20)

```

Random number generation
```

>>> R = logistic.rvs(size=100)

```

\section*{Methods}

\section*{scipy.stats.loggamma}

A log gamma continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' \(m\) ' \(=\) mean, ' \(v\) ' = variance, ' \(s\) ' \(=\) (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a "frozen" continuous RV object: :
rv \(=\operatorname{loggamma}(\mathbf{c}, \operatorname{loc}=0\), scale \(=1)\) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for loggamma is:
```

loggamma.pdf(x, c) = exp(c*x-exp(x)) / gamma(c)

```
for all \(\mathrm{x}, \mathrm{c}>0\).
Examples
```

>>> from scipy.stats import loggamma
>>> numargs = loggamma.numargs
>>> [ c ] = [0.9,] * numargs
>>> rv = loggamma(c)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = loggamma.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - loggamma.ppf(prb, c)) + 1e-20)

```

Random number generation
```

>>> R = loggamma.rvs(c, size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline rvs(c, loc=0, scale \(=1\), size \(=1\)) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0\), scale=1) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1\)) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0\), scale=1) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1)\) & Log of the cumulative density function. \\
\hline \(\operatorname{sf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1)\) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1)\) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Percent point function (inverse of cdf percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1)\) & Inverse survival function (inverse of sf). \\
\hline moment(n, c, loc=0, scale=1) & Non-central moment of order \(n\) \\
\hline stats(c, loc=0, scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis('k'). \\
\hline entropy(c, loc=0, scale \(=1\)) & (Differential) entropy of the RV. \\
\hline fit(data, c, loc \(=0\), scale \(=1\)) & Parameter estimates for generic data. \\
\hline expect(func, \(c, l o c=0\), scale \(=1, l b=N o n e, ~ u b=N o n e\), conditional=False, **kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median(\(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\)) & Median of the distribution. \\
\hline mean \((\mathrm{c}, \mathrm{loc}=0\), scale \(=1\)) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{c}, \mathrm{loc}=0\), scale=1) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\)) & Standard deviation of the distribution. \\
\hline interval(alpha, \(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\)) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.loglaplace
A log-Laplace continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q : array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' = variance, ' \(s\) ' \(=\) (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a "frozen" continuous RV object: :
rv \(=\operatorname{loglaplace}(\mathbf{c}, \operatorname{loc}=0\), scale \(=1)\) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for loglaplace is:
loglaplace.pdf(\(\mathbf{x}, \mathrm{c})=\mathrm{c} / 2 * \mathrm{x}^{* *}(\mathrm{c}-1)\), for \(0<\mathrm{x}<1\)
\[
=\mathrm{c} / 2 * \mathrm{x}^{* *}(-\mathrm{c}-1), \text { for } \mathrm{x}>=1
\]
for \(\mathrm{c}>0\).

\section*{Examples}
```

>>> from scipy.stats import loglaplace
>>> numargs = loglaplace.numargs
>>> [ c ] = [0.9,] * numargs
>>> rv = loglaplace(c)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = loglaplace.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - loglaplace.ppf(prb, c)) + 1e-20)

```

Random number generation
>>> R = loglaplace.rvs(c, size=100)

\section*{Methods}
\begin{tabular}{|c|c|}
\hline rvs(c, loc=0, scale \(=1\), size \(=1\)) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1\)) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1\)) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1\)) & Log of the cumulative density function. \\
\hline \(\mathrm{sf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1\)) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1)\) & Percent point function (inverse of cdf percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1\)) & Inverse survival function (inverse of sf). \\
\hline moment(\(\mathrm{n}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1\)) & Non-central moment of order n \\
\hline stats(\(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis(' k '). \\
\hline entropy (c, loc=0, scale=1) & (Differential) entropy of the RV. \\
\hline fit(data, c, loc=0, scale=1) & Parameter estimates for generic data. \\
\hline \(\operatorname{expect}(f u n c, c, l o c=0\), scale \(=1, l b=\) None, \(u b=\) None, conditional=False, \({ }^{* *}\) kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median (c, loc=0, scale \(=1\)) & Median of the distribution. \\
\hline mean (c, loc \(=0\), scale \(=1\)) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{c}, \mathrm{loc}=0\), scale=1) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{c}, \mathrm{loc}=0\), scale=1) & Standard deviation of the distribution. \\
\hline interval(alpha, \(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\)) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.lognorm
A lognormal continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
\(\mathbf{s}\) : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
rv \(=\operatorname{lognorm}(\mathrm{s}\), loc \(=0\), scale \(=1)\) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for lognorm is:
```

lognorm.pdf(x, s) = 1 / (s*x*sqrt(2*pi)) * exp(-1/2*(log(x)/s)**2)

```
for \(\mathrm{x}>0, \mathrm{~s}>0\).
If \(\log \mathrm{x}\) is normally distributed with mean mu and variance sigma**2, then x is \(\log\)-normally distributed with shape paramter sigma and scale parameter \(\exp (\mathrm{mu})\).

\section*{Examples}
```

>>> from scipy.stats import lognorm
>>> numargs = lognorm.numargs
>>> [ s ] = [0.9,] * numargs
>>> rv = lognorm(s)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = lognorm.cdf(x, s)
>>> h = plt.semilogy(np.abs(x - lognorm.ppf(prb, s)) + 1e-20)

```

Random number generation
```

>>> R = lognorm.rvs(s, size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline rvs(s, loc=0, scale \(=1\), size \(=1\)) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{s}, \mathrm{loc}=0\), scale \(=1)\) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \mathrm{s}, \operatorname{loc}=0\), scale \(=1\)) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{s}, \mathrm{loc}=0\), scale=1) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \mathrm{s}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Log of the cumulative density function. \\
\hline \(\operatorname{sf}(\mathrm{x}, \mathrm{s}, \mathrm{loc}=0\), scale \(=1\)) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \mathrm{s}, \operatorname{loc}=0\), scale \(=1)\) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{s}, \mathrm{loc}=0\), scale \(=1)\) & Percent point function (inverse of cdf percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{s}, \mathrm{loc}=0\), scale \(=1\)) & Inverse survival function (inverse of sf). \\
\hline moment(n, s, loc=0, scale=1) & Non-central moment of order n \\
\hline stats(s, loc=0, scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis('k'). \\
\hline entropy (s, loc=0, scale=1) & (Differential) entropy of the RV. \\
\hline fit(data, s, loc=0, scale=1) & Parameter estimates for generic data. \\
\hline \(\operatorname{expect}(\) func, \(s, l o c=0\), scale \(=1, \mathrm{lb}=\) None, \(u b=\) None, conditional=False, **kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median(s, loc=0, scale=1) & Median of the distribution. \\
\hline mean(s, loc=0, scale=1) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{s}, \mathrm{loc}=0\), scale \(=1\)) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{s}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Standard deviation of the distribution. \\
\hline interval(alpha, s, loc=0, scale=1) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.gilbrat
A Gilbrat continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
\(\mathbf{q}\) : array_like
lower or upper tail probability
loc : array_like, optional
location parameter (default \(=0\))
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' \(=\) (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a "frozen" continuous RV object: :
rv = gilbrat \((\operatorname{loc}=0\), scale \(=1)\) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for gilbrat is:
```

gilbrat.pdf(x) = 1/(x*sqrt(2*pi)) * exp(-1/2*(log(x))**2)

```

\section*{Examples}
```

>>> from scipy.stats import gilbrat
>>> numargs = gilbrat.numargs
>>> [ ] = [0.9,] * numargs
>>> rv = gilbrat()

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = gilbrat.cdf(x, )
>>> h = plt.semilogy(np.abs(x - gilbrat.ppf(prb, )) + 1e-20)

```

Random number generation
```

>>> R = gilbrat.rvs(size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline \(\operatorname{rvs}(\mathrm{loc}=0\), scale \(=1\), size \(=1\)) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1\)) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1\)) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1\)) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1\)) & Log of the cumulative density function. \\
\hline \(\mathrm{sf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1\)) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1)\) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{loc}=0\), scale=1) & Percent point function (inverse of cdf - percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{loc}=0\), scale \(=1\)) & Inverse survival function (inverse of sf). \\
\hline moment(\(\mathrm{n}, \mathrm{loc}=0\), scale \(=1\)) & Non-central moment of order n \\
\hline stats(\(\mathrm{loc}=0\), scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis('k'). \\
\hline entropy \((\mathrm{loc}=0\), scale \(=1\)) & (Differential) entropy of the RV. \\
\hline fit(data, loc=0, scale \(=1\)) & Parameter estimates for generic data. \\
\hline \(\operatorname{expect}(\) func, loc \(=0\), scale \(=1, \mathrm{lb}=\) None, \(\mathrm{ub}=\) None, conditional=False, ***kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median(loc \(=0\), scale \(=1\)) & Median of the distribution. \\
\hline mean \((\mathrm{loc}=0\), scale \(=1\)) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{loc}=0\), scale \(=1\)) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{loc}=0\), scale \(=1\)) & Standard deviation of the distribution. \\
\hline interval(alpha, loc=0, scale=1) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.lomax
A Lomax (Pareto of the second kind) continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
rv \(=\operatorname{lomax}(c, \operatorname{loc}=0\), scale \(=1)\) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The Lomax distribution is a special case of the Pareto distribution, with (loc=-1.0).
The probability density function for lomax is:
```

lomax.pdf(x, c) = c / (1+x)**(c+1)

```
for \(\mathrm{x}>=0, \mathrm{c}>0\).

\section*{Examples}
```

>>> from scipy.stats import lomax
>>> numargs = lomax.numargs
>>> [ c ] = [0.9,] * numargs
>>> rv = lomax(c)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = lomax.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - lomax.ppf(prb, c)) + 1e-20)

```

Random number generation
```

>>> R = lomax.rvs(c, size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline \[
\operatorname{rvs}(\mathrm{c}, \operatorname{loc}=0, \text { scale }=1, \text { size }=1)
\]
\[
\operatorname{pdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0, \text { scale }=1)
\] & \begin{tabular}{l}
Random variates. \\
Probability density function.
\end{tabular} \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1)\) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0\), scale=1) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0, \mathrm{scale}=1)\) & Log of the cumulative density function. \\
\hline \(\operatorname{sf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1)\) & Survival function (1-cdf — sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0\), scale \(=1)\) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Percent point function (inverse of cdf percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0\), scale \(=1)\) & Inverse survival function (inverse of sf). \\
\hline moment(n, c, loc=0, scale=1) & Non-central moment of order n \\
\hline stats(\(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew(' \(s\) '), and/or kurtosis('k'). \\
\hline entropy \((\mathrm{c}, \mathrm{loc}=0\), scale=1) & (Differential) entropy of the RV. \\
\hline fit(data, c, loc=0, scale \(=1\)) & Parameter estimates for generic data. \\
\hline \(\operatorname{expect}(f u n c, c, l o c=0\), scale \(=1, \mathrm{lb}=\) None, \(\mathrm{ub}=\) None, conditional \(=\) False, \({ }^{* *}\) kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median \((\mathrm{c}\), loc \(=0\), scale \(=1\)) & Median of the distribution. \\
\hline mean (c, loc \(=0\), scale \(=1\)) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{c}, \mathrm{loc}=0\), scale=1) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{c}, \mathrm{loc}=0\), scale \(=1\)) & Standard deviation of the distribution. \\
\hline interval(alpha, \(\mathrm{c}, \mathrm{loc}=0, \mathrm{scale}=1)\) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.maxwell
A Maxwell continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' \(=\) (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')
```

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a "frozen" continuous RV object: :
rv = maxwell(loc=0, scale=1) :

```
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

A special case of a chi distribution, with \(d f=3, l o c=0.0\), and given scale \(=1.0 / \operatorname{sqrt}(a)\), where a is the parameter used in the Mathworld description [R87].
The probability density function for maxwell is:
```

maxwell.pdf(x, a) = sqrt(2/pi)x**2 * exp(-x**2/2)

```
for \(\mathrm{x}>0\).

\section*{References}

\section*{[R87]}

\section*{Examples}
```

>>> from scipy.stats import maxwell
>>> numargs = maxwell.numargs
>>> [ ] = [0.9,] * numargs
>>> rv = maxwell()

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

```

Check accuracy of cdf and ppf
```

>>> prb = maxwell.cdf(x, )
>>> h = plt.semilogy(np.abs(x - maxwell.ppf(prb, )) + le-20)

```

Random number generation
```

>>> R = maxwell.rvs(size=100)

```

\section*{Methods}
\begin{tabular}{|c|c|}
\hline \(\operatorname{rvs}(\mathrm{loc}=0\), scale \(=1\), size \(=1\)) & Random variates. \\
\hline \(\operatorname{pdf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1\)) & Probability density function. \\
\hline \(\operatorname{logpdf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1\)) & Log of the probability density function. \\
\hline \(\operatorname{cdf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1\)) & Cumulative density function. \\
\hline \(\operatorname{logcdf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1\)) & Log of the cumulative density function. \\
\hline \(\mathrm{sf}(\mathrm{x}, \mathrm{loc}=0\), scale \(=1\)) & Survival function (1-cdf - sometimes more accurate). \\
\hline \(\operatorname{logsf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1)\) & Log of the survival function. \\
\hline \(\operatorname{ppf}(\mathrm{q}, \mathrm{loc}=0\), scale=1) & Percent point function (inverse of cdf - percentiles). \\
\hline \(\operatorname{isf}(\mathrm{q}, \mathrm{loc}=0\), scale \(=1\)) & Inverse survival function (inverse of sf). \\
\hline moment(\(\mathrm{n}, \mathrm{loc}=0\), scale \(=1\)) & Non-central moment of order n \\
\hline stats(\(\mathrm{loc}=0\), scale \(=1\), moments='mv') & Mean('m'), variance(' \(v\) '), skew('s'), and/or kurtosis('k'). \\
\hline entropy \((\mathrm{loc}=0\), scale \(=1\)) & (Differential) entropy of the RV. \\
\hline fit(data, loc=0, scale \(=1\)) & Parameter estimates for generic data. \\
\hline \(\operatorname{expect}(\) func, loc \(=0\), scale \(=1, \mathrm{lb}=\) None, \(\mathrm{ub}=\) None, conditional=False, ***kwds) & Expected value of a function (of one argument) with respect to the distribution. \\
\hline median(loc \(=0\), scale \(=1\)) & Median of the distribution. \\
\hline mean \((\mathrm{loc}=0\), scale \(=1\)) & Mean of the distribution. \\
\hline \(\operatorname{var}(\mathrm{loc}=0\), scale \(=1\)) & Variance of the distribution. \\
\hline \(\operatorname{std}(\mathrm{loc}=0\), scale \(=1\)) & Standard deviation of the distribution. \\
\hline interval(alpha, loc=0, scale=1) & Endpoints of the range that contains alpha percent of the distribution \\
\hline
\end{tabular}
scipy.stats.mielke
A Mielke's Beta-Kappa continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

\section*{Parameters}
\(\mathbf{x}\) : array_like
quantiles
q: array_like
lower or upper tail probability
\(\mathbf{k , ~ s}\) : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' \(m\) ' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' = (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')

\section*{Alternatively, the object may be called (as a function) to fix the shape, :}
location, and scale parameters returning a "frozen" continuous RV object: :
rv \(=\operatorname{mielke}(k, s, \operatorname{loc}=0\), scale \(=1)\) :
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

\section*{Notes}

The probability density function for mielke is:
```

mielke.pdf(x, k, s) = k * x**(k-1) / (1+x**s)**(1+k/s)

```
for \(x>0\).

\section*{Examples}
```

>>> from scipy.stats import mielke
>>> numargs = mielke.numargs
>>> [ k, s ] = [0.9,] * numargs
>>> rv = mielke(k, s)

```

Display frozen pdf
```

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))

```
>>> h = plt.plot(x, rv.pdf(x))

Check accuracy of cdf and ppf
```

>>> prb = mielke.cdf(x, k, s)
>>> h = plt.semilogy(np.abs(x - mielke.ppf(prb, k, s)) + le-20)

```

Random number generation
```

>>> R = mielke.rvs(k, s, size=100)

```

\section*{Methods}
```

rvs(k, s, loc=0, scale=1, size=1)
pdf(x, k, s, loc=0, scale=1)
logpdf(x, k, s, loc=0, scale=1)
cdf(x, k, s, loc=0, scale=1)
logcdf(x, k, s, loc=0, scale=1)
sf(x, k, s, loc=0, scale=1)
logsf(x, k, s, loc=0, scale=1)
ppf(q, k, s, loc=0, scale=1)
isf(q, k, s, loc=0, scale=1)
moment(n, k, s, loc=0, scale=1)
stats(k, s, loc=0, scale=1, moments='mv')
entropy(k, s, loc=0, scale=1)
fit(data, k, s, loc=0, scale=1)
expect(func, k, s, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)
median(k, s, loc=0, scale=1)
mean(k, s, loc=0, scale=1)
var(k, s, loc=0, scale=1)
std(k, s, loc=0, scale=1)
interval(alpha, k, s, loc=0, scale=1)

```
Random variates.
```

Random variates.
Probability density function.
Probability density function.
Log of the probability density function.
Log of the probability density function.
Cumulative density function.
Cumulative density function.
Log of the cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more
Survival function (1-cdf - sometimes more
accurate).
accurate).
Log of the survival function.
Log of the survival function.
Percent point function (inverse of cdf -
Percent point function (inverse of cdf -
percentiles).
percentiles).
Inverse survival function (inverse of sf).
Inverse survival function (inverse of sf).
Non-central moment of order n
Non-central moment of order n
Mean('m'), variance('v'), skew('s'), and/or
Mean('m'), variance('v'), skew('s'), and/or
kurtosis('k').
kurtosis('k').
(Differential) entropy of the RV.
(Differential) entropy of the RV.
Parameter estimates for generic data.
Parameter estimates for generic data.
Expected value of a function (of one argument)
Expected value of a function (of one argument)
with respect to the distribution.
with respect to the distribution.
Median of the distribution.
Median of the distribution.
Mean of the distribution.
Mean of the distribution.
Variance of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent
Endpoints of the range that contains alpha percent
of the distribution

```
```

of the distribution

```
```

scipy.stats.nakagami
A Nakagami continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

## Parameters

$\mathbf{x}$ : array_like
quantiles
q: array_like
lower or upper tail probability
nu : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' $v$ ' $=$ variance, ' $s$ ' = (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

## Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv = nakagami(nu, loc=0, scale=1) :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


## Notes

The probability density function for nakagami is:

```
nakagami.pdf(x, nu) = 2 * nu**nu / gamma(nu) *
 x**(2*nu-1) * exp(-nu*x**2)
```

for $\mathrm{x}>0$, nu $>0$.

## Examples

```
>>> from scipy.stats import nakagami
>>> numargs = nakagami.numargs
>>> [nu] = [0.9,] * numargs
>>> rv = nakagami(nu)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = nakagami.cdf(x, nu)
>>> h = plt.semilogy(np.abs(x - nakagami.ppf(prb, nu)) + le-20)
```

Random number generation

```
>>> R = nakagami.rvs(nu, size=100)
```


## Methods

```
rvs(nu, loc=0, scale=1, size=1)
pdf(x, nu, loc=0, scale=1)
logpdf(x, nu, loc=0, scale=1)
cdf(x, nu, loc=0, scale=1)
logcdf(x, nu, loc=0, scale=1)
sf(x, nu, loc=0, scale=1)
logsf(x, nu, loc=0, scale=1)
ppf(q, nu, loc=0, scale=1)
isf(q, nu, loc=0, scale=1)
moment(n, nu, loc=0, scale=1)
stats(nu, loc=0, scale=1, moments='mv')
entropy(nu, loc=0, scale=1)
fit(data, nu, loc=0, scale=1)
expect(func, nu, loc=0, scale=1, lb=None, ub=None,
conditional=False, **kwds)
median(nu, loc=0, scale=1)
mean(nu, loc=0, scale=1)
var(nu, loc=0, scale=1)
std(nu, loc=0, scale=1)
interval(alpha, nu, loc=0, scale=1)
```

```
Random variates.
 Probability density function.
 Log of the probability density function.
 Cumulative density function.
 Log}\mathrm{ of the cumulative density function.
 Survival function (1-cdf - sometimes more
 accurate).
 Log of the survival function.
 Percent point function (inverse of cdf -
 percentiles).
 Inverse survival function (inverse of sf).
 Non-central moment of order n
 Mean('m'), variance('v'), skew('s'), and/or
 kurtosis('k').
 (Differential) entropy of the RV.
 Parameter estimates for generic data.
 Expected value of a function (of one argument)
 with respect to the distribution.
 Median of the distribution.
 Mean of the distribution.
 Variance of the distribution.
 Standard deviation of the distribution.
 Endpoints of the range that contains alpha percent
 of the distribution
```

scipy.stats.ncx2
A non-central chi-squared continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

## Parameters

$\mathbf{x}$ : array_like
quantiles
q: array_like
lower or upper tail probability
df, nc : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' $v$ ' $=$ variance, ' $s$ ' = (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

## Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv $=\mathbf{n c x} 2(d f, n c, l o c=0$, scale $=1$ ) :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


## Notes

The probability density function for $n c x 2$ is:

```
ncx2.pdf(x, df, nc) = exp(-(nc+df)/2) * 1/2 * (x/nc)**((df-2)/4)
 * I[(df-2)/2](sqrt(nc*x))
```

for $\mathrm{x}>0$.

## Examples

```
>>> from scipy.stats import ncx2
>>> numargs = ncx2.numargs
>>> [df, nc] = [0.9,] * numargs
>>> rv = ncx2(df, nc)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = ncx2.cdf(x, df, nc)
>>> h = plt.semilogy(np.abs(x - ncx2.ppf(prb, df, nc)) + 1e-20)
```

Random number generation

```
>>> R = ncx2.rvs(df, nc, size=100)
```


## Methods

```
rvs(df, nc, loc=0, scale=1, size=1)
pdf(x, df, nc, loc=0, scale=1)
logpdf(x, df, nc, loc=0, scale=1)
cdf(x, df, nc, loc=0, scale=1)
logcdf(x, df, nc, loc=0, scale=1)
sf(x, df, nc, loc=0, scale=1)
logsf(x, df, nc, loc=0, scale=1)
ppf(q, df, nc, loc=0, scale=1)
isf(q, df, nc, loc=0, scale=1)
moment(n, df, nc, loc=0, scale=1)
stats(df, nc, loc=0, scale=1, moments='mv')
entropy(df, nc, loc=0, scale=1)
fit(data, df, nc, loc=0, scale=1)
expect(func, df, nc, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)
median(df, nc, loc=0, scale=1)
mean(df, nc, loc=0, scale=1)
var(df, nc, loc=0, scale=1)
std(df, nc, loc=0, scale=1)
interval(alpha, df, nc, loc=0, scale=1)
```

Random variates.
Probability density function.
Log of the probability density function. Cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more accurate).
Log of the survival function.
Percent point function (inverse of cdf percentiles).
Inverse survival function (inverse of sf ).
Non-central moment of order $n$
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument) with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent of the distribution
scipy.stats.ncf
A non-central F distribution continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

## Parameters

$\mathbf{x}$ : array_like
quantiles
q: array_like
lower or upper tail probability
dfn, dfd, nc : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' $v$ ' $=$ variance, ' $s$ ' = (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

## Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
$r v=\operatorname{ncf}(d f n, \operatorname{dfd}, n c, l o c=0$, scale=1) :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


## Notes

The probability density function for $n c f$ is:
ncf.pdf( $x, \operatorname{df1}$, df2, nc) $=\exp (n c / 2+n c * d f 1 * x /(2 *(d f 1 * x+d f 2)))$

- $\mathrm{df} 1 * *(\mathrm{df} 1 / 2) * \mathrm{df} 2 * *(\mathrm{df} 2 / 2) * \mathrm{x}^{* *}(\mathrm{df} 1 / 2-1)$
- $(\mathrm{df} 2+\mathrm{df} 1 * \mathrm{x})^{* *}(-(\mathrm{df} 1+\mathrm{df} 2) / 2)$
- gamma(df1/2)*gamma(1+df2/2)
- $L^{\wedge}\{v 1 / 2-1\}^{\wedge}\{v 2 / 2\}\left(-n c^{*} v 1^{*} \mathrm{x} /\left(2^{*}\left(v 1^{*} \mathrm{x}+\mathrm{v} 2\right)\right)\right)$
$/(\mathrm{B}(\mathrm{v} 1 / 2, \mathrm{v} 2 / 2) * \operatorname{gamma}((\mathrm{v} 1+\mathrm{v} 2) / 2))$
for df1, df2, nc > 0 .


## Examples

```
>>> from scipy.stats import ncf
>>> numargs = ncf.numargs
>>> [dfn, dfd, nc] = [0.9,] * numargs
>>> rv = ncf(dfn, dfd, nc)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = ncf.cdf(x, dfn, dfd, nc)
>>> h = plt.semilogy(np.abs(x - ncf.ppf(prb, dfn, dfd, nc)) + 1e-20)
```

Random number generation

```
>>> R = ncf.rvs(dfn, dfd, nc, size=100)
```


## Methods

```
rvs(dfn, dfd, nc, loc=0, scale=1, size=1)
pdf(x, dfn, dfd, nc, loc=0, scale=1)
logpdf(x, dfn, dfd, nc, loc=0, scale=1)
cdf(x, dfn, dfd, nc, loc=0, scale=1)
logcdf(x, dfn, dfd, nc, loc=0, scale=1)
sf(x, dfn, dfd, nc, loc=0, scale=1)
logsf(x, dfn, dfd, nc, loc=0, scale=1)
ppf(q, dfn, dfd, nc, loc=0, scale=1)
isf(q, dfn, dfd, nc, loc=0, scale=1)
moment(n, dfn, dfd, nc, loc=0, scale=1)
stats(dfn, dfd, nc, loc=0, scale=1, moments='mv')
entropy(dfn, dfd, nc, loc=0, scale=1)
fit(data, dfn, dfd, nc, loc=0, scale=1)
expect(func, dfn, dfd, nc, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)
median(dfn, dfd, nc, loc=0, scale=1)
mean(dfn, dfd, nc, loc=0, scale=1)
var(dfn, dfd, nc, loc=0, scale=1)
std(dfn, dfd, nc, loc=0, scale=1)
interval(alpha, dfn, dfd, nc, loc=0, scale=1)
```

Random variates.
Probability density function.
Log of the probability density function.
Cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more
accurate).
Log of the survival function.
Percent point function (inverse of cdf -
percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order n
Mean('m'), variance('v'), skew('s'), and/or
kurtosis(' $k$ ').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument)
with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha
percent of the distribution
scipy.stats.t
A Student's T continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

## Parameters

$\mathbf{x}$ : array_like
quantiles
q: array_like
lower or upper tail probability
df : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' $v$ ' $=$ variance, ' $s$ ' = (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

## Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
$r v=t(d f, l o c=0$, scale $=1):$

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


## Notes

The probability density function for $t$ is:

```
 gamma((df+1)/2)
t.pdf(x, df) = ---
```

for $\mathrm{df}>0$.

## Examples

```
>>> from scipy.stats import t
>>> numargs = t.numargs
>>> [df] = [0.9,] * numargs
>>> rv = t(df)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = t.cdf(x, df)
>>> h = plt.semilogy(np.abs(x - t.ppf(prb, df)) + 1e-20)
```

Random number generation

```
>>> R = t.rvs(df, size=100)
```


## Methods

```
rvs(df, loc=0, scale=1, size=1)
pdf(x, df, loc=0, scale=1)
logpdf(x, df, loc=0, scale=1)
cdf(x, df, loc=0, scale=1)
logcdf(x, df, loc=0, scale=1)
sf(x, df, loc=0, scale=1)
logsf(x, df, loc=0, scale=1)
ppf(q, df, loc=0, scale=1)
isf(q, df, loc=0, scale=1)
moment(n, df, loc=0, scale=1)
stats(df, loc=0, scale=1, moments='mv')
entropy(df, loc=0, scale=1)
fit(data, df, loc=0, scale=1)
expect(func, df, loc=0, scale=1, lb=None, ub=None,
conditional=False, **kwds)
median(df, loc=0, scale=1)
mean(df, loc=0, scale=1)
var(df, loc=0, scale=1)
std(df, loc=0, scale=1)
interval(alpha, df, loc=0, scale=1)
Random variates.
Probability density function.
Log of the probability density function.
Cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more
accurate).
Log of the survival function.
Percent point function (inverse of cdf -
percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order n
Mean('m'), variance(' \(v\) '), skew('s'), and/or
kurtosis('k').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument)
with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent
of the distribution
scipy.stats.nct
A non-central Student's T continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
```


## Parameters

$\mathbf{x}$ : array_like
quantiles
q: array_like
lower or upper tail probability
df, nc : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' $v$ ' $=$ variance, ' $s$ ' = (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

## Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv $=\operatorname{nct}(d f, n c, l o c=0$, scale $=1):$

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


## Notes

The probability density function for $n c t$ is:

```
 df**(df/2) * gamma(df+1)
nct.pdf(x, df, nc) = --
 2**df*exp(nc**2/2) * (df+x**2)**(df/2) * gamma(df/2)
```

for $d f>0, n c>0$.

## Examples

```
>>> from scipy.stats import nct
>>> numargs = nct.numargs
>>> [df, nc] = [0.9,] * numargs
>>> rv = nct(df, nc)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = nct.cdf(x, df, nc)
>>> h = plt.semilogy(np.abs(x - nct.ppf(prb, df, nc)) + 1e-20)
```

Random number generation

```
>>> R = nct.rvs(df, nc, size=100)
```


## Methods

```
rvs(df, nc, loc=0, scale=1, size=1)
pdf(x, df, nc, loc=0, scale=1)
logpdf(x, df, nc, loc=0, scale=1)
cdf(x, df, nc, loc=0, scale=1)
logcdf(x, df, nc, loc=0, scale=1)
sf(x, df, nc, loc=0, scale=1)
logsf(x, df, nc, loc=0, scale=1)
ppf(q, df, nc, loc=0, scale=1)
isf(q, df, nc, loc=0, scale=1)
moment(n, df, nc, loc=0, scale=1)
stats(df, nc, loc=0, scale=1, moments='mv')
entropy(df, nc, loc=0, scale=1)
fit(data, df, nc, loc=0, scale=1)
expect(func, df, nc, loc=0, scale=1, lb=None,
ub=None, conditional=False, **kwds)
median(df, nc, loc=0, scale=1)
mean(df, nc, loc=0, scale=1)
var(df, nc, loc=0, scale=1)
std(df, nc, loc=0, scale=1)
interval(alpha, df, nc, loc=0, scale=1)
```

Random variates.
Probability density function.
Log of the probability density function. Cumulative density function.
Log of the cumulative density function. Survival function (1-cdf - sometimes more accurate).
Log of the survival function.
Percent point function (inverse of cdf percentiles).
Inverse survival function (inverse of sf ).
Non-central moment of order $n$
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument) with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent of the distribution
scipy.stats.pareto
A Pareto continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

## Parameters

$\mathbf{x}$ : array_like
quantiles
q: array_like
lower or upper tail probability
b: array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' $v$ ' $=$ variance, ' $s$ ' = (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

## Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv $=\operatorname{pareto}(\mathrm{b}, \operatorname{loc}=0$, scale $=1)$ :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


## Notes

The probability density function for pareto is:

```
pareto.pdf(x, b) = b / x**(b+1)
```

for $\mathrm{x}>=1, \mathrm{~b}>0$.

## Examples

```
>>> from scipy.stats import pareto
>>> numargs = pareto.numargs
>>> [b] = [0.9,] * numargs
>>> rv = pareto(b)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf
>>> prb = pareto.cdf(x, b)
>>> h = plt.semilogy(np.abs(x - pareto.ppf(prb, b)) + 1e-20)
Random number generation

```
>>> R = pareto.rvs(b, size=100)
```


## Methods

$\operatorname{rvs}(\mathrm{b}, \mathrm{loc}=0$, scale $=1$, size $=1$ )	Random variates.
$\operatorname{pdf}(\mathrm{x}, \mathrm{b}, \mathrm{loc}=0, \mathrm{scale}=1)$	Probability density function.
$\operatorname{logpdf}(\mathrm{x}, \mathrm{b}, \mathrm{loc}=0$, scale $=1)$	Log of the probability density function.
$\operatorname{cdf}(\mathrm{x}, \mathrm{b}, \mathrm{loc}=0$, scale=1)	Cumulative density function.
$\operatorname{logcdf}(\mathrm{x}, \mathrm{b}, \operatorname{loc}=0$, scale $=1$ )	Log of the cumulative density function.
$\operatorname{sf}(\mathrm{x}, \mathrm{b}, \mathrm{loc}=0$, scale $=1)$	Survival function (1-cdf - sometimes more accurate).
$\operatorname{logsf}(\mathrm{x}, \mathrm{b}, \operatorname{loc}=0$, scale $=1)$	Log of the survival function.
$\operatorname{ppf}(\mathrm{q}, \mathrm{b}, \mathrm{loc}=0$, scale=1)	Percent point function (inverse of cdf percentiles).
$\operatorname{isf}(\mathrm{q}, \mathrm{b}, \mathrm{loc}=0$, scale=1)	Inverse survival function (inverse of sf).
moment(n, b, loc=0, scale=1)	Non-central moment of order $n$
stats( $\mathrm{b}, \mathrm{loc}=0$, scale $=1$, moments='mv')	Mean('m'), variance(' $v$ '), skew('s'), and/or kurtosis('k').
entropy (b, loc=0, scale=1)	(Differential) entropy of the RV.
fit(data, b, loc=0, scale $=1$ )	Parameter estimates for generic data.
expect(func, $b$, loc $=0$, scale $=1, l b=$ None, $u b=$ None, conditional=False, **kwds)	Expected value of a function (of one argument) with respect to the distribution.
median(b, loc $=0$, scale $=1$ )	Median of the distribution.
mean (b, loc=0, scale=1)	Mean of the distribution.
$\operatorname{var}(\mathrm{b}, \mathrm{loc}=0$, scale $=1)$	Variance of the distribution.
$\operatorname{std}(\mathrm{b}, \mathrm{loc}=0$, scale $=1$ )	Standard deviation of the distribution.
interval(alpha, $\mathrm{b}, \mathrm{loc}=0$, scale $=1$ )	Endpoints of the range that contains alpha percent of the distribution

scipy.stats.powerlaw
A power-function continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

## Parameters

$\mathbf{x}$ : array_like
quantiles
q: array_like
lower or upper tail probability
a : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' $m$ ' $=$ mean, ' $v$ ' $=$ variance, ' $s$ ' = (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

## Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv $=\operatorname{powerlaw}(a, \operatorname{loc}=0$, scale $=1)$ :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


## Notes

The probability density function for powerlaw is:
powerlaw.pdf(x, a) = a * $x * *(a-1)$
for $0<=x<=1, a>0$.

## Examples

```
>>> from scipy.stats import powerlaw
>>> numargs = powerlaw.numargs
>>> [a] = [0.9,] * numargs
>>> rv = powerlaw(a)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf
>>> prb = powerlaw.cdf(x, a)
$\ggg h=p l t . \operatorname{semilogy}(n p \cdot a b s(x-p o w e r l a w . p p f(p r b, a))+1 e-20)$
Random number generation

```
>>> R = powerlaw.rvs(a, size=100)
```


## Methods

$\operatorname{rvs}(\mathrm{a}, \mathrm{loc}=0$, scale $=1$, size $=1$ )	Random variates.
$\operatorname{pdf}(\mathrm{x}, \mathrm{a}, \mathrm{loc}=0, \mathrm{scale}=1)$	Probability density function.
$\operatorname{logpdf}(\mathrm{x}, \mathrm{a}, \mathrm{loc}=0$, scale $=1)$	Log of the probability density function.
$\operatorname{cdf}(\mathrm{x}, \mathrm{a}, \mathrm{loc}=0$, scale=1)	Cumulative density function.
$\operatorname{logcdf}(\mathrm{x}, \mathrm{a}, \operatorname{loc}=0$, scale $=1$ )	Log of the cumulative density function.
$\operatorname{sf}(\mathrm{x}, \mathrm{a}, \mathrm{loc}=0$, scale $=1)$	Survival function (1-cdf - sometimes more accurate).
$\operatorname{logsf}(\mathrm{x}, \mathrm{a}, \operatorname{loc}=0$, scale $=1)$	Log of the survival function.
$\operatorname{ppf}(\mathrm{q}, \mathrm{a}, \mathrm{loc}=0$, scale=1)	Percent point function (inverse of cdf percentiles).
$\operatorname{isf}(\mathrm{q}, \mathrm{a}, \mathrm{loc}=0$, scale $=1)$	Inverse survival function (inverse of sf).
moment(n, a, loc=0, scale=1)	Non-central moment of order n
stats(a, loc=0, scale $=1$, moments='mv')	Mean('m'), variance(' $v$ '), skew('s'), and/or kurtosis(' k ').
entropy $(\mathrm{a}, \mathrm{loc}=0$, scale=1)	(Differential) entropy of the RV.
fit(data, a, loc=0, scale $=1$ )	Parameter estimates for generic data.
expect(func, $\mathrm{a}, \mathrm{loc}=0$, scale $=1, \mathrm{lb}=$ None, $\mathrm{ub}=$ None, conditional=False, ${ }^{* *}$ kwds)	Expected value of a function (of one argument) with respect to the distribution.
median $(\mathrm{a}, \mathrm{loc}=0$, scale $=1)$	Median of the distribution.
mean $(\mathrm{a}, \mathrm{loc}=0$, scale $=1$ )	Mean of the distribution.
$\operatorname{var}(\mathrm{a}, \mathrm{loc}=0$, scale=1)	Variance of the distribution.
$\operatorname{std}(\mathrm{a}, \mathrm{loc}=0$, scale $=1)$	Standard deviation of the distribution.
interval(alpha, a, loc=0, scale=1)	Endpoints of the range that contains alpha percent of the distribution

scipy.stats.powerlognorm
A power log-normal continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

## Parameters

$\mathbf{x}$ : array_like
quantiles
q: array_like
lower or upper tail probability
c, s: array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' $v$ ' $=$ variance, ' $s$ ' = (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

## Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
$r v=\operatorname{powerlognorm}(c, s, l o c=0$, scale=1) :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


## Notes

The probability density function for powerlognorm is:

```
powerlognorm.pdf(x, c, s) = c / (x*s) * phi(log(x)/s) *
 (Phi(-log(x)/s))**(c-1),
```

where phi is the normal pdf, and Phi is the normal cdf, and $x>0, s, c>0$.

## Examples

```
>>> from scipy.stats import powerlognorm
>>> numargs = powerlognorm.numargs
>>> [c, s] = [0.9,] * numargs
>>> rv = powerlognorm(c, s)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = powerlognorm.cdf(x, c, s)
>>> h = plt.semilogy(np.abs(x - powerlognorm.ppf(prb, c, s)) + le-20)
```

Random number generation

```
>>> R = powerlognorm.rvs(c, s, size=100)
```


## Methods

```
rvs(c, s, loc=0, scale=1, size=1)
pdf(x, c, s, loc=0, scale=1)
logpdf(x, c, s, loc=0, scale=1)
cdf(x, c, s, loc=0, scale=1)
logcdf(x, c, s, loc=0, scale=1)
sf(x, c, s, loc=0, scale=1)
logsf(x, c, s, loc=0, scale=1)
ppf(q, c, s, loc=0, scale=1)
isf(q, c, s, loc=0, scale=1)
moment(n, c, s, loc=0, scale=1)
stats(c, s, loc=0, scale=1, moments='mv')
entropy(c, s, loc=0, scale=1)
fit(data, c, s, loc=0, scale=1)
expect(func, c, s, loc=0, scale=1, lb=None, ub=None,
conditional=False, **kwds)
median(c, s, loc=0, scale=1)
mean(c, s, loc=0, scale=1)
var(c, s, loc=0, scale=1)
std(c, s, loc=0, scale=1)
interval(alpha, c, s, loc=0, scale=1)
```

Random variates.
Probability density function.
Log of the probability density function.
Cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more accurate).
Log of the survival function.
Percent point function (inverse of cdf percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order $n$
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument)
with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent of the distribution
scipy.stats.powernorm
A power normal continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

## Parameters

$\mathbf{x}$ : array_like
quantiles
q: array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' $v$ ' $=$ variance, ' $s$ ' = (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

## Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv $=$ powernorm $(c, l o c=0$, scale $=1)$ :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


## Notes

The probability density function for powernorm is:

```
powernorm.pdf(x, c) = c * phi(x) * (Phi(-x)) **(c-1)
```

where phi is the normal pdf, and Phi is the normal cdf, and $x>0, c>0$.

## Examples

```
>>> from scipy.stats import powernorm
>>> numargs = powernorm.numargs
>>> [c] = [0.9,] * numargs
>>> rv = powernorm(c)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf
>>> prb = powernorm.cdf(x, c)
>>> $h=p l t . \operatorname{semilogy}(n p . a b s(x-p o w e r n o r m . p p f(p r b, ~ c)) ~+~ l e-20) ~$
Random number generation

```
>>> R = powernorm.rvs(c, size=100)
```


## Methods

$\operatorname{rvs}(\mathrm{c}, \mathrm{loc}=0$, scale $=1$, size $=1$ )	Random variates.
$\operatorname{pdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale=1)	Probability density function.
$\operatorname{logpdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1$ )	Log of the probability density function.
$\operatorname{cdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale=1)	Cumulative density function.
$\operatorname{logcdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1$ )	Log of the cumulative density function.
$\operatorname{sf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale $=1)$	Survival function (1-cdf - sometimes more accurate).
$\operatorname{logsf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1)$	Log of the survival function.
$\operatorname{ppf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0$, scale=1)	Percent point function (inverse of cdf percentiles).
$\operatorname{isf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0$, scale $=1)$	Inverse survival function (inverse of sf).
$\operatorname{moment}(\mathrm{n}, \mathrm{c}, \mathrm{loc}=0$, scale=1)	Non-central moment of order $n$
stats( $\mathrm{c}, \mathrm{loc}=0$, scale $=1$, moments='mv')	Mean('m'), variance(' $v$ '), skew('s'), and/or kurtosis('k').
entropy $(\mathrm{c}, \mathrm{loc}=0$, scale $=1$ )	(Differential) entropy of the RV.
fit(data, $\mathrm{c}, \mathrm{loc}=0$, scale $=1$ )	Parameter estimates for generic data.
$\operatorname{expect}($ func, $c, l o c=0$, scale $=1, l b=$ None, $u b=$ None, conditional=False, **kwds)	Expected value of a function (of one argument) with respect to the distribution.
median(c, loc $=0$, scale $=1$ )	Median of the distribution.
$\operatorname{mean}(\mathrm{c}, \mathrm{loc}=0$, scale $=1$ )	Mean of the distribution.
$\operatorname{var}(\mathrm{c}, \mathrm{loc}=0$, scale $=1$ )	Variance of the distribution.
$\operatorname{std}(\mathrm{c}, \mathrm{loc}=0$, scale $=1$ )	Standard deviation of the distribution.
interval(alpha, $\mathrm{c}, \mathrm{loc}=0$, scale $=1$ )	Endpoints of the range that contains alpha percent of the distribution

scipy.stats.rdist
An R-distributed continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

## Parameters

$\mathbf{x}$ : array_like
quantiles
$\mathbf{q}$ : array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' $v$ ' $=$ variance, ' $s$ ' = (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

## Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv $=\operatorname{rdist}(c, \operatorname{loc}=0$, scale=1) :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


## Notes

The probability density function for $r$ dist is:
rdist.pdf( $x, C)=(1-x * * 2) * *(c / 2-1) / B(1 / 2, c / 2)$
for $-1<=\mathrm{x}<=1, \mathrm{c}>0$.

## Examples

```
>>> from scipy.stats import rdist
>>> numargs = rdist.numargs
>>> [c] = [0.9,] * numargs
>>> rv = rdist(c)
```

Display frozen pdf
>>> $x=n p . l i n s p a c e(0, n p . m i n i m u m(r v . d i s t . b, ~ 3))$
>>> h = plt.plot(x, rv.pdf(x))
Check accuracy of cdf and ppf

```
>>> prb = rdist.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - rdist.ppf(prb, c)) + 1e-20)
```

Random number generation

```
>>> R = rdist.rvs(c, size=100)
```


## Methods

$\operatorname{rvs}(\mathrm{c}, \mathrm{loc}=0$, scale $=1$, size $=1$ )	Random variates.
$\operatorname{pdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale $=1$ )	Probability density function.
$\operatorname{logpdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1$ )	Log of the probability density function.
$\operatorname{cdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale=1)	Cumulative density function.
$\operatorname{logcdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1$ )	Log of the cumulative density function.
$\operatorname{sf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale $=1)$	Survival function (1-cdf - sometimes more accurate).
$\operatorname{logsf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1)$	Log of the survival function.
$\operatorname{ppf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0$, scale=1)	Percent point function (inverse of cdf percentiles).
$\operatorname{isf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0$, scale $=1)$	Inverse survival function (inverse of sf).
moment( $\mathrm{n}, \mathrm{c}, \mathrm{loc}=0$, scale=1)	Non-central moment of order $n$
stats( $\mathrm{c}, \mathrm{loc}=0$, scale $=1$, moments='mv')	Mean('m'), variance(' $v$ '), skew('s'), and/or kurtosis('k').
entropy $(\mathrm{c}, \mathrm{loc}=0$, scale $=1$ )	(Differential) entropy of the RV.
fit(data, $\mathrm{c}, \mathrm{loc}=0$, scale $=1$ )	Parameter estimates for generic data.
$\operatorname{expect}($ func, $c, l o c=0$, scale $=1, l b=$ None, $u b=$ None, conditional=False, **kwds)	Expected value of a function (of one argument) with respect to the distribution.
median(c, loc $=0$, scale $=1$ )	Median of the distribution.
mean (c, loc $=0$, scale $=1$ )	Mean of the distribution.
$\operatorname{var}(\mathrm{c}, \mathrm{loc}=0$, scale $=1$ )	Variance of the distribution.
$\operatorname{std}(\mathrm{c}, \mathrm{loc}=0$, scale $=1$ )	Standard deviation of the distribution.
interval(alpha, $\mathrm{c}, \mathrm{loc}=0$, scale $=1$ )	Endpoints of the range that contains alpha percent of the distribution

scipy.stats.reciprocal
A reciprocal continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

## Parameters

$\mathbf{x}$ : array_like
quantiles
q: array_like
lower or upper tail probability
a, b: array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' $v$ ' $=$ variance, ' $s$ ' = (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

## Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
$\mathbf{r v}=\operatorname{reciprocal}(\mathbf{a}, \mathrm{b}, \operatorname{loc}=0$, scale $=1)$ :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


## Notes

The probability density function for reciprocal is:

```
reciprocal.pdf(x, a, b) = 1 / (x*log(b/a))
```

for $\mathrm{a}<=\mathrm{x}<=\mathrm{b}, \mathrm{a}, \mathrm{b}>0$.

## Examples

```
>>> from scipy.stats import reciprocal
>>> numargs = reciprocal.numargs
>>> [a, b] = [0.9,] * numargs
>>> rv = reciprocal(a, b)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = reciprocal.cdf(x, a, b)
>>> h = plt.semilogy(np.abs(x - reciprocal.ppf(prb, a, b)) + le-20)
```

Random number generation

```
>>> R = reciprocal.rvs(a, b, size=100)
```


## Methods

```
rvs(a, b, loc=0, scale=1, size=1)
pdf(x, a, b, loc=0, scale=1)
logpdf(x, a, b, loc=0, scale=1)
cdf(x, a, b, loc=0, scale=1)
logcdf(x, a, b, loc=0, scale=1)
sf(x, a, b, loc=0, scale=1)
logsf(x, a, b, loc=0, scale=1)
ppf(q,a,b, loc=0, scale=1)
isf(q, a, b, loc=0, scale=1)
moment(n, a, b, loc=0, scale=1)
stats(a, b, loc=0, scale=1, moments='mv')
entropy(a, b, loc=0, scale=1)
fit(data, a, b, loc=0, scale=1)
expect(func, a, b, loc=0, scale=1,lb=None,
ub=None, conditional=False, **kwds)
median(a, b, loc=0, scale=1)
mean(a, b, loc=0, scale=1)
var(a,b, loc=0, scale=1)
std(a, b, loc=0, scale=1)
interval(alpha, a, b, loc=0, scale=1)
```

Random variates.
Probability density function.
Log of the probability density function. Cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more accurate).
Log of the survival function.
Percent point function (inverse of cdf percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order $n$
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument)
with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent of the distribution

```
scipy.stats.rayleigh
A Rayleigh continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
```


## Parameters

$\mathbf{x}$ : array_like
quantiles
q: array_like
lower or upper tail probability
loc : array_like, optional
location parameter (default $=0$ )
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' $v$ ' $=$ variance, ' $s$ ' $=$ (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a "frozen" continuous RV object: :
rv $=\operatorname{rayleigh}(l o c=0$, scale=1) :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


## Notes

The probability density function for rayleigh is:

```
rayleigh.pdf(r) = r * exp(-r**2/2)
```

for $\mathrm{x}>=0$.

## Examples

```
>>> from scipy.stats import rayleigh
>>> numargs = rayleigh.numargs
>>> [] = [0.9,] * numargs
>>> rv = rayleigh()
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = rayleigh.cdf(x,)
>>> h = plt.semilogy(np.abs(x - rayleigh.ppf(prb,)) + 1e-20)
```

Random number generation

```
>>> R = rayleigh.rvs(size=100)
```


## Methods

```
rvs(loc=0, scale=1, size=1)
pdf(x, loc=0, scale=1)
logpdf(x, loc=0, scale=1)
cdf(x, loc=0, scale=1)
logcdf(x, loc=0, scale=1)
sf(x, loc=0, scale=1)
logsf(x, loc=0, scale=1)
ppf(q, loc=0, scale=1)
isf(q, loc=0, scale=1)
moment(n, loc=0, scale=1)
stats(loc=0, scale=1, moments='mv')
entropy(loc=0, scale=1)
fit(data, loc=0, scale=1)
expect(func, loc=0, scale=1,lb=None, ub=None,
conditional=False, **kwds)
median(loc=0, scale=1)
mean(loc=0, scale=1)
var(loc=0, scale=1)
std(loc=0, scale=1)
interval(alpha, loc=0, scale=1)
```

Random variates.
Probability density function.
Log of the probability density function.
Cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more accurate).
Log of the survival function.
Percent point function (inverse of cdf - percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order $n$
Mean('m’), variance('v’), skew('s'), and/or kurtosis('k').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument) with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent of the distribution
scipy.stats.rice
A Rice continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

## Parameters

$\mathbf{x}$ : array_like
quantiles
q: array_like
lower or upper tail probability
b : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' $v$ ' $=$ variance, ' $s$ ' = (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

## Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
$r v=\operatorname{rice}(b, l o c=0$, scale $=1)$ :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


## Notes

The probability density function for rice is:

```
rice.pdf(x, b) = x * exp(-(x**2+b**2)/2) * I[0](x*b)
```

for $\mathrm{x}>0, \mathrm{~b}>0$.

## Examples

```
>>> from scipy.stats import rice
>>> numargs = rice.numargs
>>> [b] = [0.9,] * numargs
>>> rv = rice(b)
```

Display frozen pdf
>>> $x=n p . l i n s p a c e(0, n p . m i n i m u m(r v . d i s t . b, ~ 3))$
>>> h = plt.plot(x, rv.pdf(x))
Check accuracy of cdf and ppf

```
>>> prb = rice.cdf(x, b)
>>> h = plt.semilogy(np.abs(x - rice.ppf(prb, b)) + 1e-20)
```

Random number generation

```
>>> R = rice.rvs(b, size=100)
```


## Methods

$\operatorname{rvs}(\mathrm{b}, \mathrm{loc}=0$, scale $=1$, size $=1)$	Random variates.
$\operatorname{pdf}(\mathrm{x}, \mathrm{b}, \mathrm{loc}=0, \mathrm{scale}=1)$	Probability density function.
$\operatorname{logpdf}(\mathrm{x}, \mathrm{b}, \operatorname{loc}=0$, scale $=1$ )	Log of the probability density function.
$\operatorname{cdf}(\mathrm{x}, \mathrm{b}, \mathrm{loc}=0$, scale=1)	Cumulative density function.
$\operatorname{logcdf}(\mathrm{x}, \mathrm{b}, \operatorname{loc}=0$, scale $=1$ )	Log of the cumulative density function.
$\operatorname{sf}(\mathrm{x}, \mathrm{b}, \mathrm{loc}=0$, scale $=1)$	Survival function (1-cdf - sometimes more accurate).
$\operatorname{logsf}(\mathrm{x}, \mathrm{b}, \mathrm{loc}=0$, scale $=1)$	Log of the survival function.
$\operatorname{ppf}(\mathrm{q}, \mathrm{b}, \mathrm{loc}=0$, scale=1)	Percent point function (inverse of cdf percentiles).
$\operatorname{isf}(\mathrm{q}, \mathrm{b}, \mathrm{loc}=0$, scale $=1)$	Inverse survival function (inverse of sf).
moment( $\mathrm{n}, \mathrm{b}, \mathrm{loc}=0$, scale $=1$ )	Non-central moment of order $n$
stats( $\mathrm{b}, \mathrm{loc}=0$, scale $=1$, moments='mv')	Mean('m'), variance(' $v$ '), skew('s'), and/or kurtosis( ' $k$ ').
entropy $(\mathrm{b}, \mathrm{loc}=0$, scale $=1$ )	(Differential) entropy of the RV.
fit(data, b, loc $=0$, scale $=1$ )	Parameter estimates for generic data.
$\operatorname{expect}($ func, $b, l o c=0$, scale $=1, l b=$ None, $u b=$ None, conditional=False, $* *$ kwds)	Expected value of a function (of one argument) with respect to the distribution.
median(b, loc $=0$, scale $=1$ )	Median of the distribution.
mean(b, loc=0, scale=1)	Mean of the distribution.
$\operatorname{var}(\mathrm{b}, \mathrm{loc}=0$, scale $=1)$	Variance of the distribution.
$\operatorname{std}(\mathrm{b}, \mathrm{loc}=0$, scale $=1)$	Standard deviation of the distribution.
interval(alpha, $\mathrm{b}, \mathrm{loc}=0$, scale $=1$ )	Endpoints of the range that contains alpha percent of the distribution

scipy.stats.recipinvgauss
A reciprocal inverse Gaussian continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

## Parameters

$\mathbf{x}$ : array_like
quantiles
$\mathbf{q}$ : array_like
lower or upper tail probability
mu : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' $v$ ' $=$ variance, ' $s$ ' = (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

## Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv $=$ recipinvgauss $(\mathbf{m u}, \operatorname{loc}=0$, scale $=1):$

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


## Notes

The probability density function for recipinvgauss is:

```
recipinvgauss.pdf(x, mu) = 1/sqrt(2*pi*x) * exp(-(1-mu*x)**2/(2*x*mu**2))
```

for $\mathrm{x}>=0$.

## Examples

```
>>> from scipy.stats import recipinvgauss
>>> numargs = recipinvgauss.numargs
>>> [mu] = [0.9,] * numargs
>>> rv = recipinvgauss(mu)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = recipinvgauss.cdf(x, mu)
>>> h = plt.semilogy(np.abs(x - recipinvgauss.ppf(prb, mu)) + le-20)
```

Random number generation

```
>>> R = recipinvgauss.rvs(mu, size=100)
```


## Methods

```
rvs(mu, loc=0, scale=1, size=1)
pdf(x, mu, loc=0, scale=1)
logpdf(x, mu, loc=0, scale=1)
cdf(x, mu, loc=0, scale=1)
logcdf(x, mu, loc=0, scale=1)
sf(x,mu, loc=0, scale=1)
logsf(x, mu, loc=0, scale=1)
ppf(q, mu, loc=0, scale=1)
isf(q, mu, loc=0, scale=1)
moment(n, mu, loc=0, scale=1)
stats(mu, loc=0, scale=1, moments='mv')
entropy(mu, loc=0, scale=1)
fit(data, mu, loc=0, scale=1)
expect(func, mu, loc=0, scale=1, lb=None, ub=None,
conditional=False, **kwds)
median(mu, loc=0, scale=1)
mean(mu, loc=0, scale=1)
var(mu, loc=0, scale=1)
std(mu, loc=0, scale=1)
interval(alpha, mu, loc=0, scale=1)
```

```
Random variates.
Probability density function.
Log of the probability density function.
Cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more
accurate).
Log of the survival function.
Percent point function (inverse of cdf -
percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order n
Mean('m'), variance('v'), skew('s'), and/or
kurtosis('k').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument)
with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent
of the distribution
```

scipy.stats.semicircular
A semicircular continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

## Parameters

$$
\mathbf{x}: \text { array_like }
$$

quantiles
q: array_like
lower or upper tail probability
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' $v$ ' $=$ variance, ' $s$ ' $=$ (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a "frozen" continuous RV object: :
$\mathbf{r v}=$ semicircular $(\mathbf{l o c}=0$, scale $=1$ ) :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


## Notes

The probability density function for semicircular is:
semicircular.pdf(x) $=2 /$ pi * $\operatorname{sqrt(1-x**2)~}$
for $-1<=x \quad<=1$.

## Examples

```
>>> from scipy.stats import semicircular
>>> numargs = semicircular.numargs
>>> [] = [0.9,] * numargs
>>> rv = semicircular()
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = semicircular.cdf(x,)
>>> h = plt.semilogy(np.abs(x - semicircular.ppf(prb,)) + 1e-20)
```

Random number generation

```
>>> R = semicircular.rvs(size=100)
```


## Methods

```
rvs(loc=0, scale=1, size=1)
pdf(x, loc=0, scale=1)
logpdf(x, loc=0, scale=1)
cdf(x, loc=0, scale=1)
logcdf(x, loc=0, scale=1)
sf(x, loc=0, scale=1)
logsf(x, loc=0, scale=1)
ppf(q, loc=0, scale=1)
isf(q, loc=0, scale=1)
moment(n, loc=0, scale=1)
stats(loc=0, scale=1, moments='mv')
entropy(loc=0, scale=1)
fit(data, loc=0, scale=1)
expect(func, loc=0, scale=1, lb=None, ub=None,
conditional=False, **kwds)
median(loc=0, scale=1)
mean(loc=0, scale=1)
var(loc=0, scale=1)
std(loc=0, scale=1)
interval(alpha, loc=0, scale=1)
```

Random variates.
Probability density function.
Log of the probability density function.
Cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more
accurate).
Log of the survival function.
Percent point function (inverse of cdf - percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order $n$
Mean('m'), variance('v'), skew('s'), and/or
kurtosis(' $k$ ').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument) with
respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent of
the distribution

Probability density function.
Log of the probability density function.
Cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more accurate).
Log of the survival function.
Percent point function (inverse of cdf - percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order $n$
Mean('m'), variance('v'), skew('s'), and/or kurtosis(' $k$ ').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument) with
respect to the distribution
Median of the distribution.

Variance of the distribution.
Standard deviation of the distribution.
the distribution

```
scipy.stats.triang
```

A triangular continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

## Parameters

$\mathbf{x}$ : array_like
quantiles
q: array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' $v$ ' $=$ variance, ' $s$ ' = (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

## Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv $=\operatorname{triang}(c, \operatorname{loc}=0$, scale $=1)$ :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


## Notes

The triangular distribution can be represented with an up-sloping line from loc to (loc $+\mathrm{c} * \mathrm{scale}$ ) and then downsloping for (loc $+c * s c a l e)$ to (loc+scale).

The standard form is in the range [0, 1] with c the mode. The location parameter shifts the start to loc. The scale parameter changes the width from 1 to scale.

## Examples

```
>>> from scipy.stats import triang
>>> numargs = triang.numargs
>>> [c] = [0.9,] * numargs
>>> rv = triang(c)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = triang.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - triang.ppf(prb, c)) + 1e-20)
```

Random number generation

```
>>> R = triang.rvs(c, size=100)
```


## Methods

$\operatorname{rvs}(\mathrm{c}, \mathrm{loc}=0$, scale $=1$, size $=1$ )	Random variates.
$\operatorname{pdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale=1)	Probability density function.
$\operatorname{logpdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1$ )	Log of the probability density function.
$\operatorname{cdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale=1)	Cumulative density function.
$\operatorname{logcdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1$ )	Log of the cumulative density function.
$\operatorname{sf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale $=1)$	Survival function (1-cdf - sometimes more accurate).
$\operatorname{logsf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1)$	Log of the survival function.
$\operatorname{ppf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0$, scale=1)	Percent point function (inverse of cdf percentiles).
$\operatorname{isf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0$, scale $=1)$	Inverse survival function (inverse of sf).
$\operatorname{moment}(\mathrm{n}, \mathrm{c}, \mathrm{loc}=0$, scale=1)	Non-central moment of order $n$
stats( $\mathrm{c}, \mathrm{loc}=0$, scale $=1$, moments='mv')	Mean('m'), variance(' $v$ '), skew('s'), and/or kurtosis('k').
entropy $(\mathrm{c}, \mathrm{loc}=0$, scale $=1$ )	(Differential) entropy of the RV.
fit(data, $\mathrm{c}, \mathrm{loc}=0$, scale $=1$ )	Parameter estimates for generic data.
$\operatorname{expect}($ func, $c, l o c=0$, scale $=1, l b=$ None, $u b=$ None, conditional=False, **kwds)	Expected value of a function (of one argument) with respect to the distribution.
median(c, loc $=0$, scale $=1$ )	Median of the distribution.
$\operatorname{mean}(\mathrm{c}, \mathrm{loc}=0$, scale $=1$ )	Mean of the distribution.
$\operatorname{var}(\mathrm{c}, \mathrm{loc}=0$, scale $=1$ )	Variance of the distribution.
$\operatorname{std}(\mathrm{c}, \mathrm{loc}=0$, scale $=1$ )	Standard deviation of the distribution.
interval(alpha, $\mathrm{c}, \mathrm{loc}=0$, scale $=1$ )	Endpoints of the range that contains alpha percent of the distribution

scipy.stats.truncexpon
A truncated exponential continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

## Parameters

$\mathbf{x}$ : array_like
quantiles
q: array_like
lower or upper tail probability
b : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' $v$ ' $=$ variance, ' $s$ ' = (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

## Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv $=$ truncexpon $(b, l o c=0$, scale $=1)$ :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


## Notes

The probability density function for truncexpon is:

```
truncexpon.pdf(x, b) = exp(-x) / (1-exp(-b))
```

for $0<x<b$.

## Examples

```
>>> from scipy.stats import truncexpon
>>> numargs = truncexpon.numargs
>>> [b] = [0.9,] * numargs
>>> rv = truncexpon(b)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = truncexpon.cdf(x, b)
>>> h = plt.semilogy(np.abs(x - truncexpon.ppf(prb, b)) + 1e-20)
```

Random number generation

```
>>> R = truncexpon.rvs(b, size=100)
```


## Methods


scipy.stats.truncnorm
A truncated normal continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

## Parameters

$$
\mathbf{x} \text { : array_like }
$$

quantiles
q: array_like
lower or upper tail probability
$\mathbf{a}, \mathbf{b}$ : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' $v$ ' $=$ variance, ' $s$ ' = (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

## Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
$r v=\operatorname{truncnorm}(a, b, l o c=0$, scale $=1)$ :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


## Notes

The standard form of this distribution is a standard normal truncated to the range [a,b] — notice that a and b are defined over the domain of the standard normal. To convert clip values for a specific mean and standard deviation, use:

```
a, b = (myclip_a - my_mean) / my_std, (myclip_b - my_mean) / my_std
```


## Examples

```
>>> from scipy.stats import truncnorm
>>> numargs = truncnorm.numargs
>>> [a, b] = [0.9,] * numargs
>>> rv = truncnorm(a, b)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = truncnorm.cdf(x, a, b)
>>> h = plt.semilogy(np.abs(x - truncnorm.ppf(prb, a, b)) + 1e-20)
```

Random number generation

```
>>> R = truncnorm.rvs(a, b, size=100)
```


## Methods

```
rvs(a, b, loc=0, scale=1, size=1)
pdf(x, a, b, loc=0, scale=1)
logpdf(x, a, b, loc=0, scale=1)
cdf(x, a, b, loc=0, scale=1)
logcdf(x, a, b, loc=0, scale=1)
sf(x, a, b, loc=0, scale=1)
logsf(x, a, b, loc=0, scale=1)
ppf(q,a,b, loc=0, scale=1)
isf(q, a, b, loc=0, scale=1)
moment(n, a, b, loc=0, scale=1)
stats(a, b, loc=0, scale=1, moments='mv')
entropy(a, b, loc=0, scale=1)
fit(data, a, b, loc=0, scale=1)
expect(func, a, b, loc=0, scale=1,lb=None,
ub=None, conditional=False, **kwds)
median(a, b, loc=0, scale=1)
mean(a, b, loc=0, scale=1)
var(a, b, loc=0, scale=1)
std(a, b, loc=0, scale=1)
interval(alpha, a, b, loc=0, scale=1)
```

Random variates.
Probability density function.
Log of the probability density function. Cumulative density function.
Log of the cumulative density function. Survival function (1-cdf - sometimes more accurate).
Log of the survival function.
Percent point function (inverse of cdf percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order $n$
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument)
with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent of the distribution
scipy.stats.tukeylambda
A Tukey-Lamdba continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

## Parameters

$\mathbf{x}$ : array_like
quantiles
q: array_like
lower or upper tail probability
lam : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' $v$ ' $=$ variance, ' $s$ ' = (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

## Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv = tukeylambda(lam, loc=0, scale=1) :

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


## Notes

A flexible distribution, able to represent and interpolate between the following distributions:
-Cauchy (lam=-1)

- logistic (lam=0.0)
- approx Normal (lam=0.14)
-u-shape (lam = 0.5)
-uniform from -1 to $1($ lam = 1)


## Examples

```
>>> from scipy.stats import tukeylambda
>>> numargs = tukeylambda.numargs
>>> [lam] = [0.9,] * numargs
>>> rv = tukeylambda(lam)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = tukeylambda.cdf(x, lam)
>>> h = plt.semilogy(np.abs(x - tukeylambda.ppf(prb, lam)) + le-20)
```

Random number generation

```
>>> R = tukeylambda.rvs(lam, size=100)
```


## Methods

```
rvs(lam, loc=0, scale=1, size=1)
pdf(x, lam, loc=0, scale=1)
logpdf(x, lam, loc=0, scale=1)
cdf(x, lam, loc=0, scale=1)
logcdf(x, lam, loc=0, scale=1)
sf(x, lam, loc=0, scale=1)
logsf(x, lam, loc=0, scale=1)
ppf(q, lam, loc=0, scale=1)
isf(q, lam, loc=0, scale=1)
moment(n, lam, loc=0, scale=1)
stats(lam, loc=0, scale=1, moments='mv')
entropy(lam, loc=0, scale=1)
fit(data, lam, loc=0, scale=1)
expect(func, lam, loc=0, scale=1,lb=None,
ub=None, conditional=False, **kwds)
median(lam, loc=0, scale=1)
mean(lam, loc=0, scale=1)
var(lam, loc=0, scale=1)
std(lam, loc=0, scale=1)
interval(alpha, lam, loc=0, scale=1)
```

Random variates.
Probability density function.
Log of the probability density function.
Cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf - sometimes more accurate).
Log of the survival function.
Percent point function (inverse of cdf percentiles).
Inverse survival function (inverse of sf).
Non-central moment of order $n$
Mean('m'), variance('v'), skew('s'), and/or kurtosis(' $k$ ').
(Differential) entropy of the RV.
Parameter estimates for generic data.
Expected value of a function (of one argument)
with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent of the distribution
scipy.stats.uniform
A uniform continuous random variable.
This distribution is constant between loc and loc $=$ scale.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

## Parameters

$$
\mathbf{x} \text { : array_like }
$$

quantiles
q: array_like
lower or upper tail probability
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' $m$ ' $=$ mean, ' $v$ ' = variance, ' $s$ ' $=$ (Fisher's) skew and ' $k$ ' $=$ (Fisher's) kurtosis. (default='mv')

## Alternatively, the object may be called (as a function) to fix the shape, :

 location, and scale parameters returning a "frozen" continuous RV object: :```
rv = uniform(loc=0, scale=1) :
```

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Examples :

\qquad —:
>>> from scipy.stats import uniform :
>>> numargs $=$ uniform.numargs :
>>> [] = [0.9,] * numargs :
\ggg rv $=$ uniform () :
Display frozen pdf :

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3)) :
>>> h = plt.plot(x, rv.pdf(x)) :
```


Check accuracy of cdf and ppf :

>>> prb = uniform.cdf(x,) :
>>> h = plt.semilogy(np.abs(x - uniform.ppf(prb,)) + 1e-20) :

Random number generation :

\ggg R $=$ uniform.rvs(size=100) :

Methods

| rvs(loc=0, scale=1, size=1) | Random variates. |
| :---: | :---: |
| $\operatorname{pdf}(\mathrm{x}, \mathrm{loc}=0, \mathrm{scale}=1)$ | Probability density function. |
| $\operatorname{logpdf}(\mathrm{x}, \operatorname{loc}=0$, scale $=1$) | Log of the probability density function. |
| $\operatorname{cdf}(\mathrm{x}, \mathrm{loc}=0$, scale $=1$) | Cumulative density function. |
| $\operatorname{logcdf}(\mathrm{x}, \operatorname{loc}=0$, scale $=1$) | Log of the cumulative density function. |
| $\operatorname{sf}(\mathrm{x}, \mathrm{loc}=0$, scale $=1$) | Survival function (1-cdf - sometimes more accurate). |
| $\operatorname{logsf}(\mathrm{x}, \operatorname{loc}=0$, scale $=1)$ | Log of the survival function. |
| $\operatorname{ppf}(\mathrm{q}, \mathrm{loc}=0$, scale=1) | Percent point function (inverse of cdf - percentiles). |
| $\operatorname{isf}(\mathrm{q}, \mathrm{loc}=0$, scale $=1$) | Inverse survival function (inverse of sf). |
| moment($\mathrm{n}, \mathrm{loc}=0$, scale $=1$) | Non-central moment of order n |
| stats (loc=0, scale $=1$, moments='mv') | Mean('m'), variance(' v '), skew('s'), and/or kurtosis('k'). |
| entropy $(\mathrm{loc}=0$, scale $=1$) | (Differential) entropy of the RV. |
| fit(data, loc=0, scale $=1$) | Parameter estimates for generic data. |
| $\operatorname{expect}($ func, $l o c=0$, scale $=1, l b=$ None, $u b=$ None, conditional=False, **kwds) | Expected value of a function (of one argument) with respect to the distribution. |
| median $(\mathrm{loc}=0$, scale $=1)$ | Median of the distribution. |
| $\operatorname{mean}(\mathrm{loc}=0, \mathrm{scale}=1)$ | Mean of the distribution. |
| $\operatorname{var}(\mathrm{loc}=0$, scale=1) | Variance of the distribution. |
| $\operatorname{std}(\mathrm{loc}=0$, scale $=1)$ | Standard deviation of the distribution. |
| interval(alpha, loc=0, scale=1) | Endpoints of the range that contains alpha percent of the distribution |

scipy.stats.vonmises

A Von Mises continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles

q: array_like

lower or upper tail probability
b: array_like
shape parameters
loc : array_like, optional
location parameter $($ default $=0)$
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where 'm' $=$ mean, ' v ' = variance, ' s ' $=$ (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
$r v=\operatorname{vonmises}(b, l o c=0$, scale $=1)$:

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

If x is not in range or $l o c$ is not in range it assumes they are angles and converts them to [-pi, pi] equivalents.
The probability density function for vonmises is:
vonmises.pdf(x, b) $=\exp (b * \cos (x)) /(2 * p i * I[0](b))$
for $-\mathrm{pi}<=\mathrm{x}<=\mathrm{pi}, \mathrm{b}>0$.

Examples

```
>>> from scipy.stats import vonmises
>>> numargs = vonmises.numargs
>>> [ b ] = [0.9,] * numargs
>>> rv = vonmises(b)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = vonmises.cdf(x, b)
>>> h = plt.semilogy(np.abs(x - vonmises.ppf(prb, b)) + le-20)
```

Random number generation

```
>>> R = vonmises.rvs(b, size=100)
```


Methods

| $\begin{aligned} & \text { rvs }(b, \operatorname{loc}=0, \text { scale }=1, \text { size }=1) \\ & \operatorname{pdf}(x, b, \operatorname{loc}=0, \text { scale }=1) \end{aligned}$ | Random variates. Probability density function. |
| :---: | :---: |
| $\operatorname{logpdf}(\mathrm{x}, \mathrm{b}, \mathrm{loc}=0$, scale $=1)$ | Log of the probability density function. |
| $\operatorname{cdf}(\mathrm{x}, \mathrm{b}, \mathrm{loc}=0$, scale=1) | Cumulative density function. |
| $\operatorname{logcdf}(\mathrm{x}, \mathrm{b}, \operatorname{loc}=0$, scale $=1$) | Log of the cumulative density function. |
| $\mathrm{sf}(\mathrm{x}, \mathrm{b}, \mathrm{loc}=0$, scale $=1)$ | Survival function (1-cdf — sometimes more accurate). |
| $\operatorname{logsf}(\mathrm{x}, \mathrm{b}, \operatorname{loc}=0$, scale $=1)$ | Log of the survival function. |
| $\operatorname{ppf}(\mathrm{q}, \mathrm{b}, \mathrm{loc}=0$, scale=1) | Percent point function (inverse of cdf percentiles). |
| $\operatorname{isf}(\mathrm{q}, \mathrm{b}, \mathrm{loc}=0$, scale $=1)$ | Inverse survival function (inverse of sf). |
| moment($\mathrm{n}, \mathrm{b}, \mathrm{loc}=0$, scale=1) | Non-central moment of order n |
| stats($\mathrm{b}, \mathrm{loc}=0$, scale $=1$, moments='mv') | Mean('m'), variance(' v '), skew('s'), and/or kurtosis('k'). |
| entropy $(\mathrm{b}, \mathrm{loc}=0$, scale $=1$) | (Differential) entropy of the RV. |
| fit(data, b, loc=0, scale $=1$) | Parameter estimates for generic data. |
| expect(func, b, loc $=0$, scale $=1, \mathrm{lb}=$ None, $\mathrm{ub}=$ None, conditional=False, **kwds) | Expected value of a function (of one argument) with respect to the distribution. |
| median(b, loc=0, scale $=1$) | Median of the distribution. |
| mean (b, loc=0, scale=1) | Mean of the distribution. |
| $\operatorname{var}(\mathrm{b}, \mathrm{loc}=0$, scale=1) | Variance of the distribution. |
| $\operatorname{std}(\mathrm{b}, \mathrm{loc}=0$, scale $=1$) | Standard deviation of the distribution. |
| interval(alpha, $\mathrm{b}, \mathrm{loc}=0$, scale $=1$) | Endpoints of the range that contains alpha percent of the distribution |

scipy.stats.wald
A Wald continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
\mathbf{q} : array_like
lower or upper tail probability
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' = variance, ' s ' $=$ (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a "frozen" continuous RV object: :
rv $=$ wald $(l o c=0$, scale $=1)$:

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

The probability density function for wald is:

```
wald.pdf(x, a)=1/sqrt(2*pi*x**3) * exp(-(x-1)**2/(2*x))
```

for $\mathrm{x}>0$.

Examples

```
>>> from scipy.stats import wald
>>> numargs = wald.numargs
>>> [ ] = [0.9,] * numargs
>>> rv = wald()
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = wald.cdf(x, )
>>> h = plt.semilogy(np.abs(x - wald.ppf(prb, )) + le-20)
```

Random number generation

```
>>> R = wald.rvs(size=100)
```


Methods

| ```rvs(loc=0, scale \(=1\), size \(=1\)) \(\operatorname{pdf}(x, \operatorname{loc}=0\), scale=1) \(\log p d f(x, \operatorname{loc}=0\), scale \(=1)\) \(\operatorname{cdf}(\mathrm{x}, \operatorname{loc}=0\), scale=1) \(\operatorname{logcdf}(x, \operatorname{loc}=0\), scale \(=1)\) \(\operatorname{sf}(\mathrm{x}, \operatorname{loc}=0\), scale \(=1)\) \(\operatorname{logsf}(x, \operatorname{loc}=0\), scale \(=1)\) \(\operatorname{ppf}(\mathrm{q}, \operatorname{loc}=0\), scale \(=1)\) \(\operatorname{isf}(q\), loc \(=0\), scale \(=1)\) moment(n, loc \(=0\), scale \(=1\)) stats \((\mathrm{loc}=0\), scale \(=1\), moments='mv') entropy \((\) loc \(=0\), scale \(=1)\) fit(data, loc=0, scale=1) expect(func, \(l o c=0\), scale \(=1, \mathrm{lb}=\) None, \(\mathrm{ub}=\) None, conditional=False, \(* *\) kwds) median \((\) loc \(=0\), scale \(=1)\) mean \((\operatorname{loc}=0\), scale \(=1)\) \(\operatorname{var}(\operatorname{loc}=0\), scale \(=1)\) \(\operatorname{std}(\mathrm{loc}=0\), scale \(=1)\) interval(alpha, loc=0, scale=1)``` | Random variates.
 Probability density function.
 Log of the probability density function.
 Cumulative density function.
 Log of the cumulative density function.
 Survival function (1-cdf - sometimes more accurate).
 Log of the survival function.
 Percent point function (inverse of cdf - percentiles).
 Inverse survival function (inverse of sf).
 Non-central moment of order n
 Mean('m'), variance('v'), skew('s'), and/or
 kurtosis('k').
 (Differential) entropy of the RV.
 Parameter estimates for generic data.
 Expected value of a function (of one argument) with respect to the distribution.
 Median of the distribution.
 Mean of the distribution.
 Variance of the distribution.
 Standard deviation of the distribution.
 Endpoints of the range that contains alpha percent of the distribution |
| :---: | :---: |

scipy.stats.weibull_min
A Frechet right (or Weibull minimum) continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

$$
\mathbf{x} \text { : array_like }
$$

quantiles
q: array_like
lower or upper tail probability
c: array_like
shape parameters
loc : array_like, optional
location parameter (default $=0$)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' = (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :

$r v=$ weibull $_\min (\mathbf{c}, \operatorname{loc}=0$, scale $=1)$:

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

See Also:

```
weibull_min
```

The same distribution as frechet_r.

```
frechet_l,weibull_max
```


Notes

The probability density function for frechet_r is:

```
frechet_r.pdf(x, c) = c * x**(c-1) * exp (-x**c)
```

for $\mathrm{x}>0, \mathrm{c}>0$.

Examples

```
>>> from scipy.stats import weibull_min
>>> numargs = weibull_min.numargs
>>> [ c ] = [0.9,] * numargs
>>> rv = weibull_min(c)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = weibull_min.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - weibull_min.ppf(prb, c)) + 1e-20)
```

Random number generation

```
>>> R = weibull_min.rvs(c, size=100)
```


Methods

| $\begin{aligned} & \text { rvs }(\mathrm{c}, \operatorname{loc}=0, \text { scale }=1, \text { size }=1) \\ & \operatorname{pdf}(x, \mathrm{c}, \operatorname{loc}=0, \text { scale }=1) \end{aligned}$ | Random variates.
 Probability density function. |
| :---: | :---: |
| $\operatorname{logpdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale $=1)$ | Log of the probability density function. |
| $\operatorname{cdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale=1) | Cumulative density function. |
| $\operatorname{logcdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0, \mathrm{scale}=1)$ | Log of the cumulative density function. |
| $\operatorname{sf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale $=1)$ | Survival function (1-cdf - sometimes more accurate). |
| $\operatorname{logsf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1)$ | Log of the survival function. |
| $\operatorname{ppf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0$, scale=1) | Percent point function (inverse of cdf percentiles). |
| $\operatorname{isf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0$, scale $=1)$ | Inverse survival function (inverse of sf). |
| $\operatorname{moment}(\mathrm{n}, \mathrm{c}, \mathrm{loc}=0$, scale=1) | Non-central moment of order n |
| stats($\mathrm{c}, \mathrm{loc}=0$, scale $=1$, moments='mv') | Mean(' m '), variance(' v '), skew('s'), and/or kurtosis('k'). |
| entropy $(\mathrm{c}, \mathrm{loc}=0$, scale $=1$) | (Differential) entropy of the RV. |
| fit(data, $\mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Parameter estimates for generic data. |
| $\operatorname{expect}(f u n c, c, l o c=0$, $s c a l e=1, l b=$ None, $u b=$ None, conditional=False, **kwds) | Expected value of a function (of one argument) with respect to the distribution. |
| median(c, loc $=0$, scale $=1$) | Median of the distribution. |
| $\operatorname{mean}(\mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Mean of the distribution. |
| $\operatorname{var}(\mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Variance of the distribution. |
| $\operatorname{std}(\mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Standard deviation of the distribution. |
| interval(alpha, $\mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Endpoints of the range that contains alpha percent of the distribution |

scipy.stats.weibull_max
A Frechet left (or Weibull maximum) continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
\mathbf{q} : array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' = (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
$\mathbf{r v}=$ weibull_max $(\mathbf{c}, \operatorname{loc}=0$, scale $=1)$:

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

See Also:

```
weibull_max
```

The same distribution as frechet_l.

```
frechet_r,weibull_min
```


Notes

The probability density function for frechet_l is:

```
frechet_l.pdf(x, c) = c * (-x)**(c-1) * exp(-(-x) **c)
```

for $\mathrm{x}<0, \mathrm{c}>0$.

Examples

```
>>> from scipy.stats import weibull_max
>>> numargs = weibull_max.numargs
>>> [ c ] = [0.9,] * numargs
>>> rv = weibull_max(c)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = weibull_max.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - weibull_max.ppf(prb, c)) + 1e-20)
```

Random number generation

```
>>> R = weibull_max.rvs(c, size=100)
```


Methods

| rvs(c, loc=0, scale=1, size=1) | Random variates. |
| :---: | :---: |
| $\operatorname{pdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale=1) | Probability density function. |
| $\operatorname{logpdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1$) | Log of the probability density function. |
| $\operatorname{cdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale=1) | Cumulative density function. |
| $\operatorname{logcdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1$) | Log of the cumulative density function. |
| $\operatorname{sf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale $=1)$ | Survival function (1-cdf - sometimes more accurate). |
| $\operatorname{logsf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1)$ | Log of the survival function. |
| $\operatorname{ppf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0$, scale=1) | Percent point function (inverse of cdf percentiles). |
| $\operatorname{isf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0$, scale $=1)$ | Inverse survival function (inverse of sf). |
| moment(n, c, loc=0, scale=1) | Non-central moment of order n |
| stats($\mathrm{c}, \mathrm{loc}=0$, scale $=1$, moments='mv') | Mean('m'), variance(' v '), skew('s'), and/or kurtosis(' k '). |
| entropy $(\mathrm{c}, \mathrm{loc}=0$, scale $=1$) | (Differential) entropy of the RV. |
| fit(data, $\mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Parameter estimates for generic data. |
| $\operatorname{expect}($ func, $\mathrm{c}, \mathrm{loc}=0$, scale $=1, \mathrm{lb}=$ None, $\mathrm{ub}=$ None, conditional=False, **kwds) | Expected value of a function (of one argument) with respect to the distribution. |
| median (c, loc $=0$, scale $=1$) | Median of the distribution. |
| mean (c, loc=0, scale=1) | Mean of the distribution. |
| $\operatorname{var}(\mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Variance of the distribution. |
| $\operatorname{std}(\mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Standard deviation of the distribution. |
| interval(alpha, $\mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Endpoints of the range that contains alpha percent of the distribution |

scipy.stats.wrapcauchy
A wrapped Cauchy continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
q: array_like
lower or upper tail probability
c : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' = (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a "frozen" continuous RV object: :
rv $=$ wrapcauchy $(c, \operatorname{loc}=0$, scale $=1)$:

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

The probability density function for wrapcauchy is:

```
wrapcauchy.pdf(x, c) = (1-c**2) / (2*pi*(1+c**2-2*c* cos (x)))
```

for $0<=\mathrm{x}<=2 \star \mathrm{pi}, 0<\mathrm{c}<1$.

Examples

```
>>> from scipy.stats import wrapcauchy
>>> numargs = wrapcauchy.numargs
>>> [ c ] = [0.9,] * numargs
>>> rv = wrapcauchy(c)
```

Display frozen pdf
$\ggg x=n p . l i n s p a c e(0, n p . m i n i m u m(r v . d i s t . b, 3))$
>>> h = plt.plot(x, rv.pdf(x))

Check accuracy of cdf and ppf
>>> prb = wrapcauchy.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - wrapcauchy.ppf(prb, c)) + 1e-20)
Random number generation

```
>>> R = wrapcauchy.rvs(c, size=100)
```


Methods

| rvs(c, loc=0, scale=1, size=1) | Random variates. |
| :---: | :---: |
| $\operatorname{pdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale=1) | Probability density function. |
| $\operatorname{logpdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0, \mathrm{scale}=1)$ | Log of the probability density function. |
| $\operatorname{cdf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale=1) | Cumulative density function. |
| $\operatorname{logcdf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1$) | Log of the cumulative density function. |
| $\operatorname{sf}(\mathrm{x}, \mathrm{c}, \mathrm{loc}=0$, scale $=1)$ | Survival function (1-cdf - sometimes more accurate). |
| $\operatorname{logsf}(\mathrm{x}, \mathrm{c}, \operatorname{loc}=0$, scale $=1)$ | Log of the survival function. |
| $\operatorname{ppf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0$, scale $=1)$ | Percent point function (inverse of cdf percentiles). |
| $\operatorname{isf}(\mathrm{q}, \mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Inverse survival function (inverse of sf). |
| moment($\mathrm{n}, \mathrm{c}, \mathrm{loc}=0$, scale=1) | Non-central moment of order n |
| stats($\mathrm{c}, \mathrm{loc}=0$, scale $=1$, moments='mv') | Mean('m'), variance(' v '), skew('s'), and/or kurtosis(' k '). |
| entropy(c, loc=0, scale $=1$) | (Differential) entropy of the RV. |
| fit(data, c, loc $=0$, scale $=1$) | Parameter estimates for generic data. |
| $\operatorname{expect}($ func, $\mathrm{c}, \mathrm{loc}=0$, scale $=1, \mathrm{lb}=$ None, $\mathrm{ub}=$ None, conditional=False, ${ }^{* *}$ kwds) | Expected value of a function (of one argument) with respect to the distribution. |
| median ($\mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Median of the distribution. |
| mean (c, loc $=0$, scale $=1$) | Mean of the distribution. |
| $\operatorname{var}(\mathrm{c}, \mathrm{loc}=0$, scale=1) | Variance of the distribution. |
| $\operatorname{std}(\mathrm{c}, \mathrm{loc}=0$, scale=1) | Standard deviation of the distribution. |
| interval(alpha, $\mathrm{c}, \mathrm{loc}=0$, scale $=1$) | Endpoints of the range that contains alpha percent of the distribution |

scipy.stats.ksone
General Kolmogorov-Smirnov one-sided test.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

\mathbf{x} : array_like
quantiles
q: array_like
lower or upper tail probability
n : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' = (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')
Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a "frozen" continuous RV object: :
rv $=k s o n e(n$, loc $=0$, scale $=1)$:

- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Examples :

\qquad
:
>>> from scipy.stats import ksone :
>>> numargs = ksone.numargs :
$\ggg[\mathrm{n}]=[0.9$,$] * numargs :$
>> rv = ksone(n) :
Display frozen pdf :
$\ggg x=$ np.linspace(0, np.minimum(rv.dist.b, 3)) :
>>> h = plt.plot(x, rv.pdf(x)) :
Check accuracy of cdf and ppf :
>>> prb = ksone.cdf(\mathbf{x}, n) :
>>> h = plt.semilogy(np.abs(x - ksone.ppf(prb, n)) + 1e-20) :
Random number generation :
\ggg R $=\operatorname{ksone} . r v s(n$, size=100) :

Methods

| $\operatorname{rvs}(\mathrm{n}, \mathrm{loc}=0, \text { scale }=1, \text { size }=1)$ $\operatorname{pdf}(x, n, l o c=0, \text { scale }=1)$ | Random variates. Probability density function. |
| :---: | :---: |
| $\operatorname{logpdf}(\mathrm{x}, \mathrm{n}, \mathrm{loc}=0$, scale $=1)$ | Log of the probability density function. |
| $\operatorname{cdf}(\mathrm{x}, \mathrm{n}, \mathrm{loc}=0, \mathrm{scale}=1)$ | Cumulative density function. |
| $\operatorname{logcdf}(\mathrm{x}, \mathrm{n}, \operatorname{loc}=0$, scale $=1$) | Log of the cumulative density function. |
| $\operatorname{sf}(\mathrm{x}, \mathrm{n}, \mathrm{loc}=0$, scale $=1)$ | Survival function (1-cdf - sometimes more accurate). |
| $\operatorname{logsf}(\mathrm{x}, \mathrm{n}, \operatorname{loc}=0$, scale $=1)$ | Log of the survival function. |
| $\operatorname{ppf}(\mathrm{q}, \mathrm{n}, \mathrm{loc}=0$, scale $=1)$ | Percent point function (inverse of cdf percentiles). |
| $\operatorname{isf}(\mathrm{q}, \mathrm{n}, \mathrm{loc}=0$, scale $=1)$ | Inverse survival function (inverse of sf). |
| $\operatorname{moment}(\mathrm{n}, \mathrm{n}, \mathrm{loc}=0$, scale$=1)$ | Non-central moment of order n |
| stats($\mathrm{n}, \mathrm{loc}=0$, scale $=1$, moments='mv') | Mean('m'), variance(' v '), skew('s'), and/or kurtosis('k'). |
| entropy $(\mathrm{n}, \mathrm{loc}=0$, scale $=1$) | (Differential) entropy of the RV. |
| fit(data, $\mathrm{n}, \mathrm{loc}=0$, scale $=1$) | Parameter estimates for generic data. |
| expect(func, $\mathrm{n}, \mathrm{loc}=0$, scale $=1, \mathrm{lb}=$ None, $\mathrm{ub}=$ None, conditional=False, ${ }^{* *}$ kwds) | Expected value of a function (of one argument) with respect to the distribution. |
| median($\mathrm{n}, \mathrm{loc}=0$, scale $=1$) | Median of the distribution. |
| mean($\mathrm{n}, \mathrm{loc}=0$, scale $=1$) | Mean of the distribution. |
| $\operatorname{var}(\mathrm{n}, \mathrm{loc}=0$, scale=1) | Variance of the distribution. |
| $\operatorname{std}(\mathrm{n}, \mathrm{loc}=0$, scale $=1$) | Standard deviation of the distribution. |
| interval(alpha, $\mathrm{n}, \mathrm{loc}=0$, scale $=1$) | Endpoints of the range that contains alpha percent of the distribution |

scipy.stats.kstwobign
Kolmogorov-Smirnov two-sided test for large N .
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters

$$
\mathbf{x}: \text { array_like }
$$

quantiles
q: array_like
lower or upper tail probability
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' = variance, ' s ' $=$ (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

```
rv = kstwobign(loc=0, scale=1) : fixed.
```


Examples :

\qquad

``` - :
>>> from scipy.stats import kstwobign :
>>> numargs \(=\) kstwobign.numargs :
\(\ggg[\) ] \(=[0.9\),\(] * numargs :\)
>> rv = kstwobign() :
Display frozen pdf :
```

Alternatively, the object may be called (as a function) to fix the shape, :
location, and scale parameters returning a "frozen" continuous RV object: :

- Frozen RV object with the same methods but holding the given shape, location, and scale

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3)) :
>>> h = plt.plot(x, rv.pdf(x)) :
```

Check accuracy of cdf and ppf :
>>> prb = kstwobign.cdf(x,) :
>>> h = plt.semilogy(np.abs(x - kstwobign.ppf(prb,)) + 1e-20) :

Random number generation :

\ggg R $=$ kstwobign.rvs(size=100) :

Methods

rvs(loc=0, scale=1, size=1)	Random variates.
$\operatorname{pdf}(\mathrm{x}, \mathrm{loc}=0$, scale $=1$)	Probability density function.
$\operatorname{logpdf}(\mathrm{x}, \operatorname{loc}=0$, scale $=1$)	Log of the probability density function.
$\operatorname{cdf}(\mathrm{x}, \mathrm{loc}=0$, scale=1)	Cumulative density function.
$\operatorname{logcdf}(\mathrm{x}, \operatorname{loc}=0$, scale $=1$)	Log of the cumulative density function.
$\operatorname{sf}(\mathrm{x}, \mathrm{loc}=0$, scale $=1$)	Survival function (1-cdf - sometimes more accurate).
$\operatorname{logsf}(\mathrm{x}, \mathrm{loc}=0$, scale $=1)$	Log of the survival function.
$\operatorname{ppf}(\mathrm{q}, \mathrm{loc}=0$, scale $=1)$	Percent point function (inverse of cdf - percentiles).
$\operatorname{isf}(\mathrm{q}, \mathrm{loc}=0$, scale $=1$)	Inverse survival function (inverse of sf).
moment($\mathrm{n}, \mathrm{loc}=0$, scale=1)	Non-central moment of order n
stats ($\mathrm{loc}=0$, scale $=1$, moments='mv')	Mean('m'), variance(' v '), skew('s'), and/or kurtosis(' k ').
entropy $(\mathrm{loc}=0$, scale $=1$)	(Differential) entropy of the RV.
fit(data, loc $=0$, scale $=1$)	Parameter estimates for generic data.
expect(func, loc $=0$, scale $=1, l b=$ None, $u b=$ None, conditional=False, **kwds)	Expected value of a function (of one argument) with respect to the distribution.
median (loc $=0$, scale $=1$)	Median of the distribution.
mean($\mathrm{loc}=0$, scale $=1$)	Mean of the distribution.
$\operatorname{var}(\mathrm{loc}=0$, scale $=1$)	Variance of the distribution.
$\operatorname{std}(\mathrm{loc}=0$, scale $=1$)	Standard deviation of the distribution.
interval(alpha, loc=0, scale=1)	Endpoints of the range that contains alpha percent of the distribution

3.19.2 Discrete distributions

binom	A binom discrete random variable.
bernoulli	A bernoulli discrete random variable.
nbinom	A negative binomial discrete random variable.
geom	A geometric discrete random variable.
hypergeom	A hypergeometric discrete random variable.
logser	A logarithmic discrete random variable.
poisson	A Poisson discrete random variable.
planck	A discrete exponential discrete random variable.
boltzmann	A truncated discrete exponential discrete random variable.
randint	A discrete uniform (random integer) discrete random variable.
zipf	A Zipf discrete random variable.
dlaplace	A discrete Laplacian discrete random variable.
scipy.stats.binom	

scipy.stats.binom
A binom discrete random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below: $\operatorname{rvs}(\mathrm{n}, \mathrm{pr}, \mathrm{loc}=0$, size $=1$)

Random variates.

$\operatorname{pmf}(x, n, p r, l o c=0)$

Probability mass function.

$\operatorname{logpmf}(\mathbf{x}, \mathbf{n}, \mathrm{pr}, \mathbf{l o c}=\mathbf{0})$

Log of the probability mass function.
$\operatorname{cdf}(\mathrm{x}, \mathrm{n}, \mathrm{pr}, \operatorname{loc}=0)$
Cumulative density function.

$\operatorname{logcdf}(x, n, p r, l o c=0)$

Log of the cumulative density function.
$\operatorname{sf}(\mathbf{x}, \mathrm{n}, \mathrm{pr}, \mathrm{loc}=\mathbf{0})$
Survival function (1-cdf - sometimes more accurate).
$\operatorname{logsf}(\mathrm{x}, \mathrm{n}, \mathrm{pr}, \operatorname{loc}=0)$
Log of the survival function.
$\operatorname{ppf}(\mathbf{q}, \mathbf{n}, \operatorname{pr}, \operatorname{loc}=\mathbf{0})$
Percent point function (inverse of cdf - percentiles).
$\operatorname{isf}(\mathbf{q}, \mathrm{n}, \mathrm{pr}, \operatorname{loc}=0)$
Inverse survival function (inverse of sf).
stats(n, pr, loc=0, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis(' k ').
entropy(n, pr, loc=0)
(Differential) entropy of the RV.
fit(data, $n, p r, l o c=0)$
Parameter estimates for generic data.
$\operatorname{expect}(f u n c, \mathbf{n}, \mathbf{p r}, \mathrm{loc}=\mathbf{0}, \mathrm{lb}=$ None, $\mathbf{u b}=$ None, conditional=False)
Expected value of a function (of one argument) with respect to the distribution.
median($\mathbf{n}, \mathrm{pr}, \operatorname{loc}=\mathbf{0}$)
Median of the distribution.
$\operatorname{mean}(\mathbf{n}, \mathrm{pr}, \mathrm{loc}=\mathbf{0})$
Mean of the distribution.
$\operatorname{var}(\mathbf{n}, \mathrm{pr}, \mathrm{loc}=\mathbf{0})$
Variance of the distribution.

$\mathbf{s t d}(\mathbf{n}, \mathbf{p r}, \mathbf{l o c}=\mathbf{0})$

Standard deviation of the distribution.
interval(alpha, $\mathbf{n}, \mathbf{p r}, \mathbf{l o c}=\mathbf{0}$)
Endpoints of the range that contains alpha percent of the distribution

Parameters

\mathbf{x} : array_like
quantiles
q : array_like
lower or upper tail probability
n, pr : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, $' \mathrm{~s}$ ' $=$ (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')
Alternatively, the object may be called (as a function) to fix the shape and :
location parameters returning a "frozen" discrete RV object: :
$\mathbf{r v}=\boldsymbol{b i n o m}(\mathbf{n}, \mathbf{p r}, \mathbf{l o c = 0})$:

- Frozen RV object with the same methods but holding the given shape and location fixed.

Notes

Binomial distribution
Counts the number of successes in n independent trials when the probability of success each time is $p r$.
binom.pmf(k,n,p) $=$ choose $(\mathrm{n}, \mathrm{k})^{*} \mathrm{p}^{* *} \mathrm{k}^{*}(1-\mathrm{p})^{* *}(\mathrm{n}-\mathrm{k})$ for k in $\{0,1, \ldots, \mathrm{n}\}$

Examples

```
>>> from scipy.stats import binom
>>> numargs = binom.numargs
>>> [ n, pr ] = Replace with reasonable value * numargs
>>> rv = binom(n, pr)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = binom.cdf(x, n, pr)
>>> h = plt.semilogy(np.abs(x - binom.ppf(prb, n, pr)) + le-20)
```

Random number generation

```
>>> R = binom.rvs(n, pr, size=100)
```

scipy.stats.bernoulli
A bernoulli discrete random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below: $\mathrm{rvs}(\mathrm{pr}, \mathrm{loc}=0$, size $=1$)

Random variates.

$\operatorname{pmf}(x, \operatorname{pr}, l o c=0)$

Probability mass function.
$\log \mathrm{mf}(\mathrm{x}, \mathrm{pr}, \operatorname{loc}=0)$
Log of the probability mass function.
$\operatorname{cdf}(x, p r, l o c=0)$
Cumulative density function.
$\operatorname{logcdf}(\mathrm{x}, \mathrm{pr}, \operatorname{loc}=0)$
Log of the cumulative density function.
$\mathbf{s f}(\mathrm{x}, \mathrm{pr}, \mathbf{l o c}=\mathbf{0})$
Survival function (1-cdf - sometimes more accurate).
$\operatorname{logsf}(x, p r, \operatorname{loc}=0)$
Log of the survival function.
$\operatorname{ppf}(\mathbf{q}, \mathbf{p r}, \mathbf{l o c}=\mathbf{0})$
Percent point function (inverse of cdf — percentiles).

isf(q, pr, loc=0)

Inverse survival function (inverse of sf).
stats(pr, loc=0, moments='mv')
Mean('m'), variance('v'), skew(' s '), and/or kurtosis(' k ').
entropy (pr, loc=0)
(Differential) entropy of the RV.
fit(data, $p r, l o c=0$)
Parameter estimates for generic data.
$\operatorname{expect}(f u n c, p r, l o c=0, l b=N o n e, ~ u b=N o n e$, conditional=False)
Expected value of a function (of one argument) with respect to the distribution.
median(pr, loc=0)
Median of the distribution.
$\operatorname{mean}(\mathrm{pr}, \mathrm{loc}=0)$
Mean of the distribution.
$\operatorname{var}(\mathrm{pr}, \operatorname{loc}=0)$
Variance of the distribution.
$\operatorname{std}(\mathrm{pr}, \mathrm{loc}=\mathbf{0})$
Standard deviation of the distribution.
interval(alpha, pr, loc=0)
Endpoints of the range that contains alpha percent of the distribution
Parameters
\mathbf{x} : array_like
quantiles
q: array_like
lower or upper tail probability
pr : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' $=($ Fisher's) skew and 'k' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape and :

location parameters returning a "frozen" discrete RV object: :

$\mathbf{r v}=$ bernoulli(pr, loc=0) :

- Frozen RV object with the same methods but holding the given shape and location fixed.

Notes

Bernoulli distribution
1 if binary experiment succeeds, 0 otherwise. Experiment succeeds with probabilty $p r$.
bernoulli.pmf($k, p)=1-p$ if $k=0$

$$
=\mathrm{p} \text { if } \mathrm{k}=1
$$

for $\mathrm{k}=0,1$

Examples

```
>>> from scipy.stats import bernoulli
>>> numargs = bernoulli.numargs
>>> [ pr ] = Replace with reasonable value * numargs
>>> rv = bernoulli(pr)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = bernoulli.cdf(x, pr)
>>> h = plt.semilogy(np.abs(x - bernoulli.ppf(prb, pr)) + 1e-20)
```

Random number generation

```
>>> R = bernoulli.rvs(pr, size=100)
```

scipy.stats.nbinom
A negative binomial discrete random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below: $\operatorname{rvs}(\mathrm{n}, \mathrm{pr}, \mathrm{loc}=0$, size $=1)$

Random variates.

$\operatorname{pmf}(\mathbf{x}, \mathbf{n}, \mathrm{pr}, \mathrm{loc}=\mathbf{0})$

Probability mass function.
$\log \operatorname{mf}(\mathbf{x}, \mathrm{n}, \mathrm{pr}, \operatorname{loc}=\mathbf{0})$
Log of the probability mass function.
$\operatorname{cdf}(x, n, p r, l o c=0)$
Cumulative density function.
$\operatorname{logcdf}(x, n, p r, l o c=0)$
Log of the cumulative density function.
$\mathbf{s f}(\mathrm{x}, \mathrm{n}, \mathrm{pr}, \operatorname{loc}=\mathbf{0})$
Survival function (1-cdf - sometimes more accurate).
$\operatorname{logsf}(x, n, p r, \operatorname{loc}=0)$
Log of the survival function.

$\operatorname{ppf}(\mathbf{q}, \mathbf{n}, \operatorname{pr}, \operatorname{loc}=0)$

Percent point function (inverse of cdf - percentiles).
$\operatorname{isf}(\mathbf{q}, \mathrm{n}, \mathrm{pr}, \operatorname{loc}=\mathbf{0})$
Inverse survival function (inverse of sf).
stats(n, pr, loc=0, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis(' k ').
entropy(n, pr, loc=0)
(Differential) entropy of the RV.
fit(data, $n, p r, l o c=0)$
Parameter estimates for generic data.
$\operatorname{expect}(f u n c, \mathbf{n}, \mathrm{pr}, \mathrm{loc}=\mathbf{0}, \mathrm{lb}=\mathrm{None}, \mathrm{ub}=$ None, conditional=False)
Expected value of a function (of one argument) with respect to the distribution.
median(n, pr, loc=0)
Median of the distribution.
$\operatorname{mean}(\mathrm{n}, \mathrm{pr}, \operatorname{loc}=0)$
Mean of the distribution.
$\operatorname{var}(\mathrm{n}, \mathrm{pr}, \operatorname{loc}=0)$
Variance of the distribution.
$\operatorname{std}(\mathrm{n}, \mathrm{pr}, \mathrm{loc}=\mathbf{0})$
Standard deviation of the distribution.

interval(alpha, n, pr, loc=0)

Endpoints of the range that contains alpha percent of the distribution

Parameters

\mathbf{x} : array_like
quantiles
q: array_like
lower or upper tail probability
n, pr : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' = variance, ' s ' $=($ Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape and :

location parameters returning a "frozen" discrete RV object: :

$\mathbf{r v}=\operatorname{nbinom}(\mathbf{n}, \mathrm{pr}, \operatorname{loc}=0)$:

- Frozen RV object with the same methods but holding the given shape and location fixed.

Notes

Probability mass function, given by $n p$. choose $(k+n-1, n-1) * p * * n *(1-p) * * k$ for $k>=0$.
Examples

```
>>> from scipy.stats import nbinom
>>> numargs = nbinom.numargs
>>> [ n, pr ] = Replace with reasonable value * numargs
>>> rv = nbinom(n, pr)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = nbinom.cdf(x, n, pr)
>>> h = plt.semilogy(np.abs(x - nbinom.ppf(prb, n, pr)) + 1e-20)
```

Random number generation
$\ggg R=$ nbinom.rvs(n, pr, size=100)
scipy.stats.geom
A geometric discrete random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below: $\mathrm{rvs}(\mathrm{pr}, \mathrm{loc}=0$, size $=1$)

Random variates.
$\operatorname{pmf}(x, \operatorname{pr}, l o c=0)$
Probability mass function.

$\log \mathrm{mf}(\mathrm{x}, \mathrm{pr}, \operatorname{loc}=0)$

Log of the probability mass function.
$\operatorname{cdf}(\mathrm{x}, \mathrm{pr}, \mathrm{loc}=0)$
Cumulative density function.

$\operatorname{logcdf}(\mathrm{x}, \mathrm{pr}, \operatorname{loc}=0)$

Log of the cumulative density function.
$\mathbf{s f}(\mathbf{x}, \mathrm{pr}, \mathrm{loc}=\mathbf{0})$
Survival function (1-cdf - sometimes more accurate).
$\operatorname{logsf}(x, p r, \operatorname{loc}=0)$
Log of the survival function.
$\operatorname{ppf}(\mathbf{q}, \mathrm{pr}, \operatorname{loc}=\mathbf{0})$
Percent point function (inverse of cdf — percentiles).
isf($\mathbf{q}, \mathrm{pr}, \operatorname{loc}=0$)
Inverse survival function (inverse of sf).
stats($\mathbf{p r}, \mathbf{l o c}=\mathbf{0}$, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis(' k ').
entropy (pr, loc=0)
(Differential) entropy of the RV.
fit(data, $\mathrm{pr}, \mathrm{loc}=\mathbf{0}$)
Parameter estimates for generic data.
$\operatorname{expect}(f u n c, ~ p r, l o c=0, l b=N o n e, ~ u b=N o n e, ~ c o n d i t i o n a l=F a l s e) ~$
Expected value of a function (of one argument) with respect to the distribution.

```
median(pr, loc=0)
    Median of the distribution.
mean(pr, loc=0)
    Mean of the distribution.
var(pr, loc=0)
    Variance of the distribution.
std(pr, loc=0)
    Standard deviation of the distribution.
interval(alpha, pr, loc=0)
    Endpoints of the range that contains alpha percent of the distribution
```


Parameters

```
\(\mathbf{x}\) : array_like
quantiles
q : array_like
lower or upper tail probability
pr : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where 'm' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' \(=\) (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')
```

Alternatively, the object may be called (as a function) to fix the shape and :
location parameters returning a "frozen" discrete RV object: :
$\mathbf{r v}=\operatorname{geom}(\mathrm{pr}, \operatorname{loc}=0):$

- Frozen RV object with the same methods but holding the given shape and location fixed.

Notes

Geometric distribution
geom.pmf $(\mathrm{k}, \mathrm{p})=(1-\mathrm{p})^{* *}(\mathrm{k}-1)^{*} \mathrm{p}$ for $\mathrm{k}>=1$

Examples

```
>>> from scipy.stats import geom
>>> numargs = geom.numargs
>>> [ pr ] = Replace with reasonable value * numargs
>>> rv = geom(pr)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = geom.cdf(x, pr)
>>> h = plt.semilogy(np.abs(x - geom.ppf(prb, pr)) + 1e-20)
```

Random number generation

```
>>> R = geom.rvs(pr, size=100)
```


scipy.stats.hypergeom

A hypergeometric discrete random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below: rvs(M, $\mathrm{n}, \mathrm{N}, \mathrm{loc}=0$, size $=1$)

Random variates.
$\operatorname{pmf}(x, M, \mathbf{n}, \mathbf{N}, l o c=0)$
Probability mass function.
$\operatorname{logpmf}(\mathbf{x}, \mathbf{M}, \mathbf{n}, \mathbf{N}, \operatorname{loc}=\mathbf{0})$
Log of the probability mass function.
$\operatorname{cdf}(\mathbf{x}, \mathrm{M}, \mathrm{n}, \mathrm{N}, \operatorname{loc}=\mathbf{0})$
Cumulative density function.

$\operatorname{logcdf}(\mathbf{x}, \mathbf{M}, \mathbf{n}, \mathbf{N}, \operatorname{loc}=\mathbf{0})$

Log of the cumulative density function.
$\mathbf{s f}(\mathbf{x}, \mathbf{M}, \mathbf{n}, \mathbf{N}, \mathbf{l o c}=\mathbf{0})$
Survival function (1-cdf - sometimes more accurate).
$\operatorname{logsf}(\mathbf{x}, \mathbf{M}, \mathbf{n}, \mathbf{N}, \operatorname{loc}=\mathbf{0})$
Log of the survival function.
$\operatorname{ppf}(\mathbf{q}, \mathrm{M}, \mathbf{n}, \mathrm{N}, \operatorname{loc}=0)$
Percent point function (inverse of cdf - percentiles).
$\operatorname{isf}(\mathbf{q}, \mathbf{M}, \mathbf{n}, \mathbf{N}, \operatorname{loc}=\mathbf{0})$
Inverse survival function (inverse of sf).
stats(M, n, N, loc=0, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis(' k ').
entropy($M, \mathbf{n}, \mathbf{N}, \operatorname{loc}=0$)
(Differential) entropy of the RV.
fit(data, $\mathbf{M}, \mathbf{n}, \mathbf{N}, \operatorname{loc}=\mathbf{0}$)
Parameter estimates for generic data.
$\operatorname{expect}(f u n c, M, \mathbf{n}, \mathbf{N}, \mathbf{l o c}=\mathbf{0}, \mathbf{l b}=$ None, $\mathbf{u b}=$ None, conditional=False)
Expected value of a function (of one argument) with respect to the distribution.
$\operatorname{median}(\mathbf{M}, \mathbf{n}, \mathbf{N}, \operatorname{loc}=\mathbf{0})$
Median of the distribution.
$\operatorname{mean}(M, \mathbf{n}, \mathrm{~N}, \operatorname{loc}=\mathbf{0})$
Mean of the distribution.
$\operatorname{var}(\mathbf{M}, \mathbf{n}, \mathbf{N}, \operatorname{loc}=\mathbf{0})$
Variance of the distribution.
$\boldsymbol{s t d}(\mathbf{M}, \mathbf{n}, \mathbf{N}, \mathbf{l o c}=\mathbf{0})$
Standard deviation of the distribution.
interval(alpha, $\mathbf{M}, \mathbf{n}, \mathbf{N}, \mathbf{l o c}=\mathbf{0}$)
Endpoints of the range that contains alpha percent of the distribution
Parameters
\mathbf{x} : array_like
quantiles
q: array_like
lower or upper tail probability
$\mathbf{M}, \mathbf{n}, \mathbf{N}$: array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where 'm' $=$ mean, ' v ' $=$ variance, ' s ' $=$ (Fisher's) skew and 'k' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape and :
location parameters returning a "frozen" discrete RV object: :
$\mathbf{r v}=\operatorname{hypergeom}(\mathbf{M}, \mathbf{n}, \mathbf{N}, \mathbf{l o c}=\mathbf{0})$:

- Frozen RV object with the same methods but holding the given shape and location fixed.

Notes

Hypergeometric distribution
Models drawing objects from a bin. M is total number of objects, n is total number of Type I objects. RV counts number of Type I objects in N drawn without replacement from population.
hypergeom.pmf(k, M, n, N) $=\operatorname{choose}(\mathrm{n}, \mathrm{k})^{*} \operatorname{choose}(\mathrm{M}-\mathrm{n}, \mathrm{N}-\mathrm{k}) / \operatorname{choose}(\mathrm{M}, \mathrm{N})$ for $\mathrm{N}-(\mathrm{M}-\mathrm{n})<=\mathrm{k}<=$ $\min (m, N)$

Examples

```
>>> from scipy.stats import hypergeom
>>> numargs = hypergeom.numargs
>>> [ M, n, N ] = Replace with reasonable value * numargs
>>> rv = hypergeom(M, n, N)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = hypergeom.cdf(x, M, n, N)
>>> h = plt.semilogy(np.abs(x - hypergeom.ppf(prb, M, n, N)) + le-20)
```

Random number generation
>>> R = hypergeom.rvs (M, n, N, size=100)
scipy.stats.logser
A logarithmic discrete random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below: $\mathrm{rvs}(\mathrm{pr}, \mathrm{loc}=0$, size $=1)$

Random variates.
$\operatorname{pmf}(x, \operatorname{pr}, l o c=0)$
Probability mass function.
$\log \mathrm{mf}(\mathrm{x}, \mathrm{pr}, \operatorname{loc}=0)$
Log of the probability mass function.
$\operatorname{cdf}(\mathrm{x}, \mathrm{pr}, \mathrm{loc}=0)$
Cumulative density function.
$\operatorname{logcdf}(x, p r, \operatorname{loc}=0)$
Log of the cumulative density function.
$\mathbf{s f}(\mathrm{x}, \mathrm{pr}, \mathrm{loc}=0)$
Survival function (1-cdf - sometimes more accurate).
$\operatorname{logsf}(x, p r, \operatorname{loc}=0)$
Log of the survival function.
$\operatorname{ppf}(q, p r, \operatorname{loc}=0)$
Percent point function (inverse of cdf — percentiles).
$\operatorname{isf}(\mathbf{q}, \mathrm{pr}, \operatorname{loc}=0)$
Inverse survival function (inverse of sf).
stats($\mathbf{p r}, \mathbf{l o c}=\mathbf{0}$, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis(' k ').
entropy (pr, loc=0)
(Differential) entropy of the RV.
fit(data, $\mathrm{pr}, \mathrm{loc}=\mathbf{0}$)
Parameter estimates for generic data.
$\operatorname{expect}($ func, $\mathrm{pr}, \mathrm{loc}=\mathbf{0}, \mathrm{lb}=$ None, $\mathrm{ub}=$ None, conditional=False)
Expected value of a function (of one argument) with respect to the distribution.

```
median(pr, loc=0)
    Median of the distribution.
mean(pr, loc=0)
    Mean of the distribution.
var(pr, loc=0)
    Variance of the distribution.
std(pr, loc=0)
    Standard deviation of the distribution.
interval(alpha, pr, loc=0)
    Endpoints of the range that contains alpha percent of the distribution
```


Parameters

```
\(\mathbf{x}\) : array_like
quantiles
q : array_like
lower or upper tail probability
pr : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where 'm' \(=\) mean, ' \(v\) ' \(=\) variance, ' \(s\) ' \(=\) (Fisher's) skew and ' \(k\) ' \(=\) (Fisher's) kurtosis. (default='mv')
```

Alternatively, the object may be called (as a function) to fix the shape and :
location parameters returning a "frozen" discrete RV object: :
$\mathbf{r v}=\operatorname{logser}(\mathrm{pr}, \operatorname{loc}=\mathbf{0}):$

- Frozen RV object with the same methods but holding the given shape and location fixed.

Notes

Logarithmic (Log-Series, Series) distribution
$\operatorname{logser} \cdot \operatorname{pmf}(\mathrm{k}, \mathrm{p})=-\mathrm{p}^{* *} \mathrm{k} /(\mathrm{k} * \log (1-\mathrm{p}))$ for $\mathrm{k}>=1$

Examples

```
>>> from scipy.stats import logser
>>> numargs = logser.numargs
>>> [ pr ] = Replace with reasonable value * numargs
>>> rv = logser(pr)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = logser.cdf(x, pr)
>>> h = plt.semilogy(np.abs(x - logser.ppf(prb, pr)) + 1e-20)
```

Random number generation

```
>>> R = logser.rvs(pr, size=100)
```

scipy.stats.poisson

A Poisson discrete random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below: rvs $(\mathrm{mu}, \mathrm{loc}=0$, size $=1)$

Random variates.
$\operatorname{pmf}(x, \operatorname{mu}, \operatorname{loc}=\mathbf{0})$
Probability mass function.
$\operatorname{logpmf}(\mathrm{x}, \mathrm{mu}, \operatorname{loc}=0)$
Log of the probability mass function.
$\operatorname{cdf}(\mathbf{x}, \mathbf{m u}, \operatorname{loc}=\mathbf{0})$
Cumulative density function.

$\log \mathrm{cdf}(\mathrm{x}, \mathrm{mu}, \operatorname{loc}=\mathbf{0})$

Log of the cumulative density function.
$\mathbf{s f}(\mathbf{x}, \mathbf{m u}, \mathbf{l o c}=\mathbf{0})$
Survival function (1-cdf - sometimes more accurate).
$\operatorname{logsf}(x, m u, l o c=0)$
Log of the survival function.
$\operatorname{ppf}(q, \mathbf{m u}, \operatorname{loc}=0)$
Percent point function (inverse of cdf - percentiles).
$\operatorname{isf}(q, m u, l o c=0)$
Inverse survival function (inverse of sf).

stats(mu, loc=0, moments='mv')

Mean('m'), variance('v'), skew('s'), and/or kurtosis(' k ').
entropy (mu, loc=0)
(Differential) entropy of the RV.
fit(data, $\mathbf{m u}, l o c=0)$
Parameter estimates for generic data.
$\operatorname{expect}($ func, $\mathrm{mu}, \mathrm{loc}=0, \mathrm{lb}=$ None, $\mathrm{ub}=$ None, conditional=False)
Expected value of a function (of one argument) with respect to the distribution.
$\operatorname{median}(\mathbf{m u}, l o c=0)$
Median of the distribution.
$\operatorname{mean}(\mathrm{mu}, \operatorname{loc}=0)$
Mean of the distribution.
$\operatorname{var}(\mathbf{m u}, \operatorname{loc}=\mathbf{0})$
Variance of the distribution.
$\boldsymbol{\operatorname { s t d }}(\mathbf{m u}, \mathbf{l o c}=\mathbf{0})$
Standard deviation of the distribution.
interval(alpha, mu, loc=0)
Endpoints of the range that contains alpha percent of the distribution
Parameters
\mathbf{x} : array_like
quantiles
q: array_like
lower or upper tail probability
mu : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where 'm' $=$ mean, ' v ' = variance, ' s ' $=$ (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape and :

 location parameters returning a "frozen" discrete RV object: :rv $=\operatorname{poisson}(\mathbf{m u}, \operatorname{loc}=\mathbf{0}):$

- Frozen RV object with the same methods but holding the given shape and location fixed.

Notes

Poisson distribution
poisson. $. \operatorname{pmf}(\mathrm{k}, \mathrm{mu})=\exp (-\mathrm{mu}) * m u^{* *} \mathrm{k} / \mathrm{k}$! for $\mathrm{k}>=0$

Examples

```
>>> from scipy.stats import poisson
>>> numargs = poisson.numargs
>>> [ mu ] = Replace with reasonable value * numargs
>>> rv = poisson(mu)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = poisson.cdf(x, mu)
>>> h = plt.semilogy(np.abs(x - poisson.ppf(prb, mu)) + 1e-20)
```

Random number generation

```
>>> R = poisson.rvs(mu, size=100)
```

scipy.stats.planck
A discrete exponential discrete random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below: rvs(lamda, loc=0, size=1)

Random variates.

$\operatorname{pmf}(\mathbf{x}$, lamda, loc=0)

Probability mass function.
$\log p m f(\mathbf{x}, \operatorname{lamda}, \operatorname{loc}=\mathbf{0})$
Log of the probability mass function.
$\mathbf{c d f}(\mathbf{x}$, lamda, loc=0)
Cumulative density function.
$\operatorname{logcdf}(x, \operatorname{lamda}, \operatorname{loc}=0)$
\log of the cumulative density function.
$\mathbf{s f}(\mathrm{x}$, lamda, loc=0)
Survival function (1-cdf - sometimes more accurate).
$\operatorname{logsf}(x, \operatorname{lamda}, \operatorname{loc}=0)$
Log of the survival function.
$\operatorname{ppf}(q$, lamda, loc=0)
Percent point function (inverse of cdf - percentiles).
$\operatorname{isf}(q$, lamda, loc=0)
Inverse survival function (inverse of sf).
stats(lamda, loc=0, moments='mv')
Mean('m'), variance('v’), skew('s'), and/or kurtosis(' k ').
entropy(lamda, loc=0)
(Differential) entropy of the RV.
fit(data, lamda, loc=0)
Parameter estimates for generic data.
expect(func, lamda, loc=0, $\mathbf{l b}=$ None, $\mathbf{u b}=$ None, conditional=False)
Expected value of a function (of one argument) with respect to the distribution.
median(lamda, loc=0)
Median of the distribution.
mean(lamda, loc=0)
Mean of the distribution.

```
var(lamda, loc=0)
    Variance of the distribution.
std(lamda, loc=0)
    Standard deviation of the distribution.
interval(alpha, lamda, loc=0)
    Endpoints of the range that contains alpha percent of the distribution
    Parameters
        x : array_like
        quantiles
        q: array_like
            lower or upper tail probability
        lamda : array_like
        shape parameters
        loc : array_like, optional
        location parameter (default=0)
        scale : array_like, optional
        scale parameter (default=1)
        size : int or tuple of ints, optional
        shape of random variates (default computed from input arguments )
        moments : str, optional
        composed of letters ['mvsk'] specifying which moments to compute where 'm'
        = mean, 'v' = variance, 's' = (Fisher's) skew and ' }k\mathrm{ ' = (Fisher's) kurtosis. (de-
        fault='mv')
```

 Alternatively, the object may be called (as a function) to fix the shape and :
 location parameters returning a "frozen" discrete RV object: :
 rv = planck(lamda, loc=0) :
 - Frozen RV object with the same methods but holding the given shape and location fixed.

Notes

Planck (Discrete Exponential)
planck.pmf(k,b) $=(1-\exp (-b)) * \exp (-b * k)$ for $k * b>=0$

Examples

```
>>> from scipy.stats import planck
>>> numargs = planck.numargs
>>> [ lamda ] = Replace with reasonable value * numargs
>>> rv = planck(lamda)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = planck.cdf(x, lamda)
>>> h = plt.semilogy(np.abs(x - planck.ppf(prb, lamda)) + 1e-20)
```

Random number generation

```
>>> R = planck.rvs(lamda, size=100)
```

scipy.stats.boltzmann
A truncated discrete exponential discrete random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below: rvs(lamda, $\mathrm{N}, \mathrm{loc}=0$, size $=1$)

Random variates.
$\operatorname{pmf}(\mathbf{x}$, lamda, \mathbf{N}, loc=0)
Probability mass function.
$\log \operatorname{mf}(\mathrm{x}$, lamda, $\mathrm{N}, \operatorname{loc}=0)$
Log of the probability mass function.
$\operatorname{cdf}(x$, lamda, $N, l o c=0)$
Cumulative density function.
$\log c d f(x, \operatorname{lamda}, \mathbf{N}, \operatorname{loc}=0)$
Log of the cumulative density function.
sf(x, lamda, N, loc=0)
Survival function (1-cdf - sometimes more accurate).
$\operatorname{logsf}(x, \operatorname{lamda}, \mathbf{N}, \operatorname{loc}=0)$
Log of the survival function.
$\operatorname{ppf}(q$, lamda, $N, l o c=0)$
Percent point function (inverse of cdf - percentiles).
$\operatorname{isf}(\mathbf{q}$, lamda, $\mathbf{N}, \operatorname{loc}=\mathbf{0})$
Inverse survival function (inverse of sf).
stats(lamda, $\mathbf{N}, \mathbf{l o c}=\mathbf{0}$, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis(' k ').
entropy(lamda, $\mathbf{N}, \mathbf{l o c}=\mathbf{0}$)
(Differential) entropy of the RV.
fit(data, lamda, $\mathbf{N}, \mathbf{l o c}=\mathbf{0}$)
Parameter estimates for generic data.
expect(func, lamda, $\mathbf{N}, \mathbf{l o c}=\mathbf{0}, \mathrm{lb}=$ None, $\mathbf{u b}=\mathbf{N o n e}$, conditional=False)
Expected value of a function (of one argument) with respect to the distribution.
median(lamda, $\mathbf{N}, \mathbf{l o c}=\mathbf{0}$)
Median of the distribution.
mean(lamda, $\mathbf{N}, \operatorname{loc}=\mathbf{0}$)
Mean of the distribution.
$\operatorname{var}(\operatorname{lamda}, \mathbf{N}, \mathbf{l o c}=\mathbf{0})$
Variance of the distribution.

```
std(lamda, N, loc=0)
    Standard deviation of the distribution.
interval(alpha, lamda, N, loc=0)
    Endpoints of the range that contains alpha percent of the distribution
    Parameters
    x : array_like
            quantiles
        q: array_like
            lower or upper tail probability
            lamda, N : array_like
            shape parameters
            loc : array_like, optional
            location parameter (default=0)
            scale : array_like, optional
            scale parameter (default=1)
            size : int or tuple of ints, optional
            shape of random variates (default computed from input arguments )
            moments : str, optional
            composed of letters ['mvsk'] specifying which moments to compute where 'm'
            = mean, 'v' = variance, 's' = (Fisher's) skew and ' k' = (Fisher's) kurtosis. (de-
            fault='mv')
```

 Alternatively, the object may be called (as a function) to fix the shape and :
 location parameters returning a "frozen" discrete RV object: :
 \(\mathbf{r v}=\) boltzmann(lamda, \(\mathbf{N}, \mathbf{l o c}=\mathbf{0})\) :
 - Frozen RV object with the same methods but holding the given shape and location fixed.

Notes

Boltzmann (Truncated Discrete Exponential)

boltzmann. $. \operatorname{pmf}(k, b, N)=(1-\exp (-b))^{*} \exp \left(-b^{*} k\right) /\left(1-\exp \left(-b^{*} N\right)\right)$ for $k=0, . ., \mathrm{N}-1$

Examples

```
>>> from scipy.stats import boltzmann
>>> numargs = boltzmann.numargs
>>> [ lamda, N ] = Replace with reasonable value * numargs
>>> rv = boltzmann(lamda, N)
```

Display frozen pdf
$\ggg x=n p . l i n s p a c e(0, n p . m i n i m u m(r v . d i s t . b, 3))$
$\ggg h=p l t . p l o t(x, r v \cdot p d f(x))$
Check accuracy of cdf and ppf

```
>>> prb = boltzmann.cdf(x, lamda, N)
>>> h = plt.semilogy(np.abs(x - boltzmann.ppf(prb, lamda, N)) + le-20)
```

Random number generation
>>> R = boltzmann.rvs(lamda, N, size=100)
scipy.stats.randint
A discrete uniform (random integer) discrete random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below: rvs(min, $\max , \operatorname{loc}=0$, size=1)

Random variates.
$\operatorname{pmf}(x, \min , \max , \operatorname{loc}=0)$
Probability mass function.
$\log \operatorname{mf}(x, \min , \max , \operatorname{loc}=0)$
\log of the probability mass function.
$\operatorname{cdf}(x, \min , \max , \operatorname{loc}=0)$
Cumulative density function.
$\operatorname{logcdf}(\mathrm{x}, \min , \max , \operatorname{loc}=0)$
Log of the cumulative density function.
$\mathbf{s f}(\mathbf{x}, \min , \max , l o c=0)$
Survival function (1-cdf - sometimes more accurate).
$\operatorname{logsf}(x, \min , \max , \operatorname{loc}=0)$
Log of the survival function.
$\operatorname{ppf}(q, \min , \max , l o c=0)$
Percent point function (inverse of cdf - percentiles).
$\operatorname{isf}(\mathbf{q}, \min , \max , \operatorname{loc}=0)$
Inverse survival function (inverse of sf).
stats(min, max, loc=0, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis(' k ').
entropy (min, max, loc=0)
(Differential) entropy of the RV.
fit(data, min, max, loc=0)
Parameter estimates for generic data.
$\operatorname{expect}(\mathrm{func}, \min , \max , \operatorname{loc}=\mathbf{0}, \mathrm{lb}=$ None, $\mathbf{u b}=$ None, conditional=False)
Expected value of a function (of one argument) with respect to the distribution.
median(min, max, loc=0)
Median of the distribution.
$\operatorname{mean}(\min , \max , \operatorname{loc}=0)$
Mean of the distribution.
$\operatorname{var}(\min , \max , \operatorname{loc}=0)$
Variance of the distribution.
$\mathbf{s t d}(\mathbf{m i n}, \max , l o c=0)$
Standard deviation of the distribution.

interval(alpha, min, max, loc=0)

Endpoints of the range that contains alpha percent of the distribution

Parameters

\mathbf{x} : array_like
quantiles
q : array_like
lower or upper tail probability
min, max : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' $=$ variance, ' s ' $=$ (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape and :

location parameters returning a "frozen" discrete RV object: :

rv = randint(min, max, loc=0) :

- Frozen RV object with the same methods but holding the given shape and location fixed.

Notes

Discrete Uniform

Random integers $>=\min$ and $<\max$.
randint.pmf(k, $\min , \max)=1 /(\max -\min)$ for $\min <=\mathrm{k}<\max$.

Examples

```
>>> from scipy.stats import randint
>>> numargs = randint.numargs
>>> [ min, max ] = Replace with reasonable value * numargs
>>> rv = randint(min, max)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = randint.cdf(x, min, max)
>>> h = plt.semilogy(np.abs(x - randint.ppf(prb, min, max)) + le-20)
```

Random number generation

```
>>> R = randint.rvs(min, max, size=100)
```

scipy.stats.zipf

A Zipf discrete random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below: $\mathrm{rvs}(\mathrm{a}$, loc $=0$, size $=1)$

Random variates.
$\operatorname{pmf}(x, a, l o c=0)$
Probability mass function.
$\operatorname{logpmf}(x, a, \operatorname{loc}=0)$
Log of the probability mass function.
$\operatorname{cdf}(x, a, l o c=0)$
Cumulative density function.
$\log c d f(x, a, l o c=0)$
Log of the cumulative density function.
$\operatorname{sf}(x, a, l o c=0)$
Survival function (1-cdf - sometimes more accurate).
$\operatorname{logsf}(x, a, \operatorname{loc}=0)$
Log of the survival function.
$\operatorname{ppf}(\mathbf{q}, \mathbf{a}, \operatorname{loc}=\mathbf{0})$
Percent point function (inverse of cdf — percentiles).
$\operatorname{isf}(q, a, l o c=0)$
Inverse survival function (inverse of sf).
stats(a, loc=0, moments='mv')
Mean('m'), variance(' v '), skew(${ }^{\prime}$ '), and/or kurtosis(' k ').
entropy $(a$, loc $=0)$
(Differential) entropy of the RV.
fit(data, $a, l o c=0)$
Parameter estimates for generic data.
$\operatorname{expect}(f u n c, a, l o c=0, l b=N o n e, ~ u b=N o n e$, conditional=False)
Expected value of a function (of one argument) with respect to the distribution.
$\operatorname{median}(a, l o c=0)$
Median of the distribution.
$\operatorname{mean}(a, l o c=0)$
Mean of the distribution.
$\operatorname{var}(\mathrm{a}, \operatorname{loc}=0)$
Variance of the distribution.
$\boldsymbol{\operatorname { s t d }}(\mathbf{a}, \mathbf{l o c}=\mathbf{0})$
Standard deviation of the distribution.
interval(alpha, a, loc=0)
Endpoints of the range that contains alpha percent of the distribution

Parameters

x: array_like
quantiles
q : array_like
lower or upper tail probability
a : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' = variance, ' s ' $=$ (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape and :

 location parameters returning a "frozen" discrete RV object: :$\mathbf{r v}=\boldsymbol{\operatorname { z i p f }}(\mathbf{a}, \mathbf{l o c}=\mathbf{0}):$

- Frozen RV object with the same methods but holding the given shape and location fixed.

Notes

Zipf distribution
zipf.pmf(k,a) $=1 /\left(\operatorname{zeta}(a)^{*} k^{* *} a\right)$ for $k>=1$

Examples

```
>>> from scipy.stats import zipf
>>> numargs = zipf.numargs
>>> [ a ] = Replace with reasonable value * numargs
>>> rv = zipf(a)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
```

>>> h = plt.plot(x, rv.pdf(x))

Check accuracy of cdf and ppf
\ggg prb $=$ zipf.cdf(x, a)
$\ggg h=p l t . \operatorname{semilogy}(n p \cdot a b s(x-z i p f \cdot p p f(p r b, a))+1 e-20)$
Random number generation

```
>>> R = zipf.rvs(a, size=100)
```


scipy.stats.dlaplace

A discrete Laplacian discrete random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below: rvs $(\mathrm{a}$, loc $=0$, size $=1)$

Random variates.

$\operatorname{pmf}(x, a, l o c=0)$

Probability mass function.
$\operatorname{logpmf}(x, a, \operatorname{loc}=0)$
Log of the probability mass function.
$\operatorname{cdf}(x, a, l o c=0)$
Cumulative density function.

$\log c d f(x, a, l o c=0)$

Log of the cumulative density function.
$\mathbf{s f}(\mathrm{x}, \mathrm{a}, \operatorname{loc}=0)$
Survival function (1-cdf - sometimes more accurate).
$\operatorname{logsf}(x, a, \operatorname{loc}=0)$
Log of the survival function.
$\operatorname{ppf}(q, a, l o c=0)$
Percent point function (inverse of cdf - percentiles).
$\operatorname{isf}(q, a, \operatorname{loc}=0)$
Inverse survival function (inverse of sf).
stats(a, loc=0, moments='mv')
Mean(' m '), variance(' v '), skew(' s '), and/or kurtosis(' k ').
entropy $(a, l o c=0)$
(Differential) entropy of the RV.
fit(data, a, loc=0)
Parameter estimates for generic data.
$\operatorname{expect}(f u n c, a, l o c=0, l b=N o n e, ~ u b=N o n e, ~ c o n d i t i o n a l=F a l s e)$
Expected value of a function (of one argument) with respect to the distribution.
$\operatorname{median}(a, l o c=0)$
Median of the distribution.
$\operatorname{mean}(a, l o c=0)$
Mean of the distribution.
$\operatorname{var}(\mathbf{a}, \operatorname{loc}=\mathbf{0})$
Variance of the distribution.
$\boldsymbol{s t d}(\mathbf{a}, \mathbf{l o c}=\mathbf{0})$
Standard deviation of the distribution.
interval(alpha, a, loc=0)
Endpoints of the range that contains alpha percent of the distribution

Parameters

\mathbf{x} : array_like
quantiles
q: array_like
lower or upper tail probability
a : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments)
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where ' m ' $=$ mean, ' v ' = variance, ' s ' = (Fisher's) skew and ' k ' $=$ (Fisher's) kurtosis. (default='mv')

Alternatively, the object may be called (as a function) to fix the shape and :

location parameters returning a "frozen" discrete RV object: :
rv = dlaplace (a, loc=0) :

- Frozen RV object with the same methods but holding the given shape and location fixed.

Notes

Discrete Laplacian distribution.
dlaplace. $\operatorname{pmf}(\mathrm{k}, \mathrm{a})=\tanh (\mathrm{a} / 2) * \exp (-\mathrm{a} * \mathrm{abs}(\mathrm{k}))$ for $\mathrm{a}>0$.

Examples

```
>>> from scipy.stats import dlaplace
>>> numargs = dlaplace.numargs
>>> [ a ] = Replace with reasonable value * numargs
>>> rv = dlaplace(a)
```

Display frozen pdf

```
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
```

Check accuracy of cdf and ppf

```
>>> prb = dlaplace.cdf(x, a)
>>> h = plt.semilogy(np.abs(x - dlaplace.ppf(prb, a)) + 1e-20)
```

Random number generation

```
>>> R = dlaplace.rvs(a, size=100)
```


3.19.3 Statistical functions

Several of these functions have a similar version in scipy.stats.mstats which work for masked arrays.

gmean(a[, axis, dtype])	Compute the geometric mean along the specified axis.
hmean(a[, axis, dtype])	Calculates the harmonic mean along the specified axis.
cmedian(a[, numbins])	Returns the computed median value of an array.
mode(a[, axis])	Returns an array of the modal (most common) value in the passed array.
tmean(a[, limits, inclusive])	Compute the trimmed mean
tvar(a[, limits, inclusive])	Compute the trimmed variance
$\operatorname{tmin}(\mathrm{a}[$, lowerlimit, axis, inclusive])	Compute the trimmed minimum
tmax(a, upperlimit[, axis, inclusive])	Compute the trimmed maximum
tstd(a[, limits, inclusive])	Compute the trimmed sample standard deviation
t sem(a[, limits, inclusive])	Compute the trimmed standard error of the mean
moment(a[, moment, axis])	Calculates the nth moment about the mean for a sample.
variation(a[, axis])	Computes the coefficient of variation, the ratio of the biased standard deviation to the mean.
skew(a[, axis, bias])	Computes the skewness of a data set.
kurtosis(a[, axis, fisher, bias])	Computes the kurtosis (Fisher or Pearson) of a dataset.
describe(a[, axis])	Computes several descriptive statistics of the passed array.
skewtest(a[, axis])	Tests whether the skew is different from the normal distribution.
kurtosistest(a[, axis])	Tests whether a dataset has normal kurtosis
normaltest(a[, axis])	Tests whether a sample differs from a normal distribution

scipy.stats.gmean (a, axis=0, dtype $=$ None)
Compute the geometric mean along the specified axis.
Returns the geometric average of the array elements. That is: n -th root of ($\mathrm{x} 1 * \mathrm{x} 2 * \ldots * \mathrm{xn}$)

Parameters

a : array_like
Input array or object that can be converted to an array.
axis : int, optional, default axis=0
Axis along which the geometric mean is computed.
dtype : dtype, optional
Type of the returned array and of the accumulator in which the elements are summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a precision less than that of the default platform integer. In that case, the default platform integer is used.

Returns

gmean : ndarray,
see dtype parameter above

See Also:

numpy.mean
Arithmetic average
numpy.average
Weighted average
hmean
Harmonic mean

Notes

The geometric average is computed over a single dimension of the input array, axis=0 by default, or all values in the array if axis=None. float64 intermediate and return values are used for integer inputs.

Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number and infinity because masked arrays automatically mask any non-finite values.

```
scipy.stats.hmean(a,axis=0,dtype=None)
```

Calculates the harmonic mean along the specified axis.
That is: $\mathrm{n} /(1 / \mathrm{x} 1+1 / \mathrm{x} 2+\ldots+1 / \mathrm{xn})$

Parameters

a : array_like
Input array, masked array or object that can be converted to an array.
axis : int, optional, default axis=0
Axis along which the harmonic mean is computed.
dtype : dtype, optional
Type of the returned array and of the accumulator in which the elements are summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a precision less than that of the default platform integer. In that case, the default platform integer is used.

Returns

hmean : ndarray,
see dtype parameter above

See Also:

numpy.mean
Arithmetic average
numpy.average
Weighted average
gmean
Geometric mean

Notes

The harmonic mean is computed over a single dimension of the input array, axis=0 by default, or all values in the array if axis=None. float64 intermediate and return values are used for integer inputs.

Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number and infinity.
scipy.stats.cmedian (a, numbins $=1000$)
Returns the computed median value of an array.
All of the values in the input array are used. The input array is first histogrammed using numbins bins. The bin containing the median is selected by searching for the halfway point in the cumulative histogram. The median value is then computed by linearly interpolating across that bin.

Parameters

a : array_like
Input array.
numbins : int
The number of bins used to histogram the data. More bins give greater accuracy to the approximation of the median.

Returns

cmedian : float
An approximation of the median.

References

[CRCProbStat2000] Section 2.2.6
[CRCProbStat2000]
scipy.stats.mode (a, axis=0)
Returns an array of the modal (most common) value in the passed array.
If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned.

Parameters

a : array_like
n-dimensional array of which to find mode(s).
axis : int, optional
Axis along which to operate. Default is 0 , i.e. the first axis.

Returns

vals : ndarray
Array of modal values.
counts : ndarray
Array of counts for each mode.
Examples

```
>>> a = np.array([[6, 8, 3, 0],
                                    [3, 2, 1, 7],
                                    [8, 1, 8, 4],
                    [5, 3, 0, 5],
                            [4, 7, 5, 9]])
>>> from scipy import stats
>>> stats.mode(a)
(array([[ 3., 1., 0., 0.]]), array([[ 1., 1., 1., 1.]]))
```

To get mode of whole array, specify axis=None:

```
>>> stats.mode(a, axis=None)
```

(array([3.]), array([3.]))
scipy.stats.tmean (a, limits=None, inclusive $=($ True, True $)$)
Compute the trimmed mean
This function finds the arithmetic mean of given values, ignoring values outside the given limits.

Parameters

a : array_like
array of values
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True).

Returns

tmean : float
scipy.stats.tvar (a, limits=None, inclusive=(1, 1))
Compute the trimmed variance
This function computes the sample variance of an array of values, while ignoring values which are outside of given limits.

Parameters
a : array_like
array of values
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True).

```
Returns
            tvar : float
scipy.stats.tmin(a,lowerlimit=None, axis=0, inclusive=True)
    Compute the trimmed minimum
```

This function finds the miminum value of an array a along the specified axis, but only considering values greater than a specified lower limit.

Parameters

a : array_like
array of values
lowerlimit : None or float, optional
Values in the input array less than the given limit will be ignored. When lowerlimit is None, then all values are used. The default value is None.
axis : None or int, optional

Operate along this axis. None means to use the flattened array and the default is zero
inclusive : \{True, False \}, optional
This flag determines whether values exactly equal to the lower limit are included. The default value is True.

Returns

tmin: float :
scipy.stats.tmax (a, upperlimit, axis=0, inclusive=True)
Compute the trimmed maximum
This function computes the maximum value of an array along a given axis, while ignoring values larger than a specified upper limit.

Parameters

a : array_like
array of values
upperlimit : None or float, optional
Values in the input array greater than the given limit will be ignored. When upperlimit is None, then all values are used. The default value is None.
axis : None or int, optional
Operate along this axis. None means to use the flattened array and the default is zero.
inclusive : \{True, False \}, optional
This flag determines whether values exactly equal to the upper limit are included. The default value is True.

Returns

tmax : float
scipy.stats.tstd (a, limits=None, inclusive $=(1,1)$)
Compute the trimmed sample standard deviation
This function finds the sample standard deviation of given values, ignoring values outside the given limits.

Parameters

a: array_like
array of values
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True).

Returns

tstd : float
scipy.stats.tsem (a, limits=None, inclusive=(True, True))
Compute the trimmed standard error of the mean
This function finds the standard error of the mean for given values, ignoring values outside the given limits.

Parameters

a : array_like
array of values
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True).

Returns

tsem : float
scipy.stats.moment (a, moment $=1$, axis $=0$)
Calculates the nth moment about the mean for a sample.
Generally used to calculate coefficients of skewness and kurtosis.

Parameters

a : array_like
data
moment : int
order of central moment that is returned
axis : int or None
Axis along which the central moment is computed. If None, then the data array is raveled. The default axis is zero.

Returns

n-th central moment : ndarray or float
The appropriate moment along the given axis or over all values if axis is None. The denominator for the moment calculation is the number of observations, no degrees of freedom correction is done.
scipy.stats.variation (a, axis=0)
Computes the coefficient of variation, the ratio of the biased standard deviation to the mean.
Parameters
a : array_like
Input array.
axis : int or None
Axis along which to calculate the coefficient of variation.

References

[CRCProbStat2000] Section 2.2.20
[CRCProbStat2000]
scipy.stats.skew (a, axis=0, bias=True)
Computes the skewness of a data set.
For normally distributed data, the skewness should be about 0 . A skewness value >0 means that there is more weight in the left tail of the distribution. The function skewtest can be used to determine if the skewness value is close enough to 0 , statistically speaking.

Parameters

a : ndarray
data
axis : int or None
axis along which skewness is calculated
bias : bool
If False, then the calculations are corrected for statistical bias.

Returns

skewness : ndarray
The skewness of values along an axis, returning 0 where all values are equal.

References

[CRCProbStat2000] Section 2.2.24.1
[CRCProbStat2000]
scipy.stats.kurtosis (a, axis=0, fisher=True, bias=True)
Computes the kurtosis (Fisher or Pearson) of a dataset.
Kurtosis is the fourth central moment divided by the square of the variance. If Fisher's definition is used, then 3.0 is subtracted from the result to give 0.0 for a normal distribution.

If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment estimators
Use kurtosistest to see if result is close enough to normal.

Parameters

a : array
data for which the kurtosis is calculated
axis : int or None
Axis along which the kurtosis is calculated
fisher : bool
If True, Fisher's definition is used (normal $==>0.0$). If False, Pearson's definition is used (normal ==> 3.0).
bias: bool
If False, then the calculations are corrected for statistical bias.

Returns

kurtosis : array
The kurtosis of values along an axis. If all values are equal, return -3 for Fisher's definition and 0 for Pearson's definition.

References

[CRCProbStat2000] Section 2.2.25
[CRCProbStat2000]
scipy.stats.describe (a, axis=0)
Computes several descriptive statistics of the passed array.

Parameters

a: array_like
data
axis : int or None
axis along which statistics are calculated. If axis is None, then data array is raveled. The default axis is zero.

Returns

size of the data : int
length of data along axis
($\mathbf{m i n}, \max$): tuple of ndarrays or floats :
minimum and maximum value of data array
arithmetic mean : ndarray or float
mean of data along axis
unbiased variance : ndarray or float
variance of the data along axis, denominator is number of observations minus one.
biased skewness : ndarray or float
skewness, based on moment calculations with denominator equal to the number of observations, i.e. no degrees of freedom correction
biased kurtosis : ndarray or float
kurtosis (Fisher), the kurtosis is normalized so that it is zero for the normal distribution. No degrees of freedom or bias correction is used.

See Also:

skew, kurtosis
scipy.stats.skewtest (a, axis=0)
Tests whether the skew is different from the normal distribution.
This function tests the null hypothesis that the skewness of the population that the sample was drawn from is the same as that of a corresponding normal distribution.

Parameters

a : array
axis : int or None

Returns

z -score : float
The computed z -score for this test.
p-value : float
a 2-sided p -value for the hypothesis test

Notes

The sample size should be at least 8 .
scipy.stats.kurtosistest (a, axis=0)
Tests whether a dataset has normal kurtosis
This function tests the null hypothesis that the kurtosis of the population from which the sample was drawn is that of the normal distribution: kurtosis $=3(n-1) /(n+1)$.

Parameters

a : array
array of the sample data
axis : int or None
the axis to operate along, or None to work on the whole array. The default is the first axis.

Returns

z-score : float
The computed z -score for this test.
p-value : float
The 2-sided p-value for the hypothesis test

Notes

Valid only for $\mathrm{n}>20$. The Z -score is set to 0 for bad entries.
scipy.stats.normaltest (a, axis=0)
Tests whether a sample differs from a normal distribution
This function tests the null hypothesis that a sample comes from a normal distribution. It is based on D'Agostino and Pearson's [R92], [R93] test that combines skew and kurtosis to produce an omnibus test of normality.

Parameters
a : array
axis : int or None

Returns

p-value : float
A 2-sided chi squared probability for the hypothesis test

References

[R92], [R93]

```
itemfreq(a)
scoreatpercentile(a, per[, limit])
percentileofscore(a, score[,
kind])
histogram(a[, numbins, defaultlimits,
```

histogram2(a, bins) Compute histogram using divisions in bins.
...])
cumfreq(a[, numbins,
defaultreallimits, weights])
relfreq(a[, numbins,
defaultreallimits, weights])
scipy.stats.itemfreq (a)

Returns a 2D array of item frequencies.

Parameters

a : array_like of rank 1
Input array.

Returns

itemfreq : ndarray of rank 2
A 2D frequency table ($\mathrm{col}[0: \mathrm{n}-1]=$ scores, col $\mathrm{n}=$ frequencies). Column 1 contains item values, column 2 contains their respective counts.

Notes

This uses a loop that is only reasonably fast if the number of unique elements is not large. For integers, numpy.bincount is much faster. This function currently does not support strings or multi-dimensional scores.

Examples

```
>>> a = np.array([1, 1, 5, 0, 1, 2, 2, 0, 1, 4])
>>> stats.itemfreq(a)
array([[ 0., 2.],
    [ 1., 4.],
    [ 2., 2.],
    [4., 1.],
    [ 5., 1.]])
>>> np.bincount(a)
array([2, 4, 2, 0, 1, 1])
>>> stats.itemfreq(a/10.)
array([[ 0. , 2. ],
    [ 0.1, 4. ],
    [ 0.2, 2. ],
    [ 0.4, 1. ],
    [0.5, 1. ]])
```

scipy.stats.scoreatpercentile (a, per, limit=())

Calculate the score at the given per percentile of the sequence a.
For example, the score at per=50 is the median. If the desired quantile lies between two data points, we interpolate between them. If the parameter limit is provided, it should be a tuple (lower, upper) of two values. Values of a outside this (closed) interval will be ignored.

Parameters

a : ndarray
Values from which to extract score.
per : int or float
Percentile at which to extract score.
limit : tuple, optional
Tuple of two scalars, the lower and upper limits within which to compute the percentile.

Returns

score : float
Score at percentile.

See Also:

percentileofscore

Examples

>>> from scipy import stats
$\ggg \mathrm{a}=\mathrm{np}$.arange (100)
>>> stats.scoreatpercentile(a, 50)
49.5
scipy.stats.percentileofscore (a, score, kind='rank')
The percentile rank of a score relative to a list of scores.
A percentileofscore of, for example, 80% means that 80% of the scores in a are below the given score. In the case of gaps or ties, the exact definition depends on the optional keyword, kind.

Parameters

a: array like :
Array of scores to which score is compared.
score: int or float :
Score that is compared to the elements in a.
kind: \{'rank', 'weak', 'strict', 'mean'\}, optional :
This optional parameter specifies the interpretation of the resulting score:

- "rank": Average percentage ranking of score. In case of multiple matches, average the percentage rankings of all matching scores.
- "weak": This kind corresponds to the definition of a cumulative distribution function. A percentileofscore of 80% means that 80% of values are less than or equal to the provided score.
- "strict": Similar to "weak", except that only values that are strictly less than the given score are counted.
- "mean": The average of the "weak" and "strict" scores, often used in testing. See
http://en.wikipedia.org/wiki/Percentile_rank

Returns

pcos: float
Percentile-position of score (0-100) relative to a.

Examples

Three-quarters of the given values lie below a given score:

```
>>> percentileofscore([1, 2, 3, 4], 3)
75.0
```

With multiple matches, note how the scores of the two matches, 0.6 and 0.8 respectively, are averaged:

```
>>> percentileofscore([1, 2, 3, 3, 4], 3)
70.0
```

Only $2 / 5$ values are strictly less than 3 :

```
>>> percentileofscore([1, 2, 3, 3, 4], 3, kind='strict')
40.0
```

But $4 / 5$ values are less than or equal to 3 :

```
>>> percentileofscore([1, 2, 3, 3, 4], 3, kind='weak')
80.0
```

The average between the weak and the strict scores is

```
>>> percentileofscore([1, 2, 3, 3, 4], 3, kind='mean')
60.0
```

scipy.stats.histogram2 (a, bins)
Compute histogram using divisions in bins.
Count the number of times values from array a fall into numerical ranges defined by bins. Range x is given by $\operatorname{bins}[\mathrm{x}]<=$ range_ $\mathrm{x}<\operatorname{bins}[\mathrm{x}+1]$ where $\mathrm{x}=0, \mathrm{~N}$ and N is the length of the bins array. The last range is given by $\operatorname{bins}[\mathrm{N}]<=$ range_N < infinity. Values less than bins[0] are not included in the histogram.

Parameters

a : array_like of rank 1
The array of values to be assigned into bins
bins: array_like of rank 1
Defines the ranges of values to use during histogramming.

Returns

histogram2 : ndarray of rank 1
Each value represents the occurrences for a given bin (range) of values.
scipy.stats.histogram (a, numbins=10, defaultlimits=None, weights=None, printextras=False)
Separates the range into several bins and returns the number of instances of a in each bin. This histogram is based on numpy's histogram but has a larger range by default if default limits is not set.

Parameters

a: array_like :
Array of scores which will be put into bins.
numbins: int, optional :
The number of bins to use for the histogram. Default is 10 .

defaultlimits: tuple (lower, upper), optional :

The lower and upper values for the range of the histogram. If no value is given, a range slightly larger then the range of the values in a is used. Specifically (a.min() - s, a.max () + s),
where $s=(1 / 2)(a \cdot m a x()-a . m i n()) /(n u m b i n s-1)$.
weights: array_like, optional :
The weights for each value in a. Default is None, which gives each value a weight of 1.0
printextras: bool, optional :
If True, the number of extra points is printed to standard output. Default is False.

Returns

histogram: ndarray :
Number of points (or sum of weights) in each bin.
low_range: float :
Lowest value of histogram, the lower limit of the first bin.
binsize: float :
The size of the bins (all bins have the same size).
extrapoints: int :
The number of points outside the range of the histogram.

See Also:

numpy.histogram
scipy.stats.cumfreq (a, numbins=10, defaultreallimits=None, weights=None)
Returns a cumulative frequency histogram, using the histogram function.
Parameters
a : array_like
Input array.
numbins: int, optional :
The number of bins to use for the histogram. Default is 10 .
defaultlimits: tuple (lower, upper), optional :
The lower and upper values for the range of the histogram. If no value is given, a range slightly larger then the range of the values in a is used. Specifically (a.min() - s, a.max() + s),
where $s=(1 / 2)(\operatorname{a} \cdot \max ()-\operatorname{a} \cdot \min ()) /(n u m b i n s-1)$.
weights: array_like, optional :
The weights for each value in a. Default is None, which gives each value a weight of 1.0

Returns

cumfreq : ndarray
Binned values of cumulative frequency.
lowerreallimit : float
Lower real limit
binsize : float
Width of each bin.
extrapoints : int
Extra points.

Examples

```
>>> x = [1, 4, 2, 1, 3, 1]
>>> cumfreqs, lowlim, binsize, extrapoints = sp.stats.cumfreq(x, numbins=4)
>>> cumfreqs
array([ 3., 4., 5., 6.])
>> cumfreqs, lowlim, binsize, extrapoints = ... sp.stats.cumfreq(x, nוmbins=4, defaul
>>> cumfreqs
array([ 1., 2., 3., 3.])
>>> extrapoints
3
```

scipy.stats.relfreq (a, numbins=10, defaultreallimits=None, weights=None)
Returns a relative frequency histogram, using the histogram function.

Parameters

a : array_like
Input array.
numbins: int, optional :
The number of bins to use for the histogram. Default is 10 .
defaultreallimits: tuple (lower, upper), optional :
The lower and upper values for the range of the histogram. If no value is given, a range slightly larger then the range of the values in a is used. Specifically (a.min() - s, a.max () + s),
where $s=(1 / 2)(\operatorname{a} \cdot \max ()-\operatorname{a} \cdot \min ()) /(n u m b i n s-1)$.
weights: array_like, optional :
The weights for each value in a. Default is None, which gives each value a weight of 1.0

Returns

relfreq : ndarray
Binned values of relative frequency.
lowerreallimit : float
Lower real limit
binsize : float
Width of each bin.
extrapoints : int
Extra points.

Examples

```
>>> a = np.array([1, 4, 2, 1, 3, 1])
>>> relfreqs, lowlim, binsize, extrapoints = sp.stats.relfreq(a, numbins=4)
>>> relfreqs
array([ 0.5 , 0.16666667, 0.16666667, 0.16666667])
```

```
>>> np.sum(relfreqs) # relative frequencies should add up to I
```

0.99999999999999989

```
obrientransform(*args) Computes a transform on input data (any number of columns).
signaltonoise(a[, The signal-to-noise ratio of the input data.
axis, ddof])
bayes_mvs(data[, alpha]) Bayesian confidence intervals for the mean, var, and std.
sem(a[, axis, ddof]) Calculates the standard error of the mean (or standard error of measurement) of the
    values in the input array.
zmap(scores, compare[, Calculates the relative z-scores.
axis, ddof])
zscore(a[, axis, ddof]) Calculates the z score of each value in the sample, relative to the sample mean and
standard deviation.
scipy.stats.obrientransform (*args)
    Computes a transform on input data (any number of columns).
    Used to test for homogeneity of variance prior to running one-way stats. Each array in *args is one level of
    a factor. If an F_oneway() run on the transformed data and found significant, variances are unequal. From
    Maxwell and Delaney, p.112.
```


Returns

Transformed data for use in an ANOVA :

scipy.stats.signaltonoise (a, axis $=0, d d o f=0$)
The signal-to-noise ratio of the input data.
Returns the signal-to-noise ratio of a, here defined as the mean divided by the standard deviation.

Parameters

a: array_like :
An array_like object containing the sample data.
axis: int or None, optional :
If axis is equal to None, the array is first ravel'd. If axis is an integer, this is the axis over which to operate. Default is 0 .
ddof : int, optional
Degrees of freedom correction for standard deviation. Default is 0 .

Returns

s2n : ndarray
The mean to standard deviation ratio(s) along axis, or 0 where the standard deviation is 0 .

```
scipy.stats.bayes_mvs (data, alpha=0.900000000000000002)
```

Bayesian confidence intervals for the mean, var, and std.

Parameters

data : array_like
Input data, if multi-dimensional it is flattened to 1-D by bayes_mvs. Requires 2 or more data points.
alpha : float, optional
Probability that the returned confidence interval contains the true parameter.

Returns

Returns a 3 output arguments for each of mean, variance, and standard deviation. :

Each of the outputs is a pair:

(center, (lower, upper))
with center the mean of the conditional pdf of the value given the data and (lower, upper) is a confidence interval centered on the median, containing the estimate to a probability alpha.
$\mathbf{m c t r},(\mathbf{m a}, \mathbf{m b}): ~: ~$
Estimates for mean

```
vctr, (va, vb) : :
```

Estimates for variance
sctr, (sa, sb) : :
Estimates for standard deviation

Notes

Converts data to 1-D and assumes all data has the same mean and variance. Uses Jeffrey's prior for variance and std.

Equivalent to tuple((x.mean(), x.interval(alpha)) for x in mvsdist(dat))

References

T.E. Oliphant, "A Bayesian perspective on estimating mean, variance, and standard-deviation from data", http://hdl.handle.net/1877/438, 2006.
scipy.stats.sem $(a, a x i s=0, d d o f=1)$
Calculates the standard error of the mean (or standard error of measurement) of the values in the input array.
Parameters
a : array_like
An array containing the values for which the standard error is returned.
axis : int or None, optional.
If axis is None, ravel a first. If axis is an integer, this will be the axis over which to operate. Defaults to 0 .

ddof : int, optional

Delta degrees-of-freedom. How many degrees of freedom to adjust for bias in limited samples relative to the population estimate of variance. Defaults to 1 .

Returns

\mathbf{s} : ndarray or float
The standard error of the mean in the sample(s), along the input axis.

Notes

The default value for $d d o f$ is different to the default (0) used by other ddof containing routines, such as np.std nd stats.nanstd.

Examples

Find standard error along the first axis:

```
>>> from scipy import stats
>>> a = np.arange(20).reshape (5,4)
>>> stats.sem(a)
array([ 2.8284, 2.8284, 2.8284, 2.8284])
```

Find standard error across the whole array, using n degrees of freedom:

```
>>> stats.sem(a, axis=None, ddof=0)
1.2893796958227628
```

scipy.stats. zmap (scores, compare, axis=0, $d d o f=0$)
Calculates the relative z-scores.
Returns an array of z-scores, i.e., scores that are standardized to zero mean and unit variance, where mean and variance are calculated from the comparison array.

Parameters

scores : array_like
The input for which z-scores are calculated.
compare : array_like
The input from which the mean and standard deviation of the normalization are taken; assumed to have the same dimension as scores.
axis : int or None, optional
Axis over which mean and variance of compare are calculated. Default is 0 .
ddof : int, optional
Degrees of freedom correction in the calculation of the standard deviation. Default is 0 .

Returns

zscore : array_like
Z-scores, in the same shape as scores.

Notes

This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray instead of asarray for parameters).
scipy.stats.zscore (a, axis $=0, d d o f=0$)
Calculates the z score of each value in the sample, relative to the sample mean and standard deviation.

Parameters

a : array_like
An array like object containing the sample data.
axis : int or None, optional
If axis is equal to None, the array is first raveled. If axis is an integer, this is the axis over which to operate. Default is 0 .
ddof : int, optional
Degrees of freedom correction in the calculation of the standard deviation. Default is 0 .

Returns

zscore : array_like

The z-scores, standardized by mean and standard deviation of input array a.

Notes

This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray instead of asarray for parameters).

Examples

```
>>> a = np.array([ 0.7972, 0.0767, 0.4383, 0.7866, 0.8091, 0.1954,
    0.6307,0.6599, 0.1065, 0.0508])
>>> from scipy import stats
>>> stats.zscore(a)
array([ 1.1273, -1.247, -0.0552, 1.0923, 1.1664, -0.8559, 0.5786,
    0.6748, -1.1488, -1.3324])
```

Computing along a specified axis, using $n-1$ degrees of freedom ($d \mathrm{dof}=1$) to calculate the standard deviation:

```
>>> b = np.array([[ 0.3148, 0.0478, 0.6243, 0.4608],
    [ 0.7149, 0.0775, 0.6072, 0.9656],
    [ 0.6341, 0.1403, 0.9759, 0.4064],
    [ 0.5918, 0.6948, 0.904, 0.3721],
    [0.0921, 0.2481, 0.1188, 0.1366]])
>>> stats.zscore(b, axis=1, ddof=1)
array([[-1.1649, -1.4319, -0.8554, -1.0189],
    [-0.8661, -1.5035, -0.9737, -0.6154],
    [-0.888, -1.3817, -0.5461, -1.1156],
    [-2.3043, -2.2014, -1.9921, -2.5241],
    [-2.0773, -1.9212, -2.0506, -2.0328]])
```

threshold(a[, threshmin, threshmax, newval]) Clip array to a given value.
trimboth(a, proportiontocut) Slices off a proportion of items from both ends of an array.
trim1(a, proportiontocut[, tail]) Slices off a proportion of items from ONE end of the passed array
scipy.stats.threshold(a, threshmin=None, threshmax=None, newval=0)

Clip array to a given value.
Similar to numpy.clip(), except that values less than threshmin or greater than threshmax are replaced by newval, instead of by threshmin and threshmax respectively.

Parameters

a : array_like
Data to threshold.
threshmin : float, int or None, optional
Minimum threshold, defaults to None.
threshmax : float, int or None, optional
Maximum threshold, defaults to None.
newval : float or int, optional
Value to put in place of values in a outside of bounds. Defaults to 0 .

Returns

out : ndarray
The clipped input array, with values less than threshmin or greater than threshmax replaced with newval.

Examples

```
>>> a = np.array([9, 9, 6, 3, 1, 6, 1, 0, 0, 8])
>>> from scipy import stats
>>> stats.threshold(a, threshmin=2, threshmax=8, newval=-1)
array([-1, -1, 6, 3, -1, 6, -1, -1, -1, 8])
```

scipy.stats.trimboth (a, proportiontocut)
Slices off a proportion of items from both ends of an array.
Slices off the passed proportion of items from both ends of the passed array (i.e., with proportiontocut $=0.1$, slices leftmost 10% and rightmost 10% of scores). You must pre-sort the array if you want 'proper' trimming. Slices off less if proportion results in a non-integer slice index (i.e., conservatively slices off proportiontocut).

Parameters

a : array_like
Data to trim.
proportiontocut : float or int
Proportion of total data set to trim of each end.

Returns

out : ndarray
Trimmed version of array a.

Examples

```
>>> from scipy import stats
>>> a = np.arange(20)
>>> b = stats.trimboth(a, 0.1)
>>> b.shape
(16,)
```

scipy.stats.trim1 (a, proportiontocut, tail='right')
Slices off a proportion of items from ONE end of the passed array distribution.
If proportiontocut $=0.1$, slices off 'leftmost' or 'rightmost' 10% of scores. Slices off LESS if proportion results in a non-integer slice index (i.e., conservatively slices off proportiontocut).

Parameters

a : array_like
Input array
proportiontocut : float
Fraction to cut off of 'left' or 'right' of distribution
tail : string, \{'left', 'right'\}, optional
Defaults to 'right'.

Returns

trim1 : ndarray
Trimmed version of array a

f_oneway(*args)	Performs a 1-way ANOVA.
pearsonr(x, y)	Calculates a Pearson correlation coefficient and the p-value for testing
spearmanr(a[,b, axis $])$	Calculates a Spearman rank-order correlation coefficient and the p-value
fisher_exact(table)	Performs a Fisher exact test on a 2x2 contingency table.
pointbiserialr(x, y)	Calculates a point biserial correlation coefficient and the associated p-value.
kendalltau(x, y[, initial_lexsort $])$	Calculates Kendall's tau, a correlation measure for ordinal data.
linregress(x[,y])	Calculate a regression line

scipy.stats.f_oneway(*args)
Performs a 1-way ANOVA.
The one-way ANOVA tests the null hypothesis that two or more groups have the same population mean. The test is applied to samples from two or more groups, possibly with differing sizes.

Parameters
 sample1, sample2, ... : array_like

The sample measurements for each group.

Returns

F-value : float
The computed F-value of the test.
p-value : float
The associated p-value from the F-distribution.

Notes

The ANOVA test has important assumptions that must be satisfied in order for the associated p-value to be valid.
1.The samples are independent.
2.Each sample is from a normally distributed population.
3.The population standard deviations of the groups are all equal. This property is known as homoscedasticity.
If these assumptions are not true for a given set of data, it may still be possible to use the Kruskal-Wallis H-test ('stats.kruskal'_) although with some loss of power.

The algorithm is from Heiman[2], pp.394-7.

References

[R78], [R79]
scipy.stats.pearsonr (x, y)
Calculates a Pearson correlation coefficient and the p-value for testing non-correlation.
The Pearson correlation coefficient measures the linear relationship between two datasets. Strictly speaking, Pearson's correlation requires that each dataset be normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y . Negative correlations imply that as x increases, y decreases.

The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so.

Parameters

$\mathbf{x}: 1 \mathrm{D}$ array
$\mathbf{y}: 1 \mathrm{D}$ array the same length as x

Returns

(Pearson's correlation coefficient, :
2-tailed p-value)

References

http://www.statsoft.com/textbook/glosp.html\#Pearson\ Correlation
scipy.stats.spearmanr ($a, b=N o n e$, axis=0)
Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation.
The Spearman correlation is a nonparametric measure of the monotonicity of the relationship between two datasets. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact monotonic relationship. Positive correlations imply that as x increases, so does y . Negative correlations imply that as x increases, y decreases.

The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so.

Parameters

$\mathbf{a}, \mathbf{b}: 1 \mathrm{D}$ or 2D array_like, b is optional
One or two 1-D or 2-D arrays containing multiple variables and observations. Each column of a and b represents a variable, and each row entry a single observation of those variables. See also axis. Both arrays need to have the same length in the axis dimension.
axis : int or None, optional
If axis $=0$ (default), then each column represents a variable, with observations in the rows. If axis $=0$, the relationship is transposed: each row represents a variable, while the columns contain observations. If axis=None, then both arrays will be raveled.

Returns

rho: float or ndarray (2-D square) :
Spearman correlation matrix or correlation coefficient (if only 2 variables are given as parameters. Correlation matrix is square with length equal to total number of variables (columns or rows) in a and b combined.
p-value : float
The two-sided p-value for a hypothesis test whose null hypothesis is that two sets of data are uncorrelated, has same dimension as rho.

Notes

Changes in scipy 0.8.0: rewrite to add tie-handling, and axis.

References

[CRCProbStat2000] Section 14.7
[CRCProbStat2000]

Examples

```
>>> spearmanr([1,2,3,4,5],[5,6,7,8,7])
    (0.82078268166812329,0.088587005313543798)
>>> np.random.seed(1234321)
>>> x2n=np.random.randn (100,2)
>>> y2n=np.random.randn (100, 2)
>>> spearmanr(x2n)
    (0.059969996999699973,0.55338590803773591)
>>> spearmanr(x2n[:,0], x2n[:,1])
    (0.059969996999699973, 0.55338590803773591)
>>> rho, pval = spearmanr (x2n,y2n)
>>> rho
array([[ 1. , 0.05997 , 0.18569457,0.06258626],
    [0.05997 , 1. ,0.110003,0.02534653],
    [0.18569457, 0.110003 , 1. , 0.03488749],
    [0.06258626, 0.02534653, 0.03488749, 1. ] ])
>>> pval
array([[ 0. , 0.55338591, 0.06435364, 0.53617935],
    [0.55338591, 0. , 0.27592895, 0.80234077],
    [0.06435364,0.27592895, 0. 0.73039992],
    [ 0.53617935, 0.80234077, 0.73039992, 0. ]])
>>> rho, pval = spearmanr(x2n.T, y2n.T, axis=1)
>>> rho
array([[ 1. , 0.05997 , 0.18569457, 0.06258626],
    [0.05997 , 1. , 0.110003 , 0.02534653],
    [0.18569457, 0.110003, 1. , 0.03488749],
    [0.06258626, 0.02534653, 0.03488749, 1. ] ])
>>> spearmanr(x2n, y2n, axis=None)
(0.10816770419260482, 0.1273562188027364)
>>> spearmanr(x2n.ravel(), y2n.ravel())
    (0.10816770419260482, 0.1273562188027364)
>>> xint = np.random.randint (10, size=(100,2))
>>> spearmanr(xint)
    (0.052760927029710199,0.60213045837062351)
```

scipy.stats.fisher_exact (table)

Performs a Fisher exact test on a 2×2 contingency table.

Parameters

table : array_like of ints
A 2×2 contingency table.

Returns

oddsratio : float
This is prior odds ratio and not a posterior estimate.
p_value : float
P-value for 2-sided hypothesis of independence.

Notes

The calculated odds ratio is different from the one R uses. In R language, this implementation returns the (more common) "unconditional Maximum Likelihood Estimate", while R uses the "conditional Maximum Likelihood Estimate".

Examples

```
>>> fisher_exact([[100, 2], [1000, 5]])
    (0.25, 0.13007593634330314)
```

scipy.stats.pointbiserialr (x, y)

Calculates a point biserial correlation coefficient and the associated p-value.
The point biserial correlation is used to measure the relationship between a binary variable, x , and a continuous variable, y. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply a determinative relationship.
This function uses a shortcut formula but produces the same result as pearsonr.

Parameters

\mathbf{x} : array_like of bools
Input array.
\mathbf{y} : array_like
Input array.

Returns

\mathbf{r} : float
R value
p-value : float
2-tailed p-value

References

http://www.childrens-mercy.org/stats/definitions/biserial.htm

Examples

```
>>> from scipy import stats
>>> a = np.array([0, 0, 0, 1, 1, 1, 1])
>>> b = np.arange(7)
>>> stats.pointbiserialr(a, b)
(0.8660254037844386, 0.011724811003954652)
>>> stats.pearsonr(a, b)
(0.86602540378443871, 0.011724811003954626)
>>> np.corrcoef(a, b)
array([[ 1. , 0.8660254],
    [ 0.8660254, 1. ]])
```

scipy.stats.kendalltau (x, y, initial_lexsort=True)
Calculates Kendall's tau, a correlation measure for ordinal data.
Kendall's tau is a measure of the correspondence between two rankings. Values close to 1 indicate strong agreement, values close to -1 indicate strong disagreement. This is the tau-b version of Kendall's tau which accounts for ties.

Parameters

$\mathbf{x , ~} \mathbf{y}$: array_like
Arrays of rankings, of the same shape. If arrays are not 1-D, they will be flattened to 1-D.
initial_lexsort : bool, optional

Whether to use lexsort or quicksort as the sorting method for the initial sort of the inputs. Default is lexsort (True), for which kendalltau is of complexity $\mathrm{O}(\mathrm{n} \log (\mathrm{n})$). If False, the complexity is $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$, but with a smaller pre-factor (so quicksort may be faster for small arrays).

Returns

Kendall's tau : float
The tau statistic.
p-value : float
The two-sided p-value for a hypothesis test whose null hypothesis is an absence of association, tau $=0$.

Notes

The definition of Kendall's tau that is used is:

```
tau}=(P-Q)/\operatorname{sqrt}((P+Q + T)* (P + Q + U))
```

where P is the number of concordant pairs, Q the number of discordant pairs, T the number of ties only in x, and U the number of ties only in y. If a tie occurs for the same pair in both x and y, it is not added to either T or U .

References

W.R. Knight, "A Computer Method for Calculating Kendall's Tau with Ungrouped Data", Journal of the American Statistical Association, Vol. 61, No. 314, Part 1, pp. 436-439, 1966.

Examples

```
>>> x1 = [12, 2, 1, 12, 2]
>>> x2 = [1, 4, 7, 1, 0]
>>> tau, p_value = sp.stats.kendalltau(x1, x2)
>>> tau
-0.47140452079103173
>>> p_value
0.24821309157521476
scipy.stats.linregress ( \(x, y=\) None)
```

Calculate a regression line
This computes a least-squares regression for two sets of measurements.

Parameters

\mathbf{x}, \mathbf{y} : array_like
two sets of measurements. Both arrays should have the same length. If only x is given (and $\mathrm{y}=$ None), then it must be a two-dimensional array where one dimension has length 2. The two sets of measurements are then found by splitting the array along the length- 2 dimension.

Returns

slope : float
slope of the regression line
intercept : float
intercept of the regression line
r-value : float
correlation coefficient
p-value : float
two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero.
stderr : float
Standard error of the estimate

Examples

```
>>> from scipy import stats
>>> import numpy as np
>>> x = np.random.random(10)
>>> y = np.random.random(10)
>>> slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
```

\# To get coefficient of determination (r_squared)

```
>>> print "r-squared:", r_value**2
r-squared: 0.15286643777
```

```
ttest_1samp(a, popmean[, axis]) Calculates the T-test for the mean of ONE group of scores a.
ttest_ind(a, b[, axis]) Calculates the T-test for the means of TWO INDEPENDENT samples of
    scores.
ttest_rel(a, b[, axis]) Calculates the T-test on TWO RELATED samples of scores, a and b.
kstest(rvs, cdf, **kwds[, args, N, Perform the Kolmogorov-Smirnov test for goodness of fit
...])
chisquare(f_obs[,f_exp, ddof]) Calculates a one-way chi square test.
ks_2samp(data1, data2) Computes the Kolmogorov-Smirnof statistic on 2 samples.
mannwhitneyu(x,y[, Computes the Mann-Whitney rank test on samples x and y.
use_continuity])
tiecorrect(rankvals) Tie-corrector for ties in Mann Whitney U and Kruskal Wallis H tests.
ranksums(x,y) Compute the Wilcoxon rank-sum statistic for two samples.
wilcoxon(x[,y]) Calculate the Wilcoxon signed-rank test.
kruskal(*args) Compute the Kruskal-Wallis H-test for independent samples
friedmanchisquare(*args) Computes the Friedman test for repeated measurements
```

scipy.stats.ttest_1samp (a, popmean, axis=0)

Calculates the T-test for the mean of ONE group of scores a.
This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent observations is equal to the given population mean, popmean.

Parameters

a: array_like
sample observation
popmean : float or array_like
expected value in null hypothesis, if array_like than it must have the same shape as a excluding the axis dimension
axis : int, optional, (default axis=0)
Axis can equal None (ravel array first), or an integer (the axis over which to operate on a).

Returns

\mathbf{t} : float or array
t-statistic
prob : float or array
two-tailed p-value

Examples

```
>>> from scipy import stats
>>> import numpy as np
>>> #fix seed to get the same result
>>> np.random.seed(7654567)
>>> rvs = stats.norm.rvs(loc=5,scale=10,size=(50,2))
```

test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the second case and don't reject it in the first case

```
>>> stats.ttest_1samp(rvs,5.0)
(array([-0.68014479, -0.04323899]), array([ 0.49961383, 0.96568674]))
>>> stats.ttest_1samp(rvs,0.0)
(array([ 2.77025808, 4.11038784]), array([ 0.00789095, 0.00014999]))
```

examples using axis and non-scalar dimension for population mean

```
>>> stats.ttest_1samp(rvs,[5.0,0.0])
(array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs.T, [5.0,0.0],axis=1)
(array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs,[[5.0],[0.0]])
(array([[-0.68014479, -0.04323899],
    [2.77025808, 4.11038784]]), array([[ 4.99613833e-01, 9.65686743e-01],
    [7.89094663e-03, 1.49986458e-04]]))
scipy.stats.ttest_ind(a,b,axis=0)
Calculates the T-test for the means of TWO INDEPENDENT samples of scores.
```

This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected) values.

Parameters

\mathbf{a}, \mathbf{b} : sequence of ndarrays
The arrays must have the same shape, except in the dimension corresponding to axis (the first, by default).
axis : int, optional
Axis can equal None (ravel array first), or an integer (the axis over which to operate on a and b).

Returns

t : float or array
t-statistic
prob : float or array
two-tailed p-value

Notes

We can use this test, if we observe two independent samples from the same or different population, e.g. exam scores of boys and girls or of two ethnic groups. The test measures whether the average (expected) value differs significantly across samples. If we observe a large p-value, for example larger than 0.05 or 0.1 , then we cannot
reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. $1 \%, 5 \%$ or 10%, then we reject the null hypothesis of equal averages.

Examples

```
>>> from scipy import stats
>>> import numpy as np
>>> #fix seed to get the same result
>>> np.random.seed(12345678)
```

test with sample with identical means

```
>>> rvs1 = stats.norm.rvs(loc=5,scale=10, size=500)
>>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> stats.ttest_ind(rvs1,rvs2)
(0.26833823296239279, 0.78849443369564765)
```

test with sample with different means

```
>>> rvs3 = stats.norm.rvs(loc=8,scale=10, size=500)
```

>>> stats.ttest_ind(rvs1,rvs3)
$(-5.0434013458585092,5.4302979468623391 \mathrm{e}-007$)
scipy.stats.ttest_rel (a, b, axis=0)
Calculates the T-test on TWO RELATED samples of scores, a and b.
This is a two-sided test for the null hypothesis that 2 related or repeated samples have identical average (expected) values.

Parameters

\mathbf{a}, \mathbf{b} : sequence of ndarrays
The arrays must have the same shape.
axis : int, optional, (default axis=0)
Axis can equal None (ravel array first), or an integer (the axis over which to operate on a and b).

Returns

\mathbf{t} : float or array
t-statistic
prob : float or array
two-tailed p-value

Notes

Examples for the use are scores of the same set of student in different exams, or repeated sampling from the same units. The test measures whether the average score differs significantly across samples (e.g. exams). If we observe a large p-value, for example greater than 0.05 or 0.1 then we cannot reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. $1 \%, 5 \%$ or 10%, then we reject the null hypothesis of equal averages. Small p-values are associated with large t-statistics.

Examples

```
>>> from scipy import stats
>>> np.random.seed(12345678) # fix random seed to get same numbers
>>> rvsl = stats.norm.rvs(loc=5,scale=10,size=500)
```

```
>>> rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) +
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs2)
(0.24101764965300962, 0.80964043445811562)
>>> rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) +
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs3)
(-3.9995108708727933, 7.3082402191726459e-005)
```

scipy.stats.kstest (rvs, cdf, args=(), N=20, alternative='two_sided', mode='approx', $* * k w d s$)

Perform the Kolmogorov-Smirnov test for goodness of fit
This performs a test of the distribution $\mathrm{G}(\mathrm{x})$ of an observed random variable against a given distribution $\mathrm{F}(\mathrm{x})$. Under the null hypothesis the two distributions are identical, $\mathrm{G}(\mathrm{x})=\mathrm{F}(\mathrm{x})$. The alternative hypothesis can be either 'two_sided' (default), 'less' or 'greater'. The KS test is only valid for continuous distributions.

Parameters

rvs : string or array or callable
string: name of a distribution in scipy.stats
array: 1-D observations of random variables
callable: function to generate random variables, requires keyword argument size
cdf : string or callable
string: name of a distribution in scipy.stats, if rvs is a string then cdf can evaluate to
False or be the same as rvs callable: function to evaluate cdf
args : tuple, sequence
distribution parameters, used if rvs or cdf are strings
\mathbf{N} : int
sample size if rvs is string or callable
alternative : 'two_sided' (default), 'less' or 'greater'
defines the alternative hypothesis (see explanation)
mode : 'approx' (default) or 'asymp'
defines the distribution used for calculating p -value
'approx' : use approximation to exact distribution of test statistic
'asymp' : use asymptotic distribution of test statistic

Returns

D : float
KS test statistic, either D, D+ or D-
p-value : float
one-tailed or two-tailed p-value

Notes

In the one-sided test, the alternative is that the empirical cumulative distribution function of the random variable is "less" or "greater" than the cumulative distribution function $\mathrm{F}(\mathrm{x})$ of the hypothesis, $\mathrm{G}(\mathrm{x})<=\mathrm{F}(\mathrm{x})$, resp. $\mathrm{G}(\mathrm{x})>=\mathrm{F}(\mathrm{x})$.

Examples

```
>>> from scipy import stats
>>> import numpy as np
>>> from scipy.stats import kstest
>>> x = np.linspace(-15,15,9)
>>> kstest(x,'norm')
(0.44435602715924361, 0.038850142705171065)
>>> np.random.seed(987654321) # set random seed to get the same result
>>> kstest('norm','' ,N=100)
(0.058352892479417884, 0.88531190944151261)
```

is equivalent to this

```
>>> np.random.seed(987654321)
>>> kstest(stats.norm.rvs(size=100),'norm')
(0.058352892479417884,0.88531190944151261)
```

Test against one-sided alternative hypothesis:

```
>>> np.random.seed(987654321)
```

Shift distribution to larger values, so that cdf_dgp(x)<norm.cdf(x):

```
>>> x = stats.norm.rvs(loc=0.2, size=100)
>>> kstest(x,'norm', alternative = 'less')
(0.12464329735846891, 0.040989164077641749)
```

Reject equal distribution against alternative hypothesis: less

```
>>> kstest(x,'norm', alternative = 'greater')
(0.0072115233216311081,0.98531158590396395)
```

Don't reject equal distribution against alternative hypothesis: greater

```
>>> kstest(x,'norm', mode=' asymp')
(0.12464329735846891, 0.08944488871182088)
```

Testing t distributed random variables against normal distribution:
With 100 degrees of freedom the t distribution looks close to the normal distribution, and the kstest does not reject the hypothesis that the sample came from the normal distribution

```
>>> np.random.seed(987654321)
>>> stats.kstest(stats.t.rvs(100, size=100),'norm')
(0.072018929165471257,0.67630062862479168)
```

With 3 degrees of freedom the t distribution looks sufficiently different from the normal distribution, that we can reject the hypothesis that the sample came from the normal distribution at a alpha= 10% level
>>> np.random.seed(987654321)
\ggg stats.kstest (stats.t.rvs (3, size=100),' norm')
($0.131016895759829,0.058826222555312224$)
scipy.stats.chisquare (f _obs, f_{-}exp $=N o n e, d d o f=0$)
Calculates a one-way chi square test.
The chi square test tests the null hypothesis that the categorical data has the given frequencies.

Parameters

f_obs : array
observed frequencies in each category
f_exp : array, optional
expected frequencies in each category. By default the categories are assumed to be equally likely.
ddof : int, optional
adjustment to the degrees of freedom for the p -value

Returns

chisquare statistic : float
The chisquare test statistic
p:float
The p -value of the test.

Notes

This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is that all of the observed and expected frequencies should be at least 5 . The default degrees of freedom, $\mathrm{k}-1$, are for the case when no parameters of the distribution are estimated. If p parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are $\mathrm{k}-1$-p. If the parameters are estimated in a different way, then then the dof can be between $\mathrm{k}-1-\mathrm{p}$ and $\mathrm{k}-1$. However, it is also possible that the asymptotic distributions is not a chisquare, in which case this test is not appropriate.

References

[R77]
scipy.stats.ks_2samp (datal, data2)
Computes the Kolmogorov-Smirnof statistic on 2 samples.
This is a two-sided test for the null hypothesis that 2 independent samples are drawn from the same continuous distribution.

Parameters

\mathbf{a}, \mathbf{b} : sequence of 1-D ndarrays
two arrays of sample observations assumed to be drawn from a continuous distribution, sample sizes can be different

Returns
 D : float

KS statistic
p-value : float
two-tailed p-value

Notes

This tests whether 2 samples are drawn from the same distribution. Note that, like in the case of the one-sample K -S test, the distribution is assumed to be continuous.
This is the two-sided test, one-sided tests are not implemented. The test uses the two-sided asymptotic Kolmogorov-Smirnov distribution.

If the K-S statistic is small or the p-value is high, then we cannot reject the hypothesis that the distributions of the two samples are the same.

Examples

```
>>> from scipy import stats
>>> import numpy as np
>>> from scipy.stats import ks_2samp
>>> #fix random seed to get the same result
>>> np.random.seed(12345678);
>>> n1 = 200 # size of first sample
>>> n2 = 300 # size of second sample
```

different distribution we can reject the null hypothesis since the pvalue is below 1%

```
>>> rvs1 = stats.norm.rvs(size=n1,loc=0.,scale=1);
>>> rvs2 = stats.norm.rvs(size=n2,loc=0.5,scale=1.5)
>>> ks_2samp(rvs1,rvs2)
(0.20833333333333337, 4.6674975515806989e-005)
```

slightly different distribution we cannot reject the null hypothesis at a 10% or lower alpha since the pvalue at 0.144 is higher than 10%

```
>>> rvs3 = stats.norm.rvs(size=n2,loc=0.01,scale=1.0)
>>> ks_2samp(rvs1,rvs3)
(0.10333333333333333, 0.14498781825751686)
```

identical distribution we cannot reject the null hypothesis since the pvalue is high, 41%

```
>>> rvs4 = stats.norm.rvs(size=n2,loc=0.0,scale=1.0)
>>> ks_2samp(rvs1,rvs4)
(0.07999999999999996, 0.41126949729859719)
```

scipy.stats.mannwhitneyu (x, y, use_continuity=True)
Computes the Mann-Whitney rank test on samples x and y .

Parameters

\mathbf{x}, \mathbf{y} : array_like
Array of samples, should be one-dimensional.
use_continuity : bool, optional
Whether a continuity correction (1/2.) should be taken into account. Default is True.

Returns

\mathbf{u} : float
The Mann-Whitney statistics.
prob : float
One-sided p-value assuming a asymptotic normal distribution.

Notes

Use only when the number of observation in each sample is >20 and you have 2 independent samples of ranks. Mann-Whitney U is significant if the u-obtained is LESS THAN or equal to the critical value of U .

This test corrects for ties and by default uses a continuity correction. The reported p -value is for a one-sided hypothesis, to get the two-sided p-value multiply the returned p -value by 2 .
scipy.stats.tiecorrect (rankvals)
Tie-corrector for ties in Mann Whitney U and Kruskal Wallis H tests. See Siegel, S. (1956) Nonparametric
Statistics for the Behavioral Sciences. New York: McGraw-Hill. Code adapted from IStat rankind.c code.

Returns

T correction factor for U or H :
scipy.stats.ranksums (x, y)
Compute the Wilcoxon rank-sum statistic for two samples.
The Wilcoxon rank-sum test tests the null hypothesis that two sets of measurements are drawn from the same distribution. The alternative hypothesis is that values in one sample are more likely to be larger than the values in the other sample.

This test should be used to compare two samples from continuous distributions. It does not handle ties between measurements in x and y . For tie-handling and an optional continuity correction see 'stats.mannwhitneyu'_

Parameters

$\mathbf{x , y}$: array_like
The data from the two samples

Returns

z-statistic : float
The test statistic under the large-sample approximation that the rank sum statistic is normally distributed
p-value : float
The two-sided p-value of the test

References

[R94]
scipy.stats.wilcoxon ($x, y=$ None)
Calculate the Wilcoxon signed-rank test.
The Wilcoxon signed-rank test tests the null hypothesis that two related samples come from the same distribution. It is a a non-parametric version of the paired T-test.

Parameters

\mathbf{x} : array_like
The first set of measurements.
\mathbf{y} : array_like, optional
The second set of measurements. If y is not given, then the x array is considered to be the differences between the two sets of measurements.

Returns

z-statistic : float
The test statistic under the large-sample approximation that the signed-rank statistic is normally distributed.
p-value : float
The two-sided p-value for the test.

Notes

Because the normal approximation is used for the calculations, the samples used should be large. A typical rule is to require that $\mathrm{n}>20$.

References

[R96]
scipy.stats.kruskal (*args)
Compute the Kruskal-Wallis H-test for independent samples
The Kruskal-Wallis H-test tests the null hypothesis that the population median of all of the groups are equal. It is a non-parametric version of ANOVA. The test works on 2 or more independent samples, which may have different sizes. Note that rejecting the null hypothesis does not indicate which of the groups differs. Post-hoc comparisons between groups are required to determine which groups are different.

Parameters

sample1, sample2, ... : array_like
Two or more arrays with the sample measurements can be given as arguments.

Returns

H-statistic : float
The Kruskal-Wallis H statistic, corrected for ties
p-value : float
The p-value for the test using the assumption that H has a chi square distribution

Notes

Due to the assumption that H has a chi square distribution, the number of samples in each group must not be too small. A typical rule is that each sample must have at least 5 measurements.

References

[R83]
scipy.stats.friedmanchisquare (*args)
Computes the Friedman test for repeated measurements
The Friedman test tests the null hypothesis that repeated measurements of the same individuals have the same distribution. It is often used to test for consistency among measurements obtained in different ways. For example, if two measurement techniques are used on the same set of individuals, the Friedman test can be used to determine if the two measurement techniques are consistent.

Parameters

measurements1, measurements2, measurements3... : array_like
Arrays of measurements. All of the arrays must have the same number of elements. At least 3 sets of measurements must be given.

Returns

friedman chi-square statistic : float
the test statistic, correcting for ties
p-value : float
the associated p-value assuming that the test statistic has a chi squared distribution

Notes

Due to the assumption that the test statistic has a chi squared distribution, the p -value is only reliable for $\mathrm{n}>10$ and more than 6 repeated measurements.

References

[R82]

ansari(x, y)	Perform the Ansari-Bradley test for equal scale parameters
bartlett $(*$ args	Perform Bartlett's test for equal variances
levene(*args, **kwds)	Perform Levene test for equal variances.
shapiro(x[, a, reta])	Perform the Shapiro-Wilk test for normality.
anderson(x[, dist $])$	Anderson-Darling test for data coming from a particular distribution
binom_test $(\mathrm{x}[, \mathrm{n}, \mathrm{p}])$	Perform a test that the probability of success is p.
fligner(*args, **kwds)	Perform Fligner's test for equal variances.
mood(x, y)	Perform Mood's test for equal scale parameters.
oneway(*args, **kwds)	Test for equal means in two or more samples from the normal distribution.

scipy.stats.ansari (x, y)
Perform the Ansari-Bradley test for equal scale parameters
The Ansari-Bradley test is a non-parametric test for the equality of the scale parameter of the distributions from which two samples were drawn.

Parameters

\mathbf{x}, \mathbf{y} : array_like
arrays of sample data

Returns

p-value : float
The p -value of the hypothesis test

See Also:

fligner
A non-parametric test for the equality of k variances
mood
A non-parametric test for the equality of two scale parameters

Notes

The p -value given is exact when the sample sizes are both less than 55 and there are no ties, otherwise a normal approximation for the p -value is used.

References

[R73]
scipy.stats.bartlett (*args)
Perform Bartlett's test for equal variances
Bartlett's test tests the null hypothesis that all input samples are from populations with equal variances. For samples from significantly non-normal populations, Levene’s test 'levene ${ }^{6}$ _ is more robust.

Parameters
sample1, sample2,... : array_like
arrays of sample data. May be different lengths.

Returns

T: float
The test statistic.
p-value : float
The p -value of the test.

References

[R74], [R75]
scipy.stats.levene (*args, **kwds)
Perform Levene test for equal variances.
The Levene test tests the null hypothesis that all input samples are from populations with equal variances. Levene's test is an alternative to Bartlett's test bartlett in the case where there are significant deviations from normality.

Parameters

sample1, sample2, ... : array_like
The sample data, possibly with different lengths
center : \{ 'mean', 'median', 'trimmed'\}, optional
Which function of the data to use in the test. The default is 'median'.
proportiontocut : float, optional
When center is 'trimmed', this gives the proportion of data points to cut from each end. (See scipy.stats.trim_mean.) Default is 0.05.

Returns

W : float
The test statistic.
p-value : float
The p-value for the test.

Notes

Three variations of Levene's test are possible. The possibilities and their recommended usages are:
-'median' : Recommended for skewed (non-normal) distributions>
-'mean’ : Recommended for symmetric, moderate-tailed distributions.

- trimmed' : Recommended for heavy-tailed distributions.

References

[R84], [R85], [R86]
scipy.stats.shapiro ($x, a=$ None, reta=False)
Perform the Shapiro-Wilk test for normality.
The Shapiro-Wilk test tests the null hypothesis that the data was drawn from a normal distribution.

Parameters

\mathbf{x} : array_like
Array of sample data.
a : array_like, optional
Array of internal parameters used in the calculation. If these are not given, they will be computed internally. If x has length n, then a must have length $n / 2$.
reta : bool, optional
Whether or not to return the internally computed a values. The default is False.

Returns

W : float
The test statistic.
p-value : float
The p-value for the hypothesis test.
a : array_like, optional
If reta is True, then these are the internally computed "a" values that may be passed into this function on future calls.

See Also:

```
anderson
```

The Anderson-Darling test for normality

References

[R95]
scipy.stats.anderson (x, dist='norm')
Anderson-Darling test for data coming from a particular distribution
The Anderson-Darling test is a modification of the Kolmogorov- Smirnov test kstest_ for the null hypothesis that a sample is drawn from a population that follows a particular distribution. For the Anderson-Darling test, the critical values depend on which distribution is being tested against. This function works for normal, exponential, logistic, or Gumbel (Extreme Value Type I) distributions.

Parameters

\mathbf{x} : array_like
array of sample data
dist : \{ 'norm','expon','logistic','gumbel','extreme1'\}, optional
the type of distribution to test against. The default is 'norm' and 'extreme1' is a synonym for 'gumbel'

Returns

A2 : float
The Anderson-Darling test statistic
critical : list
The critical values for this distribution
sig : list
The significance levels for the corresponding critical values in percents. The function returns critical values for a differing set of significance levels depending on the distribution that is being tested against.

Notes

Critical values provided are for the following significance levels:

normal/exponenential

$15 \%, 10 \%, 5 \%, 2.5 \%, 1 \%$
logistic
$25 \%, 10 \%, 5 \%, 2.5 \%, 1 \%, 0.5 \%$

Gumbel

$25 \%, 10 \%, 5 \%, 2.5 \%, 1 \%$
If A2 is larger than these critical values then for the corresponding significance level, the null hypothesis that the data come from the chosen distribution can be rejected.

References

[R67], [R68], [R69], [R70], [R71], [R72]
scipy.stats.binom_test ($x, n=$ None, $p=0.5$)
Perform a test that the probability of success is p .
This is an exact, two-sided test of the null hypothesis that the probability of success in a Bernoulli experiment is p.

Parameters

\mathbf{x} : integer or array_like
the number of successes, or if x has length 2 , it is the number of successes and the number of failures.
\mathbf{n} : integer
the number of trials. This is ignored if x gives both the number of successes and failures
p : float, optional
The hypothesized probability of success. $0<=\mathrm{p}<=1$. The default value is $\mathrm{p}=0.5$

Returns

p-value : float
The p-value of the hypothesis test

References

[R76]
scipy.stats.fligner (*args, **kwds)
Perform Fligner's test for equal variances.
Fligner's test tests the null hypothesis that all input samples are from populations with equal variances. Fligner's test is non-parametric in contrast to Bartlett's test bartlett and Levene's test levene.

Parameters

sample1, sample2, ... : array_like
arrays of sample data. Need not be the same length
center : \{ 'mean', 'median', 'trimmed' \}, optional
keyword argument controlling which function of the data is used in computing the test statistic. The default is 'median'.
proportiontocut : float, optional
When center is 'trimmed', this gives the proportion of data points to cut from each end. (See scipy.stats.trim_mean.) Default is 0.05 .

Returns

Xsq : float
the test statistic
p-value : float
the p -value for the hypothesis test

Notes

As with Levene's test there are three variants of Fligner's test that differ by the measure of central tendency used in the test. See levene for more information.

References

[R80], [R81]
scipy.stats.mood (x, y)
Perform Mood's test for equal scale parameters.
Mood's two-sample test for scale parameters is a non-parametric test for the null hypothesis that two samples are drawn from the same distribution with the same scale parameter.

Parameters

\mathbf{x}, \mathbf{y} : array_like
Arrays of sample data.

Returns

p-value : float
The p-value for the hypothesis test.

See Also:

fligner

A non-parametric test for the equality of k variances
ansari
A non-parametric test for the equality of 2 variances
bartlett
A parametric test for equality of k variances in normal samples

levene

A parametric test for equality of k variances

Notes

The data are assumed to be drawn from probability distributions $f(x)$ and $f(x / s) /$ s respectively, for some probability density function f . The null hypothesis is that $\mathrm{s}=1$.

```
scipy.stats.oneway (*args, **kwds)
```

Test for equal means in two or more samples from the normal distribution.
If the keyword parameter <equal_var> is true then the variances are assumed to be equal, otherwise they are not assumed to be equal (default).

Return test statistic and the p-value giving the probability of error if the null hypothesis (equal means) is rejected at this value.

```
glm(data, para) Calculates a linear model fit ...
```

scipy.stats.glm (data, para)

Calculates a linear model fit ... anova/ancova/lin-regress/t-test/etc. Taken from:
Peterson et al. Statistical limitations in functional neuroimaging I. Non-inferential methods and statistical models. Phil Trans Royal Soc Lond B 354: 1239-1260.

Returns

statistic, p-value ???:

3.19.4 Plot-tests

```
probplot(x[, Calculate quantiles for a probability plot of sample data against a specified theoretical
sparams, dist, fit, plot]) distribution.
ppcc_max(x[,brack, Returns the shape parameter that maximizes the probability plot correlation coefficient
dist]) for the given data to a one-parameter family of distributions.
ppcc_plot(x, a,b[,\quad Returns (shape, ppcc), and optionally plots shape vs.
dist, plot, N])
```

scipy.stats.probplot (x, sparams=(), dist='norm', fit=True, plot=None)
Calculate quantiles for a probability plot of sample data against a specified theoretical distribution.
probplot optionally calculates a best-fit line for the data and plots the results using Matplotlib or a given plot
function.

Parameters

\mathbf{x} : array_like
Sample/response data from which probplot creates the plot.
sparams : tuple, optional
Distribution-specific shape parameters (location(s) and scale(s)).
dist : str, optional
Distribution function name. The default is 'norm' for a normal probability plot.
fit : bool, optional
Fit a least-squares regression (best-fit) line to the sample data if True (default).
plot : object, optional
If given, plots the quantiles and least squares fit. plot is an object with methods "plot", "title", "xlabel", "ylabel" and "text". The matplotlib.pyplot module or a
Matplotlib axes object can be used, or a custom object with the same methods. By
default, no plot is created.

Returns

(osm, osr) : tuple of ndarrays
Tuple of theoretical quantiles (osm, or order statistic medians) and ordered responses (osr).
(slope, intercept, r) : tuple of floats, optional

Tuple containing the result of the least-squares fit, if that is performed by probplot. r is the square root of the coefficient of determination. If $f i t=F a l$ se and plot=None, this tuple is not returned.

Notes

Even if plot is given, the figure is not shown or saved by probplot; plot.show() or plot.savefig('figname.png') should be used after calling probplot.

Examples

```
>>> import scipy.stats as stats
>>> nsample = 100
>>> np.random.seed(7654321)
```

A t distribution with small degrees of freedom:

```
>>> axl = plt.subplot(221)
>>> x = stats.t.rvs(3, size=nsample)
>>> res = stats.probplot(x, plot=plt)
```

A t distribution with larger degrees of freedom:

```
>>> ax2 = plt.subplot(222)
>>> x = stats.t.rvs(25, size=nsample)
>>> res = stats.probplot(x, plot=plt)
```

A mixture of 2 normal distributions with broadcasting:

```
>>> ax3 = plt.subplot(223)
>>> x = stats.norm.rvs(loc=[0,5], scale=[1,1.5], size=(nsample/2.,2)).ravel()
>>> res = stats.probplot(x, plot=plt)
```

A standard normal distribution:

```
>>> ax4 = plt.subplot(224)
>>> x = stats.norm.rvs(loc=0, scale=1, size=nsample)
>>> res = stats.probplot(x, plot=plt)
```

scipy.stats.ppcc_max (x, brack=(0.0, 1.0), dist='tukeylambda')
Returns the shape parameter that maximizes the probability plot correlation coefficient for the given data to a one-parameter family of distributions.

See also ppcc_plot
scipy.stats.ppcc_plot (x, a, b, dist='tukeylambda', plot=None, $N=80$)
Returns (shape, ppcc), and optionally plots shape vs. ppcc (probability plot correlation coefficient) as a function of shape parameter for a one-parameter family of distributions from shape value a to b.

See also ppcc_max

3.19.5 Masked statistics functions

Statistical functions for masked arrays (scipy.stats.mstats)

This module contains a large number of statistical functions that can be used with masked arrays.
Most of these functions are similar to those in scipy.stats but might have small differences in the API or in the algorithm used. Since this is a relatively new package, some API changes are still possible.

Table 3.22 - continued fron

scipy.stats.mstats.argstoarray (*args)
Constructs a 2D array from a sequence of sequences. Sequences are filled with missing values to match the length of the longest sequence.

Returns

output : MaskedArray
a (mxn) masked array, where m is the number of arguments and n the length of the longest argument.
scipy.stats.mstats.betai (a, b, x)
Returns the incomplete beta function.
$I_{-} x(a, b)=1 / B(a, b)^{*}\left(\operatorname{Integral}(0, x)\right.$ of $\left.t^{\wedge}(a-1)(1-t)^{\wedge}(b-1) d t\right)$
where $a, b>0$ and $B(a, b)=G(a) * G(b) /(G(a+b))$ where $G(a)$ is the gamma function of a.
The standard broadcasting rules apply to a, b, and x .

Parameters

a : array_like or float >0
b : array_like or float >0
\mathbf{x} : array_like or float
x will be clipped to be no greater than 1.0 .

Returns

betai : ndarray
Incomplete beta function.

```
scipy.stats.mstats.chisquare (f_obs, f_exp=None)
```

Calculates a one-way chi square test.
The chi square test tests the null hypothesis that the categorical data has the given frequencies.
Parameters
f_obs : array
observed frequencies in each category
f_exp : array, optional
expected frequencies in each category. By default the categories are assumed to be equally likely.
ddof : int, optional
adjustment to the degrees of freedom for the p -value

Returns

chisquare statistic : float

The chisquare test statistic
p: float
The p-value of the test.

Notes

This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is that all of the observed and expected frequencies should be at least 5. The default degrees of freedom, $\mathrm{k}-1$, are for the case when no parameters of the distribution are estimated. If p parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are $\mathrm{k}-1-\mathrm{p}$. If the parameters are estimated in a different way, then then the dof can be between k-1-p and k-1. However, it is also possible that the asymptotic distributions is not a chisquare, in which case this test is not appropriate.

References

[R88]

```
scipy.stats.mstats.count_tied_groups(x,use_missing=False)
```


Counts the number of tied values in x, and returns a dictionary

(nb of ties: nb of groups).

Parameters

\mathbf{x} : sequence
Sequence of data on which to counts the ties
use_missing : boolean
Whether to consider missing values as tied.

Examples

```
>>> z = [0, 0, 0, 2, 2, 2, 3, 3, 4, 5, 6]
>>> count_tied_groups(z)
>>> {2:1, 3:2}
>>> # The ties were 0 (3x), 2 (3x) and 3 (2x)
>>> z = ma.array([0, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6])
>>> count_tied_groups(z)
>>> {2:2, 3:1}
>>> # The ties were 0 (2x), 2 (3x) and 3 (2x)
>>> z[[1,-1]] = masked
>>> count_tied_groups(z, use_missing=True)
>>> {2:2, 3:1}
>>> # The ties were 2 (3x), 3 (2x) and masked (2x)
scipy.stats.mstats.describe ( \(a\), axis=0)
Computes several descriptive statistics of the passed array.
```


Parameters

a : array
axis : int or None

Returns

\mathbf{n} : int
(size of the data (discarding missing values)
mm : (int, int)
\min , \max
arithmetic mean : float
unbiased variance : float
biased skewness : float
biased kurtosis : float

Examples

```
>>> ma = np.ma.array(range(6), mask=[0, 0, 0, 1, 1, 1])
>>> describe(ma)
(array(3),
    (0, 2),
    1.0,
    1.0,
    masked_array(data = 0.0,
            mask = False,
            fill_value = 1e+20)
,
    -1.5)
scipy.stats.mstats.f_oneway(*args)
```

Performs a 1-way ANOVA, returning an F-value and probability given any number of groups. From Heiman, pp.394-7.
Usage: f_oneway (*args) where *args is 2 or more arrays, one per treatment group
Returns: f-value, probability
scipy.stats.mstats.f_value_wilks_lambda ($E R, E F$, dfnum, dfden, a, b)
Calculation of Wilks lambda F-statistic for multivarite data, per Maxwell \& Delaney p.657.

```
scipy.stats.mstats.find_repeats(arr)
```

Find repeats in arr and return a tuple (repeats, repeat_count).
Masked values are discarded.

Parameters

arr : sequence
Input array. The array is flattened if it is not 1D.

Returns

repeats : ndarray
Array of repeated values.

counts

[ndarray] Array of counts.
scipy.stats.mstats.friedmanchisquare (*args)
Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA. This function calculates the Friedman Chi-square test for repeated measures and returns the result, along with the associated probability value.

Each input is considered a given group. Ideally, the number of treatments among each group should be equal. If this is not the case, only the first n treatments are taken into account, where n is the number of treatments of
the smallest group. If a group has some missing values, the corresponding treatments are masked in the other groups. The test statistic is corrected for ties.

Masked values in one group are propagated to the other groups.
Returns: chi-square statistic, associated p-value
scipy.stats.mstats.gmean (a, axis=0)
Compute the geometric mean along the specified axis.
Returns the geometric average of the array elements. That is: n -th root of (x1*x2* \ldots * xn)
Parameters
a : array_like
Input array or object that can be converted to an array.
axis : int, optional, default axis=0
Axis along which the geometric mean is computed.
dtype : dtype, optional
Type of the returned array and of the accumulator in which the elements are summed.
If dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a precision less than that of the default platform integer. In that case, the default platform integer is used.

Returns
gmean : ndarray,
see dtype parameter above

See Also:

numpy.mean
Arithmetic average
numpy.average
Weighted average
hmean
Harmonic mean

Notes

The geometric average is computed over a single dimension of the input array, axis=0 by default, or all values in the array if axis=None. float64 intermediate and return values are used for integer inputs.

Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number and infinity because masked arrays automatically mask any non-finite values.
scipy.stats.mstats.hmean (a, axis=0)
Calculates the harmonic mean along the specified axis.
That is: $n /(1 / x 1+1 / x 2+\ldots+1 / x n)$

Parameters

a : array_like
Input array, masked array or object that can be converted to an array.
axis : int, optional, default axis=0
Axis along which the harmonic mean is computed.
dtype : dtype, optional
Type of the returned array and of the accumulator in which the elements are summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a precision less than that of the default platform integer. In that case, the default platform integer is used.

Returns

hmean : ndarray,
see dtype parameter above

See Also:

```
numpy.mean
```

Arithmetic average
numpy. average
Weighted average
gmean
Geometric mean

Notes

The harmonic mean is computed over a single dimension of the input array, axis=0 by default, or all values in the array if axis=None. float64 intermediate and return values are used for integer inputs.
Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number and infinity.
scipy.stats.mstats.kendalltau (x, y, use_ties=True, use_missing=False)
Computes Kendall's rank correlation tau on two variables x and y.

Parameters

xdata: sequence :
First data list (for example, time).
ydata: sequence :
Second data list.
use_ties: $\{$ True, False\} optional :
Whether ties correction should be performed.
use_missing: $\{$ False, True $\}$ optional :
Whether missing data should be allocated a rank of 0 (False) or the average rank (True)

Returns

tau : float
Kendall tau
prob
[float] Approximate 2 -side p-value.
scipy.stats.mstats.kendalltau_seasonal (x)

Computes a multivariate extension Kendall's rank correlation tau, designed

for seasonal data.

Parameters

x: 2D array :
Array of seasonal data, with seasons in columns.
scipy.stats.mstats.kruskalwallis (*args)
Compute the Kruskal-Wallis H-test for independent samples
The Kruskal-Wallis H-test tests the null hypothesis that the population median of all of the groups are equal. It is a non-parametric version of ANOVA. The test works on 2 or more independent samples, which may have different sizes. Note that rejecting the null hypothesis does not indicate which of the groups differs. Post-hoc comparisons between groups are required to determine which groups are different.

Parameters

sample1, sample2, ... : array_like
Two or more arrays with the sample measurements can be given as arguments.

Returns

H-statistic : float
The Kruskal-Wallis H statistic, corrected for ties
p-value : float
The p -value for the test using the assumption that H has a chi square distribution

Notes

Due to the assumption that H has a chi square distribution, the number of samples in each group must not be too small. A typical rule is that each sample must have at least 5 measurements.

References

[R89]
scipy.stats.mstats.kruskalwallis (*args)
Compute the Kruskal-Wallis H-test for independent samples
The Kruskal-Wallis H-test tests the null hypothesis that the population median of all of the groups are equal. It is a non-parametric version of ANOVA. The test works on 2 or more independent samples, which may have different sizes. Note that rejecting the null hypothesis does not indicate which of the groups differs. Post-hoc comparisons between groups are required to determine which groups are different.

Parameters
sample1, sample2, ... : array_like
Two or more arrays with the sample measurements can be given as arguments.

Returns

H-statistic : float
The Kruskal-Wallis H statistic, corrected for ties
p-value : float
The p -value for the test using the assumption that H has a chi square distribution

Notes

Due to the assumption that H has a chi square distribution, the number of samples in each group must not be too small. A typical rule is that each sample must have at least 5 measurements.

References

[R89]
scipy.stats.mstats.ks_twosamp (datal, data2, alternative='two_sided')
Computes the Kolmogorov-Smirnov test on two samples. Missing values are discarded.

Parameters
 data1: sequence

First data set

data2

[sequence] Second data set

alternative

[\{ 'two_sided', 'less', 'greater'\} optional] Indicates the alternative hypothesis.

Returns

d : float
Value of the Kolmogorov Smirnov test
p
[float] Corresponding p-value.
scipy.stats.mstats.ks_twosamp (data1, data2, alternative='two_sided')
Computes the Kolmogorov-Smirnov test on two samples. Missing values are discarded.
Parameters
data1 : sequence
First data set
data2
[sequence] Second data set
alternative
[' 'two_sided', 'less', 'greater'\} optional] Indicates the alternative hypothesis.

Returns

d : float
Value of the Kolmogorov Smirnov test
p
[float] Corresponding p-value.
scipy.stats.mstats.kurtosis (a, axis=0, fisher=True, bias=True)
Computes the kurtosis (Fisher or Pearson) of a dataset.
Kurtosis is the fourth central moment divided by the square of the variance. If Fisher's definition is used, then 3.0 is subtracted from the result to give 0.0 for a normal distribution.

If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment estimators

Use kurtosistest to see if result is close enough to normal.

Parameters

a : array
data for which the kurtosis is calculated
axis : int or None
Axis along which the kurtosis is calculated
fisher : bool
If True, Fisher's definition is used (normal $==>0.0$). If False, Pearson's definition is used (normal ==> 3.0).
bias : bool
If False, then the calculations are corrected for statistical bias.

Returns

kurtosis : array
The kurtosis of values along an axis. If all values are equal, return -3 for Fisher's definition and 0 for Pearson's definition.

References

[CRCProbStat2000] Section 2.2.25
[CRCProbStat2000]
scipy.stats.mstats.kurtosistest (a, axis=0)
Tests whether a dataset has normal kurtosis
This function tests the null hypothesis that the kurtosis of the population from which the sample was drawn is that of the normal distribution: kurtosis $=3(n-1) /(n+1)$.

Parameters

a : array
array of the sample data
axis : int or None
the axis to operate along, or None to work on the whole array. The default is the first axis.

Returns

z-score : float
The computed z -score for this test.
p-value : float
The 2 -sided p-value for the hypothesis test

Notes

Valid only for $\mathrm{n}>20$. The Z -score is set to 0 for bad entries.
scipy.stats.mstats.linregress(*args)

Calculate a regression line
This computes a least-squares regression for two sets of measurements.

Parameters

\mathbf{x}, \mathbf{y} : array_like
two sets of measurements. Both arrays should have the same length. If only x is given (and $y=N o n e$), then it must be a two-dimensional array where one dimension has length 2 . The two sets of measurements are then found by splitting the array along the length- 2 dimension.

Returns
 slope : float

slope of the regression line

intercept

[float] intercept of the regression line

r-value

[float] correlation coefficient
p-value
[float] two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero.

stderr

[float] Standard error of the estimate

Notes

Missing values are considered pair-wise: if a value is missing in x , the corresponding value in y is masked.

Examples

```
>>> from scipy import stats
>>> import numpy as np
>>> x = np.random.random(10)
>>> y = np.random.random(10)
>>> slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
```

\# To get coefficient of determination (r_squared)

```
>>> print "r-squared:", r_value**2
r-squared: 0.15286643777
```

scipy.stats.mstats.mannwhitneyu (x, y, use_continuity=True)

Computes the Mann-Whitney on samples x and y . Missing values in x and/or y are discarded.

Parameters

\mathbf{x} : sequence
y : sequence use_continuity : \{True, False\} optional
Whether a continuity correction (1/2.) should be taken into account.

Returns

\mathbf{u} : float
The Mann-Whitney statistics

prob

[float] Approximate p -value assuming a normal distribution.
scipy.stats.mstats.plotting_positions (data, alpha=0.40000000000000002,
beta=0.40000000000000002)
Returns plotting positions (or empirical percentile points) for the data.
Plotting positions are defined as (i-alpha)/(n+1-alpha-beta), where:

- i is the rank order statistics
- n is the number of unmasked values along the given axis
- alpha and beta are two parameters.

Typical values for alpha and beta are:

- $(0,1): p(k)=k / n$, linear interpolation of $c d f(R$, type 4)
- (.5,.5)
$[p(k)=(k-1 / 2) /$.$n , piecewise linear function] (R, type 5)$
- $(0,0): p(k)=k /(n+1)$, Weibull (R type 6)
- $(\mathbf{1 , 1})$
$[p(k)=(k-1) /(n-1)$, in this case, $] p(k)=\operatorname{mode}[F(x[k])]$. That's R default $(R$ type 7)
- $(\mathbf{1} / 3,1 / 3): p(k)=(k-1 / 3) /(n+1 / 3)$, then
$p(k) \sim \operatorname{median}[F(x[k])]$.
The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (R type 8)
- $(3 / 8,3 / 8): p(k)=(k-3 / 8) /(n+1 / 4)$, Blom. The resulting quantile estimates are approximately unbiased if x is normally distributed (R type 9)
- (.4,.4) : approximately quantile unbiased (Cunnane)
- (.35,.35): APL, used with PWM
- (.3175, .3175): used in scipy.stats.probplot

Parameters

data : array_like
Input data, as a sequence or array of dimension at most 2 .
alpha : float, optional
Plotting positions parameter. Default is 0.4.
beta : float, optional
Plotting positions parameter. Default is 0.4.

Returns

positions : MaskedArray
The calculated plotting positions.
scipy.stats.mstats.mode (a, axis=0)
Returns an array of the modal (most common) value in the passed array.
If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned.

Parameters

a : array_like
n -dimensional array of which to find mode(s).
axis : int, optional
Axis along which to operate. Default is 0 , i.e. the first axis.

Returns

vals : ndarray
Array of modal values.
counts : ndarray
Array of counts for each mode.

Examples

```
>>> a = np.array([[6, 8, 3, 0],
                    [3, 2, 1, 7],
                    [8, 1, 8, 4],
    [5, 3, 0, 5],
    [4, 7, 5, 9]])
>>> from scipy import stats
>>> stats.mode(a)
(array([[ 3., 1., 0., 0.]]), array([[ 1., 1., 1., 1.]]))
```

To get mode of whole array, specify axis=None:

```
>>> stats.mode(a, axis=None)
(array([ 3.]), array([ 3.]))
```

scipy.stats.mstats.moment (a, moment $=1$, axis $=0$)

Calculates the nth moment about the mean for a sample.
Generally used to calculate coefficients of skewness and kurtosis.

Parameters

a : array_like
data
moment : int
order of central moment that is returned
axis : int or None
Axis along which the central moment is computed. If None, then the data array is raveled. The default axis is zero.

Returns

n-th central moment : ndarray or float
The appropriate moment along the given axis or over all values if axis is None. The denominator for the moment calculation is the number of observations, no degrees of freedom correction is done.
scipy.stats.mstats.mquantiles (a, prob $=[, 0.25,0.5,0.75]$, alphap $=0.400000000000000002$, betap $=0.40000000000000002$, axis=None, limit=())
Computes empirical quantiles for a data array.
Samples quantile are defined by $Q(p)=(1-g) \cdot x[i]+g \cdot x[i+1]$, where $x[j]$ is the ${ }^{\mathrm{j}} \mathrm{j}$ th order statistic, and i $=\left(\operatorname{floor}\left(n^{*} p+m\right)\right), m=a l p h a+p^{*}(1$-alpha-beta $)$ and $g=n^{*} p+m-i$.

Typical values of (alpha,beta) are:

- $(0,1): p(k)=k / n$: linear interpolation of cdf (R, type 4)
- $(.5, .5): p(k)=(k+1 / 2) / n:$. piecewise linear function (R, type 5)
- $(0,0): p(k)=k /(n+1):($ R type 6$)$
- $(1,1): p(k)=(k-1) /(n-1)$. In this case, $\mathrm{p}(\mathrm{k})=\operatorname{mode}[\mathrm{F}(\mathrm{x}[\mathrm{k}])]$. That's R default $(\mathrm{R}$ type 7$)$
- $(1 / 3,1 / 3): p(k)=(k-1 / 3) /(n+l / 3)$. Then $\mathrm{p}(\mathrm{k}) \sim \operatorname{median}[\mathrm{F}(\mathrm{x}[\mathrm{k}])]$. The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (R type 8)
- $(3 / 8,3 / 8): p(k)=(k-3 / 8) /(n+1 / 4)$. Blom. The resulting quantile estimates are approximately unbiased if x is normally distributed (R type 9)
- (.4,.4) : approximately quantile unbiased (Cunnane)
- (.35,.35): APL, used with PWM

Parameters

a : array_like
Input data, as a sequence or array of dimension at most 2 .
prob : array_like, optional
List of quantiles to compute.
alpha : float, optional
Plotting positions parameter, default is 0.4.
beta : float, optional
Plotting positions parameter, default is 0.4 .
axis : int, optional
Axis along which to perform the trimming. If None (default), the input array is first flattened.
limit : tuple
Tuple of (lower, upper) values. Values of a outside this closed interval are ignored.

Returns

quants : MaskedArray
An array containing the calculated quantiles.

Examples

```
>>> from scipy.stats.mstats import mquantiles
>>> a = np.array([6., 47., 49., 15., 42., 41., 7., 39., 43., 40., 36.])
>>> mquantiles(a)
array([ 19.2, 40. , 42.8])
```

Using a 2D array, specifying axis and limit.

```
>>> data = np.array([[ 6., 7., 1.],
    [ 47., 15., 2.],
    [ 49., 36., 3.],
    [ 15., 39., 4.],
    [ 42., 40., -999.],
    [ 41., 41., -999.],
    [ 7., -999., -999.],
    [ 39., -999., -999.],
    [ 43., -999., -999.],
    [ 40., -999., -999.],
    [ 36., -999., -999.]])
>>> mquantiles(data, axis=0, limit=(0, 50))
array([[ 19.2 , 14.6, 1.45],
    [40. , 37.5, 2.5 ],
    [42.8,40.05, 3.55]])
>>> data[:, 2] = -999.
>>> mquantiles(data, axis=0, limit=(0, 50))
masked_array(data =
    [[l19.2 14.6 -- ]
    [40.0}3037.5 -- ]
    [42.8 40.05 --]],
        mask =
    [[False False True]
    [False False True]
    [False False True]],
            fill_value = 1e+20)
```

scipy.stats.mstats.msign (x)

Returns the sign of x, or 0 if x is masked.

```
scipy.stats.mstats.normaltest (a,axis=0)
```

Tests whether a sample differs from a normal distribution
This function tests the null hypothesis that a sample comes from a normal distribution. It is based on D'Agostino and Pearson's [R90], [R91] test that combines skew and kurtosis to produce an omnibus test of normality.

Parameters

a : array
axis : int or None

Returns

p-value : float
A 2-sided chi squared probability for the hypothesis test

References

[R90], [R91]
scipy.stats.mstats.obrientransform (*args)
Computes a transform on input data (any number of columns). Used to test for homogeneity of variance prior to running one-way stats. Each array in *args is one level of a factor. If an F_oneway() run on the transformed data and found significant, variances are unequal. From Maxwell and Delaney, p.112.

Returns: transformed data for use in an ANOVA
scipy.stats.mstats.pearsonr (x, y)
Calculates a Pearson correlation coefficient and the p-value for testing non-correlation.

The Pearson correlation coefficient measures the linear relationship between two datasets. Strictly speaking, Pearson's correlation requires that each dataset be normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y . Negative correlations imply that as x increases, y decreases.

The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so.

Parameters

\mathbf{x} : 1D array
$\mathbf{y}: 1 \mathrm{D}$ array the same length as x

Returns

(Pearson's correlation coefficient, :
2-tailed p-value)

References

http://www.statsoft.com/textbook/glosp.html\#Pearson\ Correlation
scipy.stats.mstats.plotting_positions (data, alpha=0.40000000000000002,
beta=0.400000000000000002)
Returns plotting positions (or empirical percentile points) for the data.
Plotting positions are defined as (i-alpha) / (n+1-alpha-beta), where:

- i is the rank order statistics
- n is the number of unmasked values along the given axis
- alpha and beta are two parameters.

Typical values for alpha and beta are:

- $(0,1): p(k)=k / n$, linear interpolation of cdf $(R$, type 4$)$
- (.5,.5)
$[p(k)=(k-1 / 2) /$.$n , piecewise linear function] (R, type 5)$
- $(0,0): p(k)=k /(n+1)$, Weibull (R type 6)
- $(1,1)$
$[p(k)=(k-1) /(n-1)$, in this case, $] p(k)=\operatorname{mode}[F(x[k])]$. That's R default $(R$ type 7)
- $(1 / 3,1 / 3): p(k)=(k-1 / 3) /(n+1 / 3)$, then
$\mathrm{p}(\mathrm{k}) \sim \operatorname{median}[\mathrm{F}(\mathrm{x}[\mathrm{k}])]$.
The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (R type 8)
- $(3 / 8,3 / 8): \mathrm{p}(\mathrm{k})=(\mathrm{k}-3 / 8) /(\mathrm{n}+1 / 4)$, Blom. The resulting quantile estimates are approximately unbiased if x is normally distributed (R type 9)
- (.4,.4) : approximately quantile unbiased (Cunnane)
- (.35,.35): APL, used with PWM
- (.3175, .3175): used in scipy.stats.probplot

Parameters

data : array_like
Input data, as a sequence or array of dimension at most 2.
alpha : float, optional
Plotting positions parameter. Default is 0.4 .
beta : float, optional
Plotting positions parameter. Default is 0.4 .
Returns
positions : MaskedArray
The calculated plotting positions.
scipy.stats.mstats.pointbiserialr (x, y)

Calculates a point biserial correlation coefficient and the associated

p -value.
The point biserial correlation is used to measure the relationship between a binary variable, x , and a continuous variable, y. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply a determinative relationship.
This function uses a shortcut formula but produces the same result as pearsonr.

Parameters

\mathbf{x} : array_like of bools
Input array.
y
[array_like] Input array.

Returns

r: float
R value
p-value
[float] 2-tailed p-value

Notes

Missing values are considered pair-wise: if a value is missing in x , the corresponding value in y is masked.

Examples

```
>>> from scipy import stats
>>> a = np.array([0, 0, 0, 1, 1, 1, 1])
>>> b = np.arange(7)
>>> stats.pointbiserialr(a, b)
(0.8660254037844386, 0.011724811003954652)
>>> stats.pearsonr(a, b)
(0.86602540378443871,0.011724811003954626)
>>> np.corrcoef(a, b)
```

```
array([[ 1. , 0.8660254],
```

 [0.8660254, 1.]])
 scipy.stats.mstats.rankdata (data, axis=None, use_missing=False)

Returns the rank (also known as order statistics) of each data point along the given axis.
If some values are tied, their rank is averaged. If some values are masked, their rank is set to 0 if use_missing is False, or set to the average rank of the unmasked values if use_missing is True.

Parameters

data: sequence
Input data. The data is transformed to a masked array

axis

[\{None,int \} optional] Axis along which to perform the ranking. If None, the array is first flattened. An exception is raised if the axis is specified for arrays with a dimension larger than 2

use_missing

[\{boolean \} optional] Whether the masked values have a rank of 0 (False) or equal to the average rank of the unmasked values (True).

```
scipy.stats.mstats.scoreatpercentile (data,per, limit=(), alphap=0.40000000000000002, be-
    tap=0.40000000000000002 )
```

Calculate the score at the given 'per' percentile of the sequence a. For example, the score at per=50 is the median.

This function is a shortcut to mquantile
scipy.stats.mstats.sem (a, axis=0)
Calculates the standard error of the mean (or standard error of measurement) of the values in the input array.

Parameters

\mathbf{a} : array_like
An array containing the values for which the standard error is returned.
axis : int or None, optional.
If axis is None, ravel a first. If axis is an integer, this will be the axis over which to operate. Defaults to 0 .
ddof : int, optional
Delta degrees-of-freedom. How many degrees of freedom to adjust for bias in limited samples relative to the population estimate of variance. Defaults to 1.

Returns

s: ndarray or float
The standard error of the mean in the sample(s), along the input axis.

Notes

The default value for $d d o f$ is different to the default (0) used by other ddof containing routines, such as np.std nd stats.nanstd.

Examples

Find standard error along the first axis:

```
>>> from scipy import stats
>>> a = np.arange(20).reshape (5,4)
>>> stats.sem(a)
array([ 2.8284, 2.8284, 2.8284, 2.8284])
```

Find standard error across the whole array, using n degrees of freedom:

```
>>> stats.sem(a, axis=None, ddof=0)
1.2893796958227628
```

scipy.stats.mstats.signaltonoise (data, axis=0)
Calculates the signal-to-noise ratio, as the ratio of the mean over standard deviation along the given axis.

Parameters

data : sequence
Input data
axis
[\{0, int $\}$ optional] Axis along which to compute. If None, the computation is performed on a flat version of the array.
scipy.stats.mstats.skew (a, axis=0, bias=True)
Computes the skewness of a data set.
For normally distributed data, the skewness should be about 0 . A skewness value >0 means that there is more weight in the left tail of the distribution. The function skewtest can be used to determine if the skewness value is close enough to 0 , statistically speaking.

Parameters

a: ndarray
data
axis: int or None
axis along which skewness is calculated
bias: bool
If False, then the calculations are corrected for statistical bias.

Returns

skewness : ndarray
The skewness of values along an axis, returning 0 where all values are equal.

References

[CRCProbStat2000] Section 2.2.24.1
[CRCProbStat2000]
scipy.stats.mstats.skewtest (a, axis=0)
Tests whether the skew is different from the normal distribution.
This function tests the null hypothesis that the skewness of the population that the sample was drawn from is the same as that of a corresponding normal distribution.

Parameters

a : array
axis : int or None

Returns

z-score : float
The computed z -score for this test.
p-value : float
a 2-sided p-value for the hypothesis test

Notes

The sample size should be at least 8 .

```
scipy.stats.mstats.spearmanr(x,y,use_ties=True)
```


Calculates a Spearman rank-order correlation coefficient and the p-value

to test for non-correlation.
The Spearman correlation is a nonparametric measure of the linear relationship between two datasets. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.

Missing values are discarded pair-wise: if a value is missing in x , the corresponding value in y is masked.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so.

Parameters

\mathbf{x} : 1D array
y
[1D array the same length as x] The lengths of both arrays must be >2.
use_ties
[\{True, False \} optional] Whether the correction for ties should be computed.

Returns

(Spearman correlation coefficient, :
2-tailed p-value)
scipy.stats.mstats.theilslopes ($y, x=$ None, alpha=0.0500000000000000003)
Computes the Theil slope over the dataset (x, y), as the median of all slopes between paired values.
Parameters
\mathbf{y} : sequence
Dependent variable.
x
[\{None, sequence\} optional] Independent variable. If None, use arange(len(y)) instead.
alpha
[float] Confidence degree.

Returns

medslope : float

Theil slope
medintercept
[float] Intercept of the Theil line, as median(y)-medslope*median(x)
lo_slope
[float] Lower bound of the confidence interval on medslope
up_slope
[float] Upper bound of the confidence interval on medslope
scipy.stats.mstats.threshold(a, threshmin=None, threshmax=None, newval=0)
Clip array to a given value.
Similar to numpy.clip(), except that values less than threshmin or greater than threshmax are replaced by newval, instead of by threshmin and threshmax respectively.

Parameters

a : ndarray
Input data
threshmin : \{None, float \} optional
Lower threshold. If None, set to the minimum value.
threshmax : \{None, float optional
Upper threshold. If None, set to the maximum value.
newval : $\{0$, float $\}$ optional
Value outside the thresholds.

Returns

a, with values less (greater) than threshmin (threshmax) replaced with newval. :
scipy.stats.mstats.tmax (a, upperlimit, axis=0, inclusive=True)
Compute the trimmed maximum
This function computes the maximum value of an array along a given axis, while ignoring values larger than a specified upper limit.

Parameters

a: array_like
array of values
upperlimit : None or float, optional
Values in the input array greater than the given limit will be ignored. When upperlimit is None, then all values are used. The default value is None.
axis : None or int, optional
Operate along this axis. None means to use the flattened array and the default is zero.
inclusive : \{True, False \}, optional
This flag determines whether values exactly equal to the upper limit are included. The default value is True.

Returns

tmax : float

```
scipy.stats.mstats.tmean(a,limits=None, inclusive=(True,True))
```

Compute the trimmed mean
This function finds the arithmetic mean of given values, ignoring values outside the given limits.

Parameters

a : array_like
array of values
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True).

Returns

tmean : float
scipy.stats.mstats.tmin(a, lowerlimit=None, axis=0, inclusive=True)
Compute the trimmed minimum
This function finds the miminum value of an array a along the specified axis, but only considering values greater than a specified lower limit.

Parameters
a : array_like
array of values
lowerlimit : None or float, optional
Values in the input array less than the given limit will be ignored. When lowerlimit is None, then all values are used. The default value is None.
axis : None or int, optional
Operate along this axis. None means to use the flattened array and the default is zero
inclusive : \{True, False \}, optional
This flag determines whether values exactly equal to the lower limit are included. The default value is True.

Returns

tmin: float :

scipy.stats.mstats.trim(a, limits=None, inclusive=(True, True), relative=False, axis=None)
Trims an array by masking the data outside some given limits.
Returns a masked version of the input array.

Parameters

a : sequence
Input array
limits: \{None, tuple\} optional

If relative $==$ False, tuple (lower limit, upper limit) in absolute values. Values of the input array lower (greater) than the lower (upper) limit are masked. If relative == True, tuple (lower percentage, upper percentage) to cut on each side of the array, with respect to the number of unmasked data. Noting n the number of unmasked data before trimming, the ($\mathrm{n} *$ limits[0])th smallest data and the ($\mathrm{n} *$ limits[1])th largest data are masked, and the total number of unmasked data after trimming is $n *(1 .-$ sum(limits)) In each case, the value of one limit can be set to None to indicate an open interval. If limits is None, no trimming is performed
inclusive : $\{$ (True, True) tuple $\}$ optional
If relative $==$ False, tuple indicating whether values exactly equal to the absolute limits are allowed. If relative==True, tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False).
relative : $\{$ False, True $\}$ optional
Whether to consider the limits as absolute values (False) or proportions to cut (True).
axis : \{None, integer\}, optional
Axis along which to trim.

Examples

$\ggg \mathrm{z}=[1,2,3,4,5,6,7,8,9,10] \ggg \operatorname{trim}(\mathrm{z},(3,8))[-,-, 3,4,5,6,7,8,-,-] \ggg \operatorname{trim}(\mathrm{z},(0.1,0.2)$,relative $=$ True $)$
$[-, 2,3,4,5,6,7,8,-,-]$
scipy.stats.mstats.trima (a, limits=None, inclusive $=($ True, True) $)$
Trims an array by masking the data outside some given limits. Returns a masked version of the input array.

Parameters

a: sequence
Input array.
limits : \{None, tuple\} optional
Tuple of (lower limit, upper limit) in absolute values. Values of the input array lower (greater) than the lower (upper) limit will be masked. A limit is None indicates an open interval.
inclusive : $\{$ (True,True) tuple $\}$ optional
Tuple of (lower flag, upper flag), indicating whether values exactly equal to the lower (upper) limit are allowed.

```
scipy.stats.mstats.trimboth(data, proportiontocut=0.20000000000000001, inclusive=(True,
    True), axis=None)
```

Trims the data by masking the int(proportiontocut*n) smallest and $\operatorname{int}($ proportiontocut $* \mathrm{n}$) largest values of data along the given axis, where n is the number of unmasked values before trimming.

Parameters

data: ndarray
Data to trim.

proportiontocut

[\{0.2, float $\}$ optional] Percentage of trimming (as a float between 0 and 1). If n
is the number of unmasked values before trimming, the number of values after trimming is:
$(1-2 *$ proportiontocut $) * n$.

inclusive

[\{(True, True) tuple\} optional] Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False).
axis
[\{None, integer\}, optional] Axis along which to perform the trimming. If None, the input array is first flattened.
scipy.stats.mstats.trimmed_stde (a, limits=(0.10000000000000001, 0.10000000000000001), in-
clusive $=(1,1)$, axis=None)
Returns the standard error of the trimmed mean of the data along the given axis. Parameters -a : sequence

Input array

limits

[$\{(0.1,0.1)$, tuple of float $\}$ optional] tuple (lower percentage, upper percentage) to cut on each side of the array, with respect to the number of unmasked data. Noting n the number of unmasked data before trimming, the ($\mathrm{n} *$ limits[0])th smallest data and the ($\mathrm{n} *$ limits[1])th largest data are masked, and the total number of unmasked data after trimming is $n *(1 .-s u m(l i m i t s))$ In each case, the value of one limit can be set to None to indicate an open interval. If limits is None, no trimming is performed
inclusive
[\{(True, True) tuple $\}$ optional] Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False).
axis
[\{None, integer\}, optional] Axis along which to trim.
scipy.stats.mstats.trimr (a, limits=None, inclusive=(True, True), axis=None)
Trims an array by masking some proportion of the data on each end. Returns a masked version of the input array.

Parameters

a : sequence
Input array.
limits : \{None, tuple\} optional
Tuple of the percentages to cut on each side of the array, with respect to the number of unmasked data, as floats between 0 . and 1 . Noting n the number of unmasked data before trimming, the (n *limits[0])th smallest data and the ($\mathrm{n} *$ limits[1])th largest data are masked, and the total number of unmasked data after trimming is $n *(1 .-$ sum(limits)) The value of one limit can be set to None to indicate an open interval.
inclusive : $\{$ (True,True) tuple $\}$ optional
Tuple of flags indicating whether the number of data being masked on the left (right) end should be truncated (True) or rounded (False) to integers.
axis : \{None,int \} optional
Axis along which to trim. If None, the whole array is trimmed, but its shape is maintained.
scipy.stats.mstats.trimtail(data, proportiontocut=0.200000000000000001, tail='left', inclusive $=($ True, True $)$, axis=None $)$

Trims the data by masking int(trim*n) values from ONE tail of the
data along the given axis, where n is the number of unmasked values.

Parameters

data: \{ndarray \}
Data to trim.

proportiontocut

[\{0.2, float $\}$ optional] Percentage of trimming. If n is the number of unmasked values before trimming, the number of values after trimming is (1proportiontocut)*n.
tail
[\{ 'left','right'\} optional] If left (right), the proportiontocut lowest (greatest) values will be masked.

inclusive

[\{(True, True) tuple $\}$ optional] Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False).
axis
[\{None, integer\}, optional] Axis along which to perform the trimming. If None, the input array is first flattened.

```
scipy.stats.mstats.tsem(a,limits=None, inclusive=(True, True))
Compute the trimmed standard error of the mean
```

This function finds the standard error of the mean for given values, ignoring values outside the given limits.

Parameters

a: array_like
array of values
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True).

Returns

tsem : float
scipy.stats.mstats.ttest_onesamp (a, popmean)
Calculates the T-test for the mean of ONE group of scores a.
This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent observations is equal to the given population mean, popmean.

Parameters

a: array_like
sample observation
popmean : float or array_like
expected value in null hypothesis, if array_like than it must have the same shape as a excluding the axis dimension
axis : int, optional, (default axis=0)
Axis can equal None (ravel array first), or an integer (the axis over which to operate on a).

Returns

\mathbf{t} : float or array
t-statistic
prob : float or array
two-tailed p-value

Examples

```
>>> from scipy import stats
>>> import numpy as np
>>> #fix seed to get the same result
>>> np.random.seed(7654567)
>>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2))
```

test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the second case and don't reject it in the first case

```
>>> stats.ttest_1samp(rvs,5.0)
(array([-0.68014479, -0.04323899]), array([ 0.49961383, 0.96568674]))
>>> stats.ttest_1samp(rvs,0.0)
(array([ 2.77025808, 4.11038784]), array([ 0.00789095, 0.00014999]))
```

examples using axis and non-scalar dimension for population mean

```
>>> stats.ttest_1samp(rvs,[5.0,0.0])
(array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04]!)
>>> stats.ttest_1samp(rvs.T, [5.0,0.0],axis=1)
(array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs,[[5.0],[0.0]])
(array([[-0.68014479, -0.04323899],
    [ 2.77025808, 4.11038784]]), array([[ 4.99613833e-01, 9.65686743e-01],
    [7.89094663e-03, 1.49986458e-04]]))
```

scipy.stats.mstats.ttest_ind (a, b, axis=0)

Calculates the T-test for the means of TWO INDEPENDENT samples of scores.
This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected) values.

Parameters

\mathbf{a}, \mathbf{b} : sequence of ndarrays
The arrays must have the same shape, except in the dimension corresponding to axis (the first, by default).
axis : int, optional

Axis can equal None (ravel array first), or an integer (the axis over which to operate on a and b).

Returns

\mathbf{t} : float or array
t-statistic
prob : float or array
two-tailed p-value

Notes

We can use this test, if we observe two independent samples from the same or different population, e.g. exam scores of boys and girls or of two ethnic groups. The test measures whether the average (expected) value differs significantly across samples. If we observe a large p-value, for example larger than 0.05 or 0.1 , then we cannot reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. $1 \%, 5 \%$ or 10%, then we reject the null hypothesis of equal averages.

Examples

```
>>> from scipy import stats
>>> import numpy as np
>>> #fix seed to get the same result
>>> np.random.seed(12345678)
```

test with sample with identical means

```
>>> rvs1 = stats.norm.rvs(loc=5,scale=10, size=500)
>>> rvs2 = stats.norm.rvs(loc=5,scale=10, size=500)
>>> stats.ttest_ind(rvs1,rvs2)
(0.26833823296239279, 0.78849443369564765)
```

test with sample with different means

```
>>> rvs3 = stats.norm.rvs(loc=8, scale=10, size=500)
>>> stats.ttest_ind(rvs1,rvs3)
(-5.0434013458585092, 5.4302979468623391e-007)
```

scipy.stats.mstats.ttest_onesamp (a, popmean)
Calculates the T-test for the mean of ONE group of scores a.
This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent observations is equal to the given population mean, popmean.

Parameters

a : array_like
sample observation
popmean : float or array_like
expected value in null hypothesis, if array_like than it must have the same shape as a excluding the axis dimension
axis : int, optional, (default axis=0)
Axis can equal None (ravel array first), or an integer (the axis over which to operate on a).

Returns

t : float or array
t-statistic
prob : float or array
two-tailed p-value

Examples

```
>>> from scipy import stats
>>> import numpy as np
>>> #fix seed to get the same result
>>> np.random.seed(7654567)
>>> rvs = stats.norm.rvs(loc=5,scale=10,\operatorname{size}=(50,2))
```

test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the second case and don't reject it in the first case

```
>>> stats.ttest_1samp(rvs,5.0)
(array([-0.68014479, -0.04323899]), array([ 0.49961383, 0.96568674]))
>>> stats.ttest_1samp(rvs,0.0)
(array([ 2.77025808, 4.11038784]), array([ 0.00789095, 0.00014999]))
```

examples using axis and non-scalar dimension for population mean

```
>>> stats.ttest_1samp(rvs,[5.0,0.0])
(array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1)
(array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs,[[5.0],[0.0]])
(array([[-0.68014479, -0.04323899],
    [ 2.77025808, 4.11038784]]), array([[ 4.99613833e-01, 9.65686743e-0.1],
    [ 7.89094663e-03, 1.49986458e-04]]))
```

scipy.stats.mstats.ttest_rel (a, b, axis=None)
Calculates the T-test on TWO RELATED samples of scores, a and b.
This is a two-sided test for the null hypothesis that 2 related or repeated samples have identical average (expected) values.

Parameters

\mathbf{a}, \mathbf{b} : sequence of ndarrays
The arrays must have the same shape.
axis : int, optional, (default axis=0)
Axis can equal None (ravel array first), or an integer (the axis over which to operate on a and b).

Returns

\mathbf{t} : float or array
t-statistic
prob : float or array
two-tailed p-value

Notes

Examples for the use are scores of the same set of student in different exams, or repeated sampling from the same units. The test measures whether the average score differs significantly across samples (e.g. exams). If we observe a large p-value, for example greater than 0.05 or 0.1 then we cannot reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. $1 \%, 5 \%$ or 10%, then we reject the null hypothesis of equal averages. Small p-values are associated with large t-statistics.

Examples

```
>>> from scipy import stats
>>> np.random.seed(12345678) # fix random seed to get same numbers
>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) +
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs2)
(0.24101764965300962, 0.80964043445811562)
>>> rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) +
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs3)
(-3.9995108708727933, 7.3082402191726459e-005)
scipy.stats.mstats.tvar(a,limits=None, inclusive=(True, True))
Compute the trimmed variance
```

This function computes the sample variance of an array of values, while ignoring values which are outside of given limits.

Parameters

a : array_like
array of values
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True).

Returns

tvar: float
scipy.stats.mstats.variation (a, axis $=0$)
Computes the coefficient of variation, the ratio of the biased standard deviation to the mean.

Parameters

a: array_like
Input array.
axis : int or None
Axis along which to calculate the coefficient of variation.

References

[CRCProbStat2000] Section 2.2.20
[CRCProbStat2000]
scipy.stats.mstats.winsorize (a, \quad limits=None, \quad inclusive $=($ True, \quad True $), \quad$ inplace $=$ False, axis=None)
Returns a Winsorized version of the input array.
The (limits[0])th lowest values are set to the (limits[0])th percentile, and the (limits[1])th highest values are set to the (limits[1])th percentile. Masked values are skipped.

Parameters

a : sequence
Input array.
limits : \{None, tuple of float \} optional
Tuple of the percentages to cut on each side of the array, with respect to the number of unmasked data, as floats between 0 . and 1 . Noting n the number of unmasked data before trimming, the ($\mathrm{n} *$ limits[0])th smallest data and the ($\mathrm{n} *$ limits[1])th largest data are masked, and the total number of unmasked data after trimming is $n *(1 .-$ sum(limits)) The value of one limit can be set to None to indicate an open interval.
inclusive : $\{$ (True, True) tuple $\}$ optional
Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False).
inplace : \{False, True $\}$ optional
Whether to winsorize in place (True) or to use a copy (False)
axis : \{None, int \} optional
Axis along which to trim. If None, the whole array is trimmed, but its shape is maintained.
scipy.stats.mstats.zmap (scores, compare, axis=0, ddof=0)
Calculates the relative z-scores.
Returns an array of z-scores, i.e., scores that are standardized to zero mean and unit variance, where mean and variance are calculated from the comparison array.

Parameters

scores : array_like
The input for which z -scores are calculated.
compare : array_like
The input from which the mean and standard deviation of the normalization are taken; assumed to have the same dimension as scores.
axis : int or None, optional
Axis over which mean and variance of compare are calculated. Default is 0 .
ddof : int, optional
Degrees of freedom correction in the calculation of the standard deviation. Default is 0 .

Returns

zscore : array_like

Z-scores, in the same shape as scores.

Notes

This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray instead of asarray for parameters).
scipy.stats.mstats.zscore (a, axis $=0, d d o f=0$)
Calculates the z score of each value in the sample, relative to the sample mean and standard deviation.

Parameters

a: array_like
An array like object containing the sample data.
axis : int or None, optional
If axis is equal to None, the array is first raveled. If axis is an integer, this is the axis over which to operate. Default is 0 .
ddof : int, optional
Degrees of freedom correction in the calculation of the standard deviation. Default is 0 .

Returns

zscore : array_like
The z-scores, standardized by mean and standard deviation of input array a.

Notes

This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray instead of asarray for parameters).

Examples

```
>>> a = np.array([ 0.7972, 0.0767, 0.4383, 0.7866, 0.8091, 0.1954,
    0.6307, 0.6599, 0.1065, 0.0508])
>>> from scipy import stats
>>> stats.zscore(a)
array([ 1.1273, -1.247, -0.0552, 1.0923, 1.1664, -0.8559, 0.5786,
    0.6748, -1.1488, -1.3324])
```

Computing along a specified axis, using $\mathrm{n}-1$ degrees of freedom ($\mathrm{ddof}=1$) to calculate the standard deviation:

```
>>> b = np.array([[ 0.3148, 0.0478, 0.6243, 0.4608],
    [ 0.7149, 0.0775, 0.6072, 0.9656],
    [ 0.6341, 0.1403, 0.9759, 0.4064],
    [ 0.5918, 0.6948, 0.904, 0.3721],
    [ 0.0921, 0.2481, 0.1188, 0.1366]])
>>> stats.zscore(b, axis=1, ddof=1)
array([[-1.1649, -1.4319, -0.8554, -1.0189],
    [-0.8661, -1.5035, -0.9737, -0.6154],
    [-0.888 , -1.3817, -0.5461, -1.1156],
    [-2.3043, -2.2014, -1.9921, -2.5241],
    [-2.0773, -1.9212, -2.0506, -2.0328]])
```


3.19.6 Univariate and multivariate kernel density estimation (scipy.stats.kde)

gaussian_kde(dataset)	Representation of a kernel-density estimate using Gaussian kernels.

class scipy.stats.gaussian_kde (dataset)
Representation of a kernel-density estimate using Gaussian kernels.

Parameters

 dataset : (\# of dims, \# of data)-arraydatapoints to estimate from

Attributes

d	int	number of dimensions
n	int	number of datapoints

Methods

kde.evaluate(points)	ar- ray ar-	evaluate the estimated pdf on a provided set of points
kde(points)	ray fame as kde.evaluate(points)	
kde.integrate_gaussian(mean, cov)	float	multiply pdf with a specified Gaussian and integrate over the whole domain
kde.integrate_box_1d(low, high)	float	integrate pdf (1D only) between two bounds kde.integrate_box(low_bounds,
float	integrate pdf over a rectangular space between low_bounds and high_bounds	
high_bounds)	float	
kde.integrate_kde(other_kde)		
kde.resample(size=None)	ar-	integrate two kernel density estimates multiplied together randomly sample a dataset from the estimated pdf.

For many more stat related functions install the software R and the interface package rpy.

3.20 C/C++ integration (scipy .weave)

Warning: This documentation is work-in-progress and unorganized.

3.20.1 C/C++ integration

inline - a function for including $\mathrm{C} / \mathrm{C}++$ code within Python blitz - a function for compiling Numeric expressions to $\mathrm{C}++$ ext_tools - a module that helps construct $\mathrm{C} / \mathrm{C}++$ extension modules. accelerate -a module that inline accelerates Python functions

```
inline(code, **kw[, arg_names, local_dict, ...]) Inline C/C++ code within Python scripts.
blitz(expr, **kw[, local_dict, global_dict, ...])
ext_tools
accelerate
scipy.weave.inline (code, arg_names=[], local_dict=None, global_dict=None, force=0, com-
    piler='', verbose=0, support_code=None, headers=[], customize=None,
    type_converters=None, auto_downcast=1, newarr_converter=0, **kw)
```

Inline $\mathrm{C} / \mathrm{C}++$ code within Python scripts.
inline () compiles and executes $\mathrm{C} / \mathrm{C}++$ code on the fly. Variables in the local and global Python scope are also available in the $\mathrm{C} / \mathrm{C}++$ code. Values are passed to the $\mathrm{C} / \mathrm{C}++$ code by assignment much like variables passed are passed into a standard Python function. Values are returned from the $\mathrm{C} / \mathrm{C}++$ code through a special
argument called return_val. Also, the contents of mutable objects can be changed within the C/C++ code and the changes remain after the C code exits and returns to Python.
inline has quite a few options as listed below. Also, the keyword arguments for distutils extension modules are accepted to specify extra information needed for compiling.

Parameters

code : string
A string of valid C++ code. It should not specify a return statement. Instead it should assign results that need to be returned to Python in the return_val.
arg_names : [str], optional
A list of Python variable names that should be transferred from Python into the C/C++ code. It defaults to an empty string.
local_dict : dict, optional
If specified, it is a dictionary of values that should be used as the local scope for the $\mathrm{C} / \mathrm{C}++$ code. If local_dict is not specified the local dictionary of the calling function is used.
global_dict : dict, optional
If specified, it is a dictionary of values that should be used as the global scope for the C/C++ code. If global_dict is not specified, the global dictionary of the calling function is used.
force : $\{0,1\}$, optional
If 1 , the $\mathrm{C}++$ code is compiled every time inline is called. This is really only useful for debugging, and probably only useful if your editing support_code a lot.
compiler : str, optional
The name of compiler to use when compiling. On windows, it understands 'msvc' and ' gcc ' as well as all the compiler names understood by distutils. On Unix, it'll only understand the values understood by distutils. (I should add 'gcc' though to this).

On windows, the compiler defaults to the Microsoft C++ compiler. If this isn't available, it looks for mingw32 (the gcc compiler).

On Unix, it'll probably use the same compiler that was used when compiling Python. Cygwin's behavior should be similar.
verbose : $\{0,1,2\}$, optional
Speficies how much much information is printed during the compile phase of inlining code. 0 is silent (except on windows with msve where it still prints some garbage). 1 informs you when compiling starts, finishes, and how long it took. 2 prints out the command lines for the compilation process and can be useful if your having problems getting code to work. Its handy for finding the name of the .cpp file if you need to examine it. verbose has no affect if the compilation isn't necessary.
support_code : str, optional
A string of valid $\mathrm{C}++$ code declaring extra code that might be needed by your compiled function. This could be declarations of functions, classes, or structures.
headers : [str], optional

A list of strings specifying header files to use when compiling the code. The list might look like ["<vector>","'my_header'"]. Note that the header strings need to be in a form than can be pasted at the end of a \#include statement in the $\mathrm{C}++$ code.
customize : base_info.custom_info, optional
An alternative way to specify support_code, headers, etc. needed by the function. See scipy.weave.base_info for more details. (not sure this'll be used much).
type_converters : [type converters], optional
These guys are what convert Python data types to $\mathrm{C} / \mathrm{C}++$ data types. If you'd like to use a different set of type conversions than the default, specify them here. Look in the type conversions section of the main documentation for examples.
auto_downcast : $\{1,0\}$, optional
This only affects functions that have numpy arrays as input variables. Setting this to 1 will cause all floating point values to be cast as float instead of double if all the Numeric arrays are of type float. If even one of the arrays has type double or double complex, all variables maintain there standard types.
newarr_converter : int, optional
Unused.

Other Parameters

Relevant :mod:'distutils‘ keywords. These are duplicated from Greg Ward's :

:class:‘distutils.extension.Extension‘ class for convenience: :

sources : [string]
list of source filenames, relative to the distribution root (where the setup script lives), in Unix form (slash-separated) for portability. Source files may be C, C++, SWIG (.i), platform-specific resource files, or whatever else is recognized by the "build_ext" command as source for a Python extension.

Note: The module_path file is always appended to the front of this list
include_dirs : [string]
list of directories to search for $\mathrm{C} / \mathrm{C}++$ header files (in Unix form for portability)
define_macros: [(name
list of macros to define; each macro is defined using a 2-tuple, where 'value' is either the string to define it to or None to define it without a particular value (equivalent of "\#define FOO" in source or -DFOO on Unix C compiler command line)
undef_macros: [string]
list of macros to undefine explicitly
library_dirs : [string]
list of directories to search for $\mathrm{C} / \mathrm{C}++$ libraries at link time
libraries: [string]
list of library names (not filenames or paths) to link against
runtime_library_dirs : [string]
list of directories to search for $\mathrm{C} / \mathrm{C}++$ libraries at run time (for shared extensions, this is when the extension is loaded)
extra_objects : [string]
list of extra files to link with (eg. object files not implied by 'sources', static library that must be explicitly specified, binary resource files, etc.)
extra_compile_args : [string]
any extra platform- and compiler-specific information to use when compiling the source files in 'sources'. For platforms and compilers where "command line" makes sense, this is typically a list of command-line arguments, but for other platforms it could be anything.

extra_link_args : [string]

any extra platform- and compiler-specific information to use when linking object files together to create the extension (or to create a new static Python interpreter). Similar interpretation as for 'extra_compile_args'.

export_symbols : [string]

list of symbols to be exported from a shared extension. Not used on all platforms, and not generally necessary for Python extensions, which typically export exactly one symbol: "init" + extension_name.
swig_opts : [string]
any extra options to pass to SWIG if a source file has the .i extension.
depends : [string]
list of files that the extension depends on
language : string
extension language (i.e. "c", "c++", "objc"). Will be detected from the source extensions if not provided.

See Also:

distutils.extension.Extension

Describes additional parameters.
scipy.weave.blitz (expr, local_dict=None, global_dict=None, check_size=1,verbose=0, **kw)

Functions

```
assign_variable_types(variables[,...])
downcast(var_specs)
format_error_msg(errors)
generate_file_name(module_name,
module_location)
generate_module(module_string, module_file) generate the source code file. Only overwrite
indent(st, spaces)
```


Classes

```
ext_function(name, code_block, args[,...])
ext_function_from_specs(name, code_block, ...)
ext_module(name[, compiler])
```


BIBLIOGRAPHY

[KK] D.A. Knoll and D.E. Keyes, "Jacobian-free Newton-Krylov methods", J. Comp. Phys. 193, 357 (2003).
[PP] PETSc http://www.mcs.anl.gov/petsc/ and its Python bindings http://code.google.com/p/petsc4py/
[AMG] PyAMG (algebraic multigrid preconditioners/solvers) http://code.google.com/p/pyamg/
[CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the machine calculation of complex Fourier series," Math. Comput. 19: 297-301.
[NR] Press, W., Teukolsky, S., Vetterline, W.T., and Flannery, B.P., 2007, Numerical Recipes: The Art of Scientific Computing, ch. 12-13. Cambridge Univ. Press, Cambridge, UK.
[Mak] J. Makhoul, 1980, 'A Fast Cosine Transform in One and Two Dimensions', IEEE Transactions on acoustics, speech and signal processing vol. 28(1), pp. 27-34, http://dx.doi.org/10.1109/TASSP.1980.1163351
[WP] http://en.wikipedia.org/wiki/Discrete_cosine_transform
[Sta07] "Statistics toolbox." API Reference Documentation. The MathWorks. http://www.mathworks.com/access/helpdesk/help/toolbox/stats/. Accessed October 1, 2007.
[Mti07] "Hierarchical clustering." API Reference Documentation. The Wolfram Research, Inc. http://reference.wolfram.com/mathematica/HierarchicalClustering/tutorial/HierarchicalClustering.html. Accessed October 1, 2007.
[Gow69] Gower, JC and Ross, GJS. "Minimum Spanning Trees and Single Linkage Cluster Analysis." Applied Statistics. 18(1): pp. 54-64. 1969.
[War63] Ward Jr, JH. "Hierarchical grouping to optimize an objective function." Journal of the American Statistical Association. 58(301): pp. 236-44. 1963.
[Joh66] Johnson, SC. "Hierarchical clustering schemes." Psychometrika. 32(2): pp. 241-54. 1966.
[Sne62] Sneath, PH and Sokal, RR. "Numerical taxonomy." Nature. 193: pp. 855-60. 1962.
[Bat95] Batagelj, V. "Comparing resemblance measures." Journal of Classification. 12: pp. 73-90. 1995.
[Sok58] Sokal, RR and Michener, CD. "A statistical method for evaluating systematic relationships." Scientific Bulletins. 38(22): pp. 1409-38. 1958.
[Ede79] Edelbrock, C. "Mixture model tests of hierarchical clustering algorithms: the problem of classifying everybody." Multivariate Behavioral Research. 14: pp. 367-84. 1979.
[Jai88] Jain, A., and Dubes, R., "Algorithms for Clustering Data." Prentice-Hall. Englewood Cliffs, NJ. 1988.
[Fis36] Fisher, RA "The use of multiple measurements in taxonomic problems." Annals of Eugenics, 7(2): 179-188. 1936
[R1] 'Romberg's method' http://en.wikipedia.org/wiki/Romberg\'s_method
[R2] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule
[R3] Illustration image: http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png
[R4] Krogh, "Efficient Algorithms for Polynomial Interpolation and Numerical Differentiation", 1970.
[Qhull] http://www.qhull.org/
[Qhull] http://www.qhull.org/
[CT] See, for example, P. Alfeld, ''A trivariate Clough-Tocher scheme for tetrahedral data' '. Computer Aided Geometric Design, 1, 169 (1984); G. Farin, ''Triangular Bernstein-Bezier patches' ${ }^{\prime}$. Computer Aided Geometric Design, 3, 83 (1986).
[Nielson83] G. Nielson, ''A method for interpolating scattered data based upon a minimum norm network' '. Math. Comp., 40, 253 (1983).
[Renka84] R. J. Renka and A. K. Cline. '’A Triangle-based C1 interpolation method.' ', Rocky Mountain J. Math., 14, 223 (1984).
[R22] P. Dierckx, "An algorithm for smoothing, differentiation and integration of experimental data using spline functions", J.Comp.Appl.Maths 1 (1975) 165-184.
[R23] P. Dierckx, "A fast algorithm for smoothing data on a rectangular grid while using spline functions", SIAM J.Numer.Anal. 19 (1982) 1286-1304.
[R24] P. Dierckx, "An improved algorithm for curve fitting with spline functions", report tw54, Dept. Computer Science,K.U. Leuven, 1981.
[R25] P. Dierckx, "Curve and surface fitting with splines", Monographs on Numerical Analysis, Oxford University Press, 1993.
[R19] P. Dierckx, "Algorithms for smoothing data with periodic and parametric splines, Computer Graphics and Image Processing", 20 (1982) 171-184.
[R20] P. Dierckx, "Algorithms for smoothing data with periodic and parametric splines", report tw55, Dept. Computer Science, K.U.Leuven, 1981.
[R21] P. Dierckx, "Curve and surface fitting with splines", Monographs on Numerical Analysis, Oxford University Press, 1993.
[R14] C. de Boor, "On calculating with b-splines", J. Approximation Theory, 6, p.50-62, 1972.
[R15] M.G. Cox, "The numerical evaluation of b-splines", J. Inst. Maths Applics, 10, p.134-149, 1972.
[R16] P. Dierckx, "Curve and surface fitting with splines", Monographs on Numerical Analysis, Oxford University Press, 1993.
[R17] P.W. Gaffney, The calculation of indefinite integrals of b-splines", J. Inst. Maths Applics, 17, p.37-41, 1976.
[R18] P. Dierckx, "Curve and surface fitting with splines", Monographs on Numerical Analysis, Oxford University Press, 1993.
[R26] C. de Boor, "On calculating with b-splines", J. Approximation Theory, 6, p.50-62, 1972.
[R27] M.G. Cox, "The numerical evaluation of b-splines", J. Inst. Maths Applics, 10, p.134-149, 1972.
[R28] P. Dierckx, "Curve and surface fitting with splines", Monographs on Numerical Analysis, Oxford University Press, 1993.
[R11] de Boor C : On calculating with b-splines, J. Approximation Theory 6 (1972) 50-62.
[R12] Cox M.G. : The numerical evaluation of b-splines, J. Inst. Maths applics 10 (1972) 134-149.
[R13] Dierckx P. : Curve and surface fitting with splines, Monographs on Numerical Analysis, Oxford University Press, 1993.
[R8] Dierckx P.:An algorithm for surface fitting with spline functions Ima J. Numer. Anal. 1 (1981) 267-283.
[R9] Dierckx P.:An algorithm for surface fitting with spline functions report tw50, Dept. Computer Science,K.U.Leuven, 1980.
[R10] Dierckx P.:Curve and surface fitting with splines, Monographs on Numerical Analysis, Oxford University Press, 1993.
[R5] Dierckx P. : An algorithm for surface fitting with spline functions Ima J. Numer. Anal. 1 (1981) 267-283.
[R6] Dierckx P. : An algorithm for surface fitting with spline functions report tw50, Dept. Computer Science,K.U.Leuven, 1980.
[R7] Dierckx P. : Curve and surface fitting with splines, Monographs on Numerical Analysis, Oxford University Press, 1993.
[R8] Dierckx P.:An algorithm for surface fitting with spline functions Ima J. Numer. Anal. 1 (1981) 267-283.
[R9] Dierckx P.:An algorithm for surface fitting with spline functions report tw50, Dept. Computer Science,K.U.Leuven, 1980.
[R10] Dierckx P.:Curve and surface fitting with splines, Monographs on Numerical Analysis, Oxford University Press, 1993.
[R5] Dierckx P. : An algorithm for surface fitting with spline functions Ima J. Numer. Anal. 1 (1981) 267-283.
[R6] Dierckx P. : An algorithm for surface fitting with spline functions report tw50, Dept. Computer Science,K.U.Leuven, 1980.
[R7] Dierckx P. : Curve and surface fitting with splines, Monographs on Numerical Analysis, Oxford University Press, 1993.
[R32] G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15
[R29] R. A. Horn \& C. R. Johnson, Matrix Analysis. Cambridge, UK: Cambridge University Press, 1999, pp. 146-7.
[R30] P. H. Leslie, On the use of matrices in certain population mathematics, Biometrika, Vol. 33, No. 3, 183-212 (Nov. 1945)
[R31] P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, Vol. 35, No. 3/4, 213-245 (Dec. 1948)
[R34] http://en.wikipedia.org/wiki/Closing_\(morphology\)
[R35] http://en.wikipedia.org/wiki/Mathematical_morphology
[R36] http://en.wikipedia.org/wiki/Dilation_\(morphology\)
[R37] http://en.wikipedia.org/wiki/Mathematical_morphology
[R38] http://en.wikipedia.org/wiki/Erosion_\(morphology\)
[R39] http://en.wikipedia.org/wiki/Mathematical_morphology
[R40] http://en.wikipedia.org/wiki/Mathematical_morphology
[R41] http://en.wikipedia.org/wiki/Hit-or-miss_transform
[R42] http://en.wikipedia.org/wiki/Opening_\(morphology\)
[R43] http://en.wikipedia.org/wiki/Mathematical_morphology
[R44] http://cmm.ensmp.fr/~serra/cours/pdf/en/ch6en.pdf, slide 15.
[R45] http://www.qi.tnw.tudelft.nl/Courses/FIP/noframes/fip-Morpholo.html\#Heading 102
[R46] http://cmm.ensmp.fr/Micromorph/course/sld011.htm, and following slides
[R47] http://en.wikipedia.org/wiki/Top-hat_transform
[R48] http://en.wikipedia.org/wiki/Mathematical_morphology
[R49] http://en.wikipedia.org/wiki/Dilation_\(morphology\)
[R50] http://en.wikipedia.org/wiki/Mathematical_morphology
[R51] http://en.wikipedia.org/wiki/Erosion_\(morphology\)
[R52] http://en.wikipedia.org/wiki/Mathematical_morphology
[R53] http://en.wikipedia.org/wiki/Mathematical_morphology
[R54] http://en.wikipedia.org/wiki/Mathematical_morphology
[R156] P. T. Boggs and J. E. Rogers, "Orthogonal Distance Regression," in "Statistical analysis of measurement error models and applications: proceedings of the AMS-IMS-SIAM joint summer research conference held June 10-16, 1989," Contemporary Mathematics, vol. 112, pg. 186, 1990.
[Brent1973] Brent, R. P., Algorithms for Minimization Without Derivatives. Englewood Cliffs, NJ: Prentice-Hall, 1973. Ch. 3-4.
[PressEtal1992] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 352-355, 1992. Section 9.3: "Van Wijngaarden-Dekker-Brent Method."
[Ridders1979] Ridders, C. F. J. "A New Algorithm for Computing a Single Root of a Real Continuous Function." IEEE Trans. Circuits Systems 26, 979-980, 1979.
[vR] B.A. van der Rotten, PhD thesis, "A limited memory Broyden method to solve high-dimensional systems of nonlinear equations". Mathematisch Instituut, Universiteit Leiden, The Netherlands (2003).
http://www.math.leidenuniv.nl/scripties/Rotten.pdf
[vR] B.A. van der Rotten, PhD thesis, "A limited memory Broyden method to solve high-dimensional systems of nonlinear equations". Mathematisch Instituut, Universiteit Leiden, The Netherlands (2003).
http://www.math.leidenuniv.nl/scripties/Rotten.pdf
[KK] D.A. Knoll and D.E. Keyes, J. Comp. Phys. 193, 357 (2003).
[BJM] A.H. Baker and E.R. Jessup and T. Manteuffel, SIAM J. Matrix Anal. Appl. 26, 962 (2005).
[Ey] 22. Eyert, J. Comp. Phys., 124, 271 (1996).
[R57] Wikipedia, "Analytic signal". http://en.wikipedia.org/wiki/Analytic_signal
[R55] Oppenheim, A. V. and Schafer, R. W., "Discrete-Time Signal Processing", Prentice-Hall, Englewood Cliffs, New Jersey (1989). (See, for example, Section 7.4.)
[R56] Smith, Steven W., "The Scientist and Engineer's Guide to Digital Signal Processing", Ch. 17. http://www.dspguide.com/ch17/1.htm
[R58] J. H. McClellan and T. W. Parks, "A unified approach to the design of optimum FIR linear phase digital filters", IEEE Trans. Circuit Theory, vol. CT-20, pp. 697-701, 1973.
[R59] J. H. McClellan, T. W. Parks and L. R. Rabiner, "A Computer Program for Designing Optimum FIR Linear Phase Digital Filters", IEEE Trans. Audio Electroacoust., vol. AU-21, pp. 506-525, 1973.
[R162] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/
[R163] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998.
[R164] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/
[R165] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998.
[BJM] A.H. Baker and E.R. Jessup and T. Manteuffel, SIAM J. Matrix Anal. Appl. 26, 962 (2005).
[BPh] A.H. Baker, PhD thesis, University of Colorado (2003). http://amath.colorado.edu/activities/thesis/allisonb/Thesis.ps
[R166] C. C. Paige and M. A. Saunders (1982a). "LSQR: An algorithm for sparse linear equations and sparse least squares", ACM TOMS 8(1), 43-71.
[R167] C. C. Paige and M. A. Saunders (1982b). "Algorithm 583. LSQR: Sparse linear equations and least squares problems", ACM TOMS 8(2), 195-209.
[R168] M. A. Saunders (1995). "Solution of sparse rectangular systems using LSQR and CRAIG", BIT 35, 588-604.
[SLU] SuperLU http://crd.lbl.gov/~xiaoye/SuperLU/
[SLU] SuperLU http://crd.lbl.gov/~xiaoye/SuperLU/
[Sta07] "Statistics toolbox." API Reference Documentation. The MathWorks. http://www.mathworks.com/access/helpdesk/help/toolbox/stats/. Accessed October 1, 2007.
[Mti07] "Hierarchical clustering." API Reference Documentation. The Wolfram Research, Inc. http://reference.wolfram.com/mathematica/HierarchicalClustering/tutorial/HierarchicalClustering.html. Accessed October 1, 2007.
[Gow69] Gower, JC and Ross, GJS. "Minimum Spanning Trees and Single Linkage Cluster Analysis." Applied Statistics. 18(1): pp. 54-64. 1969.
[War63] Ward Jr, JH. "Hierarchical grouping to optimize an objective function." Journal of the American Statistical Association. 58(301): pp. 236-44. 1963.
[Joh66] Johnson, SC. "Hierarchical clustering schemes." Psychometrika. 32(2): pp. 241-54. 1966.
[Sne62] Sneath, PH and Sokal, RR. "Numerical taxonomy." Nature. 193: pp. 855-60. 1962.
[Bat95] Batagelj, V. "Comparing resemblance measures." Journal of Classification. 12: pp. 73-90. 1995.
[Sok58] Sokal, RR and Michener, CD. "A statistical method for evaluating systematic relationships." Scientific Bulletins. 38(22): pp. 1409-38. 1958.
[Ede79] Edelbrock, C. "Mixture model tests of hierarchical clustering algorithms: the problem of classifying everybody." Multivariate Behavioral Research. 14: pp. 367-84. 1979.
[Jai88] Jain, A., and Dubes, R., "Algorithms for Clustering Data." Prentice-Hall. Englewood Cliffs, NJ. 1988.
[Fis36] Fisher, RA "The use of multiple measurements in taxonomic problems." Annals of Eugenics, 7(2): 179-188. 1936
[Qhull] http://www.qhull.org/
[Sta07] "Statistics toolbox." API Reference Documentation. The MathWorks. http://www.mathworks.com/access/helpdesk/help/toolbox/stats/. Accessed October 1, 2007.
[Mti07] "Hierarchical clustering." API Reference Documentation. The Wolfram Research, Inc. http://reference.wolfram.com/mathematica/HierarchicalClustering/tutorial/HierarchicalClustering.html. Accessed October 1, 2007.
[Gow69] Gower, JC and Ross, GJS. "Minimum Spanning Trees and Single Linkage Cluster Analysis." Applied Statistics. 18(1): pp. 54-64. 1969.
[War63] Ward Jr, JH. "Hierarchical grouping to optimize an objective function." Journal of the American Statistical Association. 58(301): pp. 236-44. 1963.
[Joh66] Johnson, SC. "Hierarchical clustering schemes." Psychometrika. 32(2): pp. 241-54. 1966.
[Sne62] Sneath, PH and Sokal, RR. "Numerical taxonomy." Nature. 193: pp. 855-60. 1962.
[Bat95] Batagelj, V. "Comparing resemblance measures." Journal of Classification. 12: pp. 73-90. 1995.
[Sok58] Sokal, RR and Michener, CD. "A statistical method for evaluating systematic relationships." Scientific Bulletins. 38(22): pp. 1409-38. 1958.
[Ede79] Edelbrock, C. "Mixture model tests of hierarchical clustering algorithms: the problem of classifying everybody." Multivariate Behavioral Research. 14: pp. 367-84. 1979.
[Jai88] Jain, A., and Dubes, R., "Algorithms for Clustering Data." Prentice-Hall. Englewood Cliffs, NJ. 1988.
[Fis36] Fisher, RA "The use of multiple measurements in taxonomic problems." Annals of Eugenics, 7(2): 179-188. 1936
[R87] http://mathworld.wolfram.com/MaxwellDistribution.html
[CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman \& Hall: New York. 2000.
[CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman \& Hall: New York. 2000.
[CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman \& Hall: New York. 2000.
[CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman \& Hall: New York. 2000.
[R92] D'Agostino, R. B. and Pearson, E. S. (1971), "An Omnibus Test of Normality for Moderate and Large Sample Size," Biometrika, 58, 341-348
[R93] D'Agostino, R. B. and Pearson, E. S. (1973), "Testing for departures from Normality," Biometrika, 60, 613-622
[R78] Lowry, Richard. "Concepts and Applications of Inferential Statistics". Chapter 14. http://faculty.vassar.edu/lowry/ch14pt1.html
[R79] Heiman, G.W. Research Methods in Statistics. 2002.
[CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman \& Hall: New York. 2000.
[R77] Lowry, Richard. "Concepts and Applications of Inferential Statistics". Chapter 8. http://faculty.vassar.edu/lowry/ch8pt1.html
[R94] http://en.wikipedia.org/wiki/Wilcoxon_rank-sum_test
[R96] http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
[R83] http://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance
[R82] http://en.wikipedia.org/wiki/Friedman_test
[R73] Sprent, Peter and N.C. Smeeton. Applied nonparametric statistical methods. 3rd ed. Chapman and Hall/CRC. 2001. Section 5.8.2.
[R74] http://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm
[R75] Snedecor, George W. and Cochran, William G. (1989), Statistical Methods, Eighth Edition, Iowa State University Press.
[R84] http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm
[R85] Levene, H. (1960). In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, I. Olkin et al. eds., Stanford University Press, pp. 278-292.
[R86] Brown, M. B. and Forsythe, A. B. (1974), Journal of the American Statistical Association, 69, 364-367
[R95] http://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm
[R67] http://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm
[R68] Stephens, M. A. (1974). EDF Statistics for Goodness of Fit and Some Comparisons, Journal of the American Statistical Association, Vol. 69, pp. 730-737.
[R69] Stephens, M. A. (1976). Asymptotic Results for Goodness-of-Fit Statistics with Unknown Parameters, Annals of Statistics, Vol. 4, pp. 357-369.
[R70] Stephens, M. A. (1977). Goodness of Fit for the Extreme Value Distribution, Biometrika, Vol. 64, pp. 583-588.
[R71] Stephens, M. A. (1977). Goodness of Fit with Special Reference to Tests for Exponentiality , Technical Report No. 262, Department of Statistics, Stanford University, Stanford, CA.
[R72] Stephens, M. A. (1979). Tests of Fit for the Logistic Distribution Based on the Empirical Distribution Function, Biometrika, Vol. 66, pp. 591-595.
[R76] http://en.wikipedia.org/wiki/Binomial_test
[R80] http://www.stat.psu.edu/~bgl/center/tr/TR993.ps
[R81] Fligner, M.A. and Killeen, T.J. (1976). Distribution-free two-sample tests for scale. 'Journal of the American Statistical Association.' 71(353), 210-213.
[R88] Lowry, Richard. "Concepts and Applications of Inferential Statistics". Chapter 8. http://faculty.vassar.edu/lowry/ch8pt1.html
[R89] http://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance
[R89] http://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance
[CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman \& Hall: New York. 2000.
[R90] D'Agostino, R. B. and Pearson, E. S. (1971), "An Omnibus Test of Normality for Moderate and Large Sample Size," Biometrika, 58, 341-348
[R91] D'Agostino, R. B. and Pearson, E. S. (1973), "Testing for departures from Normality," Biometrika, 60, 613-622
[CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman \& Hall: New York. 2000.
[CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman \& Hall: New York. 2000.

PYTHON MODULE INDEX

```
S
scipy.cluster,189
scipy.cluster.hierarchy,149
scipy.cluster.vq,}18
scipy.constants,189
scipy.fftpack, 204
scipy.fftpack._fftpack,216
scipy.fftpack.convolve, 215
scipy.integrate, 218
scipy.interpolate, 233
scipy.io,262
scipy.io.arff,97
scipy.io.netcdf,98
scipy.io.wavfile,97
scipy.linalg,269
scipy.maxentropy,303
scipy.maxentropy.maxentropy,303
scipy.maxentropy.maxentutils, 320
scipy.misc,323
scipy.misc.common, }32
scipy.misc.doccer, 324
scipy.misc.pilutil,324
scipy.misc.setup,325
scipy.misc.setupscons, }32
scipy.ndimage, }34
scipy.ndimage.filters,344
scipy.ndimage.fourier,359
scipy.ndimage.interpolation, 361
scipy.ndimage.measurements, }36
scipy.ndimage.morphology, }37
scipy.odr,404
scipy.odr.models,406
scipy.odr.odrpack,404
scipy.optimize,419
scipy.optimize.nonlin,448
scipy.signal,463
scipy.sparse, 507
scipy.sparse.base, }50
scipy.sparse.bsr, 509
scipy.sparse.compressed, 510
scipy.sparse.construct, 510
```

scipy.sparse.coo, 511
scipy.sparse.csc, 511
scipy.sparse.csgraph, 512
scipy.sparse.csr, 512
scipy.sparse.data, 512
scipy.sparse.dia, 513
scipy.sparse.dok, 513
scipy.sparse.extract, 513
scipy.sparse.lil, 513
scipy.sparse.linalg, 556
scipy.sparse.sparsetools, 515
scipy.sparse.spfuncs, 516
scipy.sparse.sputils, 517
scipy.spatial, 580
scipy.spatial.distance, 599
scipy.special,615
scipy.stats, 641
scipy.stats.mstats, 878
scipy.weave, 909
scipy.weave.ext_tools, 912

Symbols

__call__() (scipy.interpolate.UnivariateSpline method), 247

A

affine_transform() (in module
scipy.ndimage.interpolation), 361
ai_zeros() (in module scipy.special), 617
airy (in module scipy.special), 617
airye (in module scipy.special), 617
alpha (in module scipy.stats), 664
anderson() (in module scipy.optimize), 457
anderson() (in module scipy.stats), 874
anglit (in module scipy.stats), 666
anneal() (in module scipy.optimize), 435
ansari() (in module scipy.stats), 872
approximate_taylor_polynomial() (in module scipy.interpolate), 261
arcsine (in module scipy.stats), 668
argstoarray() (in module scipy.stats.mstats), 880
ArpackError, 557
ArpackNoConvergence, 557
arrayexp() (in module scipy.maxentropy), 309
arrayexp() (in module scipy.maxentropy.maxentutils), 321
arrayexpcomplex() (in module scipy.maxentropy.maxentutils), 321
aslinearoperator() (in module scipy.sparse.linalg), 559
average() (in module scipy.cluster.hierarchy), 155, 168

B

barthann() (in module scipy.signal), 504
bartlett() (in module scipy.signal), 504
bartlett() (in module scipy.stats), 872
barycentric_interpolate() (in module scipy.interpolate), 235
BarycentricInterpolator (class in scipy.interpolate), 234
basemodel (class in scipy.maxentropy), 305, 311
bayes_mvs() (in module scipy.stats), 853
bdtr (in module scipy.special), 624
bdtrc (in module scipy.special), 624
bdtri (in module scipy.special), 624
beginlogging() (scipy.maxentropy.basemodel method), 311
bei (in module scipy.special), 637
bei_zeros() (in module scipy.special), 638
beip (in module scipy.special), 637
beip_zeros() (in module scipy.special), 638
ber (in module scipy.special), 637
ber_zeros() (in module scipy.special), 637
bernoulli (in module scipy.stats), 817
berp (in module scipy.special), 637
berp_zeros() (in module scipy.special), 638
bessel() (in module scipy.signal), 491
besselpoly (in module scipy.special), 621
beta (in module scipy.special), 626
beta (in module scipy.stats), 670
betai() (in module scipy.stats.mstats), 880
betainc (in module scipy.special), 627
betaincinv (in module scipy.special), 627
betaln (in module scipy.special), 627
betaprime (in module scipy.stats), 672
bi_zeros() (in module scipy.special), 617
$\operatorname{bicg}()$ (in module scipy.sparse.linalg), 559
bicgstab() (in module scipy.sparse.linalg), 560
bigmodel (class in scipy.maxentropy), 306, 315
bilinear() (in module scipy.signal), 476
binary_closing() (in module scipy.ndimage.morphology), 379
binary_dilation() (in module scipy.ndimage.morphology), 381
binary_erosion() (in module scipy.ndimage.morphology), 383
binary_fill_holes() (in module scipy.ndimage.morphology), 384
binary_hit_or_miss() (in module scipy.ndimage.morphology), 386
binary_opening() (in module
scipy.ndimage.morphology), 387
binary_propagation() (in module scipy.ndimage.morphology), 389
binom (in module scipy.stats), 815
binom_test() (in module scipy.stats), 875
bisect() (in module scipy.optimize), 446
bisplev() (in module scipy.interpolate), 255, 260
bisplrep() (in module scipy.interpolate), 253, 259
BivariateSpline (class in scipy.interpolate), 256
black_tophat() (in module scipy.ndimage.morphology), 391
blackman() (in module scipy.signal), 504
blackmanharris() (in module scipy.signal), 504
blitz() (in module scipy.weave), 912
block_diag() (in module scipy.linalg), 296
bmat() (in module scipy.sparse), 530, 554
bohman() (in module scipy.signal), 504
boltzmann (in module scipy.stats), 831
boxcar() (in module scipy.signal), 504
bracket() (in module scipy.optimize), 439
bradford (in module scipy.stats), 674
braycurtis() (in module scipy.spatial.distance), 591, 608
brent() (in module scipy.optimize), 440
brenth() (in module scipy.optimize), 443
brentq() (in module scipy.optimize), 442
broyden1() (in module scipy.optimize), 451
broyden2() (in module scipy.optimize), 453
brute() (in module scipy.optimize), 437
bspline() (in module scipy.signal), 466
bsr_matrix (class in scipy.sparse), 517, 541
btdtr (in module scipy.special), 624
btdtri (in module scipy.special), 624
burr (in module scipy.stats), 676
butter() (in module scipy.signal), 488
buttord() (in module scipy.signal), 488
bytescale() (in module scipy.misc), 326, 337

C

C2F() (in module scipy.constants), 201
C2K() (in module scipy.constants), 200
canberra() (in module scipy.spatial.distance), 591, 609
cascade() (in module scipy.signal), 505
cauchy (in module scipy.stats), 680
cbrt (in module scipy.special), 641
cc_diff() (in module scipy.fftpack), 213
cdf() (scipy.stats.rv_continuous method), 646
cdf() (scipy.stats.rv_discrete method), 655
cdist() (in module scipy.spatial.distance), 585, 603
center_of_mass() (in module scipy.ndimage.measurements), 368
central_diff_weights() (in module scipy.misc), 327, 341 centroid() (in module scipy.cluster.hierarchy), 155, 168 cg () (in module scipy.sparse.linalg), 561
$\operatorname{cgs}()$ (in module scipy.sparse.linalg), 562
chdtr (in module scipy.special), 625
chdtrc (in module scipy.special), 625
chdtri (in module scipy.special), 625
cheblord() (in module scipy.signal), 489
cheb2ord() (in module scipy.signal), 490
chebwin() (in module scipy.signal), 504
chebyl() (in module scipy.signal), 489
cheby2() (in module scipy.signal), 490
chebyc() (in module scipy.special), 631
chebys() (in module scipy.special), 631
chebyshev() (in module scipy.spatial.distance), 591, 609
chebyt() (in module scipy.special), 631
chebyu() (in module scipy.special), 631
check_grad() (in module scipy.optimize), 463
chi (in module scipy.stats), 682
chi2 (in module scipy.stats), 684
chirp() (in module scipy.signal), 499
chisquare() (in module scipy.stats), 867
chisquare() (in module scipy.stats.mstats), 880
cho_factor() (in module scipy.linalg), 288
cho_solve() (in module scipy.linalg), 289
cho_solve_banded() (in module scipy.linalg), 289
cholesky() (in module scipy.linalg), 287
cholesky_banded() (in module scipy.linalg), 287
circulant() (in module scipy.linalg), 297
cityblock() (in module scipy.spatial.distance), 592, 609
cKDTree (class in scipy.spatial), 581
clearcache() (scipy.maxentropy.basemodel method), 311
CloughTocher2DInterpolator (class in scipy.interpolate), 240
ClusterNode (class in scipy.cluster.hierarchy), 163, 166
cmedian() (in module scipy.stats), 840
columnmeans() (in module scipy.maxentropy), 309
columnmeans() (in module scipy.maxentropy.maxentutils), 321
columnvariances() (in module scipy.maxentropy), 310
columnvariances() (in module scipy.maxentropy.maxentutils), 321
comb() (in module scipy.misc), 327, 341
companion() (in module scipy.linalg), 298
complete() (in module scipy.cluster.hierarchy), 154, 169
conditionalmodel (class in scipy.maxentropy), 307, 318
convolve (in module scipy.fftpack.convolve), 215
convolve() (in module scipy.ndimage.filters), 344
convolve() (in module scipy.signal), 463
convolve1d() (in module scipy.ndimage.filters), 346
convolve2d() (in module scipy.signal), 465
convolve_z (in module scipy.fftpack.convolve), 216
coo_matrix (class in scipy.sparse), 519, 546
cophenet() (in module scipy.cluster.hierarchy), 157, 169
correlate() (in module scipy.ndimage.filters), 347
correlate() (in module scipy.signal), 464
correlate1d() (in module scipy.ndimage.filters), 347
correlate2d() (in module scipy.signal), 465
correlation() (in module scipy.spatial.distance), 592, 610
correspond() (in module scipy.cluster.hierarchy), 166, 170
cosdg (in module scipy.special), 641
coshm() (in module scipy.linalg), 294
cosine (in module scipy.stats), 686
cosine() (in module scipy.spatial.distance), 592, 610
cosm () (in module scipy.linalg), 293
cosm1 (in module scipy.special), 641
cotdg (in module scipy.special), 641
count_tied_groups() (in module scipy.stats.mstats), 881
crossentropy() (scipy.maxentropy.basemodel method), 312
cs_diff() (in module scipy.fftpack), 211
cs_graph_components() (in module scipy.sparse), 531
csc_matrix (class in scipy.sparse), 521, 537
csc_matrix (class in scipy.sparse.linalg), 563
cspline1d() (in module scipy.signal), 466
cspline2d() (in module scipy.signal), 467
csr_matrix (class in scipy.sparse), 523, 539
csr_matrix (class in scipy.sparse.linalg), 565
cumfreq() (in module scipy.stats), 851
cumtrapz() (in module scipy.integrate), 227
curve_fit() (in module scipy.optimize), 440

D

Data (class in scipy.odr), 409, 412
daub() (in module scipy.signal), 506
dawsn (in module scipy.special), 638
dblquad() (in module scipy.integrate), 220
$\operatorname{dct}()$ (in module scipy.fftpack), 208
decimate() (in module scipy.signal), 473
deconvolve() (in module scipy.signal), 472
Delaunay (class in scipy.spatial), 598
dendrogram() (in module scipy.cluster.hierarchy), 160, 170
densefeaturematrix() (in module scipy.maxentropy.maxentutils), 321
densefeatures() (in scipy.maxentropy.maxentutils), 322
derivative() (in module scipy.misc), 327,341
derivatives() (scipy.interpolate.UnivariateSpline method), 247
describe() (in module scipy.stats), 846
describe() (in module scipy.stats.mstats), 881
destroy_convolve_cache (in module scipy.fftpack.convolve), 216
destroy_drfft_cache (in module scipy.fftpack._fftpack), 217
destroy_zfft_cache (in module scipy.fftpack._fftpack), 217
destroy_zfftnd_cache (in module scipy.fftpack._fftpack), 218
$\operatorname{det}()$ (in module scipy.linalg), 272
detrend() (in module scipy.signal), 474
dgamma (in module scipy.stats), 688
dia_matrix (class in scipy.sparse), 525, 548
diagbroyden() (in module scipy.optimize), 461
diagsvd() (in module scipy.linalg), 286
dice() (in module scipy.spatial.distance), 593, 610
diff() (in module scipy.fftpack), 210
distance_transform_bf() (in module scipy.ndimage.morphology), 391
distance_transform_cdt() (in module scipy.ndimage.morphology), 391
distance_transform_edt() (in module scipy.ndimage.morphology), 392
DivergenceError, 305
division (in module scipy.maxentropy), 310
dlaplace (in module scipy.stats), 836
dok_matrix (class in scipy.sparse), 526, 545
dotprod() (in module scipy.maxentropy.maxentutils), 322
drfft (in module scipy.fftpack._fftpack), 216
dual() (scipy.maxentropy.basemodel method), 312
dual() (scipy.maxentropy.conditionalmodel method), 319
dweibull (in module scipy.stats), 690

E

eig() (in module scipy.linalg), 276
eig_banded() (in module scipy.linalg), 280
eigh() (in module scipy.linalg), 278
eigs() (in module scipy.sparse.linalg), 567
eigsh() (in module scipy.sparse.linalg), 568
eigvals() (in module scipy.linalg), 277
eigvals_banded() (in module scipy.linalg), 281
eigvalsh() (in module scipy.linalg), 279
ellip() (in module scipy.signal), 491
ellipe (in module scipy.special), 618
ellipeinc (in module scipy.special), 618
ellipj (in module scipy.special), 617
ellipk (in module scipy.special), 618
ellipkinc (in module scipy.special), 618
module ellipord() (in module scipy.signal), 491
endlogging() (scipy.maxentropy.basemodel method), 311
entropy() (scipy.stats.rv_continuous method), 649
entropy() (scipy.stats.rv_discrete method), 658
erf (in module scipy.special), 627
erf_zeros() (in module scipy.special), 628
erfc (in module scipy.special), 628
$\operatorname{erfcinv}()$ (in module scipy.special), 628
$\operatorname{erfinv}()$ (in module scipy.special), 628
erlang (in module scipy.stats), 692
errprint() (in module scipy.special), 616
errstate (class in scipy.special), 616
estimate() (scipy.maxentropy.bigmodel method), 316
euclidean() (in module scipy.spatial.distance), 593, 610
eval_chebyc() (in module scipy.special), 630
eval_chebys() (in module scipy.special), 630
eval_chebyt() (in module scipy.special), 630
eval_chebyu() (in module scipy.special), 630
eval_gegenbauer() (in module scipy.special), 630
eval_genlaguerre() (in module scipy.special), 630
eval_hermite() (in module scipy.special), 630
eval_hermitenorm() (in module scipy.special), 630
eval_jacobi() (in module scipy.special), 630
eval_laguerre() (in module scipy.special), 630
eval_legendre() (in module scipy.special), 630
eval_sh_chebyt() (in module scipy.special), 631
eval_sh_chebyu() (in module scipy.special), 631
eval_sh_jacobi() (in module scipy.special), 631
eval_sh_legendre() (in module scipy.special), 631
excitingmixing() (in module scipy.optimize), 458
exp1 (in module scipy.special), 638
exp10 (in module scipy.special), 641
exp2 (in module scipy.special), 641
expect() (scipy.stats.rv_continuous method), 649
expect() (scipy.stats.rv_discrete method), 658
expectations() (scipy.maxentropy.conditionalmodel method), 320
expectations() (scipy.maxentropy.model method), 314
expi (in module scipy.special), 638
$\operatorname{expm}()$ (in module scipy.linalg), 292
expm1 (in module scipy.special), 641
expm2() (in module scipy.linalg), 293
expm3() (in module scipy.linalg), 293
expn (in module scipy.special), 638
expon (in module scipy.stats), 694
exponpow (in module scipy.stats), 698
exponweib (in module scipy.stats), 696
extrema() (in module scipy.ndimage.measurements), 369
eye() (in module scipy.sparse), 531, 550

F

f (in module scipy.stats), 704
F2C() (in module scipy.constants), 201
F2K() (in module scipy.constants), 202
f_oneway() (in module scipy.stats), 858
f_oneway() (in module scipy.stats.mstats), 882
f_value_wilks_lambda() (in module scipy.stats.mstats), 882
factorial() (in module scipy.misc), 328, 339
factorial2() (in module scipy.misc), 328, 340
factorialk() (in module scipy.misc), 329, 340
factorized() (in module scipy.sparse.linalg), 570
fatiguelife (in module scipy.stats), 700
fcluster() (in module scipy.cluster.hierarchy), 149, 173
fclusterdata() (in module scipy.cluster.hierarchy), 150, 174
fdtr (in module scipy.special), 624
fdtrc (in module scipy.special), 624
fdtri (in module scipy.special), 624
fft() (in module scipy.fftpack), 204
fft2() (in module scipy.fftpack), 206
fftconvolve() (in module scipy.signal), 465
fftfreq() (in module scipy.fftpack), 215
fftn() (in module scipy.fftpack), 205
fftshift() (in module scipy.fftpack), 213
find() (in module scipy.constants), 191
find() (in module scipy.sparse), 531
find_objects() (in module scipy.ndimage.measurements), 370
find_repeats() (in module scipy.stats.mstats), 882
firwin() (in module scipy.signal), 476
firwin2() (in module scipy.signal), 478
fisher_exact() (in module scipy.stats), 860
fisk (in module scipy.stats), 678
fit() (scipy.maxentropy.basemodel method), 312
fit() (scipy.maxentropy.conditionalmodel method), 320
fit() (scipy.stats.rv_continuous method), 649
fixed_point() (in module scipy.optimize), 447
fixed_quad() (in module scipy.integrate), 222
flatten() (in module scipy.maxentropy), 310
flatten() (in module scipy.maxentropy.maxentutils), 322
flattop() (in module scipy.signal), 505
fligner() (in module scipy.stats), 875
fmin() (in module scipy.optimize), 419
fmin_bfgs() (in module scipy.optimize), 423
fmin_cg() (in module scipy.optimize), 422
fmin_cobyla() (in module scipy.optimize), 432
fmin_l_bfgs_b() (in module scipy.optimize), 428
fmin_ncg() (in module scipy.optimize), 425
fmin_powell() (in module scipy.optimize), 421
fmin_slsqp() (in module scipy.optimize), 433
fmin_tnc() (in module scipy.optimize), 430
fminbound() (in module scipy.optimize), 438
foldcauchy (in module scipy.stats), 702
foldnorm (in module scipy.stats), 706
fourier_ellipsoid() (in module scipy.ndimage.fourier), 359
fourier_gaussian() (in module scipy.ndimage.fourier), 360
fourier_shift() (in module scipy.ndimage.fourier), 360
fourier_uniform() (in module scipy.ndimage.fourier), 361
freqs() (in module scipy.signal), 479
freqz() (in module scipy.signal), 480
fresnel (in module scipy.special), 628
fresnel_zeros() (in module scipy.special), 628
fresnelc_zeros() (in module scipy.special), 628
fresnels_zeros() (in module scipy.special), 628
friedmanchisquare() (in module scipy.stats), 871
friedmanchisquare() (in module scipy.stats.mstats), 882
from_mlab_linkage() (in module scipy.cluster.hierarchy), 158, 175
fromimage() (in module scipy.misc), 329, 336
fsolve() (in module scipy.optimize), 450
funm() (in module scipy.linalg), 296
G
gamma (in module scipy.special), 626
gamma (in module scipy.stats), 718
gammainc (in module scipy.special), 626
gammaincc (in module scipy.special), 626
gammainccinv (in module scipy.special), 626
gammaincinv (in module scipy.special), 626
gammaln (in module scipy.special), 626
gauss_spline() (in module scipy.signal), 466
gausshyper (in module scipy.stats), 716
gaussian() (in module scipy.signal), 505
gaussian_filter() (in module scipy.ndimage.filters), 348
gaussian_filter1d() (in module scipy.ndimage.filters), 348
gaussian_gradient_magnitude() (in module scipy.ndimage.filters), 349
gaussian_kde (class in scipy.stats), 908
gaussian_laplace() (in module scipy.ndimage.filters), 349
gausspulse() (in module scipy.signal), 501
gdtr (in module scipy.special), 624
gdtrc (in module scipy.special), 624
gdtria (in module scipy.special), 624
gdtrib (in module scipy.special), 625
gdtrix (in module scipy.special), 625
gegenbauer() (in module scipy.special), 632
general_gaussian() (in module scipy.signal), 505
generate_binary_structure() (in module scipy.ndimage.morphology), 393
generic_filter() (in module scipy.ndimage.filters), 350
generic_filterld() (in module scipy.ndimage.filters), 351
generic_gradient_magnitude() (in module scipy.ndimage.filters), 351
generic_laplace() (in module scipy.ndimage.filters), 352
genexpon (in module scipy.stats), 712
genextreme (in module scipy.stats), 714
gengamma (in module scipy.stats), 720
genhalflogistic (in module scipy.stats), 722
genlaguerre() (in module scipy.special), 632
genlogistic (in module scipy.stats), 708
genpareto (in module scipy.stats), 710
geom (in module scipy.stats), 821
geometric_transform() (in module scipy.ndimage.interpolation), 362
get_coeffs() (scipy.interpolate.UnivariateSpline method), 247
get_count() (scipy.cluster.hierarchy.ClusterNode method), 167
get_id() (scipy.cluster.hierarchy.ClusterNode method), 167
get_knots() (scipy.interpolate.UnivariateSpline method), 247
get_left() (scipy.cluster.hierarchy.ClusterNode method), 167
get_residual() (scipy.interpolate.UnivariateSpline method), 247
get_right() (scipy.cluster.hierarchy.ClusterNode method), 167
get_window() (in module scipy.signal), 472, 503
gilbrat (in module scipy.stats), 754
$\operatorname{glm}()$ (in module scipy.stats), 877
gmean() (in module scipy.stats), 839
gmean() (in module scipy.stats.mstats), 883
gmres() (in module scipy.sparse.linalg), 570
golden() (in module scipy.optimize), 439
gompertz (in module scipy.stats), 724
$\operatorname{grad}()$ (scipy.maxentropy.basemodel method), 313
grey_closing() (in module scipy.ndimage.morphology), 395
grey_dilation() (in module scipy.ndimage.morphology), 396
grey_erosion() (in module scipy.ndimage.morphology), 398
grey_opening() (in module scipy.ndimage.morphology), 400
griddata() (in module scipy.interpolate), 237
gumbel_1 (in module scipy.stats), 728
gumbel_r (in module scipy.stats), 726

H

$h 1 \mathrm{vp}($) (in module scipy.special), 622
$\mathrm{h} 2 \mathrm{vp}($) (in module scipy.special), 622
hadamard() (in module scipy.linalg), 298
halfcauchy (in module scipy.stats), 730
halflogistic (in module scipy.stats), 732
halfnorm (in module scipy.stats), 734
hamming() (in module scipy.signal), 505
hamming() (in module scipy.spatial.distance), 593, 611
hankel() (in module scipy.linalg), 299
hankel1 (in module scipy.special), 619
hankelle (in module scipy.special), 619
hankel2 (in module scipy.special), 619
hankel2e (in module scipy.special), 619
hann() (in module scipy.signal), 505
hermite() (in module scipy.special), 632
hermitenorm() (in module scipy.special), 632
hessenberg() (in module scipy.linalg), 291
hilbert() (in module scipy.fftpack), 211
hilbert() (in module scipy.signal), 472
histogram() (in module scipy.ndimage.measurements), 370
histogram() (in module scipy.stats), 850
histogram2() (in module scipy.stats), 850
hmean() (in module scipy.stats), 840
hmean() (in module scipy.stats.mstats), 883
hstack() (in module scipy.sparse), 532, 554
hyp0f1() (in module scipy.special), 633
hyp1f1 (in module scipy.special), 632
hyp1f2 (in module scipy.special), 633
hyp2f0 (in module scipy.special), 633
hyp2f1 (in module scipy.special), 632
hyp3f0 (in module scipy.special), 633
hypergeom (in module scipy.stats), 823
hyperu (in module scipy.special), 633
hypsecant (in module scipy.stats), 736

I

i0 (in module scipy.special), 621
i0e (in module scipy.special), 621
i1 (in module scipy.special), 621
ile (in module scipy.special), 621
idct() (in module scipy.fftpack), 209
identity() (in module scipy.sparse), 532, 550
ifft() (in module scipy.fftpack), 205
ifft2() (in module scipy.fftpack), 206
ifftn() (in module scipy.fftpack), 206
ifftshift() (in module scipy.fftpack), 214
ihilbert() (in module scipy.fftpack), 211
iirdesign() (in module scipy.signal), 481
iirfilter() (in module scipy.signal), 482
imfilter() (in module scipy.misc), 330, 339
impulse() (in module scipy.signal), 492, 494
impulse2() (in module scipy.signal), 495
imread() (in module scipy.misc), 330, 337
imresize() (in module scipy.misc), 330, 338
imrotate() (in module scipy.misc), 331, 338
imsave() (in module scipy.misc), 331, 336
imshow() (in module scipy.misc), 332, 339
inconsistent() (in module scipy.cluster.hierarchy), 158, 176
info() (in module scipy.misc), 332, 335
init_convolution_kernel (in scipy.fftpack.convolve), 216
inline() (in module scipy.weave), 909
innerprod() (in module scipy.maxentropy), 310
innerprod() (in module scipy.maxentropy.maxentutils), 322
innerprodtranspose() (in module scipy.maxentropy), 310
innerprodtranspose() (in module scipy.maxentropy.maxentutils), 322
integral() (scipy.interpolate.UnivariateSpline method), 247
interp1d (class in scipy.interpolate), 233
interp2d (class in scipy.interpolate), 241
InterpolatedUnivariateSpline (class in scipy.interpolate), 244
interval() (scipy.stats.rv_continuous method), 651
interval() (scipy.stats.rv_discrete method), 660
$\operatorname{inv}()$ (in module scipy.linalg), 269
invgamma (in module scipy.stats), 738
invres() (in module scipy.signal), 488
invweibull (in module scipy.stats), 739
irfft() (in module scipy.fftpack), 207
is_isomorphic() (in module scipy.cluster.hierarchy), 165, 176
is_leaf() (scipy.cluster.hierarchy.ClusterNode method), 167
is_monotonic() (in module scipy.cluster.hierarchy), 165, 176
is_valid_dm() (in module scipy.spatial.distance), 589, 607
is_valid_im() (in module scipy.cluster.hierarchy), 164, 177
is_valid_linkage() (in module scipy.cluster.hierarchy), 165, 177
is_valid_y() (in module scipy.spatial.distance), 589, 607
isf() (scipy.stats.rv_continuous method), 648
isf() (scipy.stats.rv_discrete method), 657
issparse() (in module scipy.sparse), 532, 555
isspmatrix() (in module scipy.sparse), 533, 556
isspmatrix_bsr() (in module scipy.sparse), 533, 556
isspmatrix_coo() (in module scipy.sparse), 533, 556
isspmatrix_csc() (in module scipy.sparse), 533, 556
isspmatrix_csr() (in module scipy.sparse), 533, 556
isspmatrix_dia() (in module scipy.sparse), 533, 556
isspmatrix_dok() (in module scipy.sparse), 533, 556
isspmatrix_lil() (in module scipy.sparse), 533, 556
it2i0k0 (in module scipy.special), 621
it 2 j 0 y 0 (in module scipy.special), 621
it2struve0 (in module scipy.special), 623
itemfreq() (in module scipy.stats), 848
iterate_structure() (in module scipy.ndimage.morphology), 401
iti0k0 (in module scipy.special), 621
itilbert() (in module scipy.fftpack), 211
itj0y0 (in module scipy.special), 621
itmodstruve0 (in module scipy.special), 623
itstruve0 (in module scipy.special), 623
iv (in module scipy.special), 619
ive (in module scipy.special), 619
$\operatorname{ivp}()$ (in module scipy.special), 622

J

j0 (in module scipy.special), 620
j1 (in module scipy.special), 621
jaccard() (in module scipy.spatial.distance), 594, 611
jacobi() (in module scipy.special), 631
jn (in module scipy.special), 618
jn_zeros() (in module scipy.special), 620
jnjnp_zeros() (in module scipy.special), 619
jnp_zeros() (in module scipy.special), 620
jnyn_zeros() (in module scipy.special), 620
johnsonsb (in module scipy.stats), 741
johnsonsu (in module scipy.stats), 743
jv (in module scipy.special), 618
jve (in module scipy.special), 618
jvp() (in module scipy.special), 622

K

k 0 (in module scipy.special), 621
k0e (in module scipy.special), 621
k1 (in module scipy.special), 621
k1e (in module scipy.special), 621
K2C() (in module scipy.constants), 201
K 2 F() (in module scipy.constants), 202
kaiser() (in module scipy.signal), 505
kaiser_atten() (in module scipy.signal), 483
kaiser_beta() (in module scipy.signal), 483
kaiserord() (in module scipy.signal), 483
KDTree (class in scipy.spatial), 580
kei (in module scipy.special), 637
kei_zeros() (in module scipy.special), 638
keip (in module scipy.special), 637
keip_zeros() (in module scipy.special), 638
kelvin (in module scipy.special), 637
kelvin_zeros() (in module scipy.special), 637
kendalltau() (in module scipy.stats), 861
kendalltau() (in module scipy.stats.mstats), 884
kendalltau_seasonal() (in module scipy.stats.mstats), 884
ker (in module scipy.special), 637
ker_zeros() (in module scipy.special), 638
kerp (in module scipy.special), 637
kerp_zeros() (in module scipy.special), 638
kmeans() (in module scipy.cluster.vq), 186
kmeans2() (in module scipy.cluster.vq), 188
kn (in module scipy.special), 619
kolmogi (in module scipy.special), 626
kolmogorov (in module scipy.special), 626
krogh_interpolate() (in module scipy.interpolate), 236
KroghInterpolator (class in scipy.interpolate), 234
kron() (in module scipy.linalg), 299
kron() (in module scipy.sparse), 533, 550
kronsum() (in module scipy.sparse), 533, 551
kruskal() (in module scipy.stats), 871
kruskalwallis() (in module scipy.stats.mstats), 885
ks_2samp() (in module scipy.stats), 868
ks_twosamp() (in module scipy.stats.mstats), 886
ksone (in module scipy.stats), 811
kstest() (in module scipy.stats), 866
kstwobign (in module scipy.stats), 813
kulsinski() (in module scipy.spatial.distance), 594, 611
kurtosis() (in module scipy.stats), 845
kurtosis() (in module scipy.stats.mstats), 886
kurtosistest() (in module scipy.stats), 847
kurtosistest() (in module scipy.stats.mstats), 887
kv (in module scipy.special), 619
kve (in module scipy.special), 619
$\operatorname{kvp}()$ (in module scipy.special), 622

L

label() (in module scipy.ndimage.measurements), 371
lagrange() (in module scipy.interpolate), 261
laguerre() (in module scipy.special), 631
lambda2nu() (in module scipy.constants), 203
lambertw() (in module scipy.special), 639
laplace (in module scipy.stats), 745
laplace() (in module scipy.ndimage.filters), 352
leaders() (in module scipy.cluster.hierarchy), 151, 177
leastsq() (in module scipy.optimize), 426
leaves_list() (in module scipy.cluster.hierarchy), 163, 178
legendre() (in module scipy.special), 631
lena() (in module scipy.misc), 333, 342
leslie() (in module scipy.linalg), 300
levene() (in module scipy.stats), 873
lfilter() (in module scipy.signal), 471
lfiltic() (in module scipy.signal), 472
lgmres() (in module scipy.sparse.linalg), 571
lil_matrix (class in scipy.sparse), 528, 543
line_search() (in module scipy.optimize), 462
linearmixing() (in module scipy.optimize), 460
LinearNDInterpolator (class in scipy.interpolate), 239
LinearOperator (class in scipy.sparse.linalg), 557
linkage() (in module scipy.cluster.hierarchy), 152, 178
linregress() (in module scipy.stats), 862
linregress() (in module scipy.stats.mstats), 887
$\operatorname{lmbda}()$ (in module scipy.special), 619
loadarff() (in module scipy.io.arff), 267
loadmat() (in module scipy.io), 262
lobpcg() (in module scipy.sparse.linalg), 572
$\log ()$ (scipy.maxentropy.basemodel method), 313
$\log 1 \mathrm{p}$ (in module scipy.special), 641
$\operatorname{logcdf}()$ (scipy.stats.rv_continuous method), 646
$\operatorname{logcdf}()$ (scipy.stats.rv_discrete method), 656
loggamma (in module scipy.stats), 749
logistic (in module scipy.stats), 747
loglaplace (in module scipy.stats), 750
$\operatorname{logm}()$ (in module scipy.linalg), 293
lognorm (in module scipy.stats), 752
lognormconst() (scipy.maxentropy.conditionalmodel method), 320
lognormconst() (scipy.maxentropy.model method), 314
logparams() (scipy.maxentropy.basemodel method), 313
$\log p d f()$ (scipy.maxentropy.bigmodel method), 317
logpdf() (scipy.stats.rv_continuous method), 645
$\operatorname{logpmf}()$ (scipy.maxentropy.conditionalmodel method), 320
$\log p m f()$ (scipy.maxentropy.model method), 314
$\log \operatorname{mf}()$ (scipy.stats.rv_discrete method), 655
logser (in module scipy.stats), 825
$\operatorname{logsf}()$ (scipy.stats.rv_continuous method), 647
$\operatorname{logsf}()$ (scipy.stats.rv_discrete method), 656
logsumexp() (in module scipy.maxentropy), 310
logsumexp() (in module scipy.maxentropy.maxentutils), 322
logsumexp_naive() (in module scipy.maxentropy.maxentutils), 322
lomax (in module scipy.stats), 756
lpmn() (in module scipy.special), 629
lpmv (in module scipy.special), 628
lpn() (in module scipy.special), 629
lqmn() (in module scipy.special), 629
lqn() (in module scipy.special), 629
$1 \operatorname{sim}($) (in module scipy.signal), 493

1sim2() (in module scipy.signal), 493
LSQBivariateSpline (class in scipy.interpolate), 258
lsqr() (in module scipy.sparse.linalg), 573
LSQUnivariateSpline (class in scipy.interpolate), 245
lstsq() (in module scipy.linalg), 274
lti (class in scipy.signal), 492
lu() (in module scipy.linalg), 283
lu_factor() (in module scipy.linalg), 284
lu_solve() (in module scipy.linalg), 284

M

mahalanobis() (in module scipy.spatial.distance), 594, 612
mannwhitneyu() (in module scipy.stats), 869
mannwhitneyu() (in module scipy.stats.mstats), 888
map_coordinates() (in module scipy.ndimage.interpolation), 363
matching() (in module scipy.spatial.distance), 595, 612
mathieu_a (in module scipy.special), 633
mathieu_b (in module scipy.special), 634
mathieu_cem (in module scipy.special), 634
mathieu_even_coef() (in module scipy.special), 634
mathieu_modcem1 (in module scipy.special), 634
mathieu_modcem 2 (in module scipy.special), 634
mathieu_modsem1 (in module scipy.special), 634
mathieu_modsem2 (in module scipy.special), 634
mathieu_odd_coef() (in module scipy.special), 634
mathieu_sem (in module scipy.special), 634
matmat() (scipy.sparse.linalg.LinearOperator method), 558
matvec() (scipy.sparse.linalg.LinearOperator method), 558
maxdists() (in module scipy.cluster.hierarchy), 159, 181
maximum() (in module scipy.ndimage.measurements), 373
maximum_filter() (in module scipy.ndimage.filters), 353
maximum_filter1d() (in module scipy.ndimage.filters), 353
maximum_position() (in module scipy.ndimage.measurements), 374
maxinconsts() (in module scipy.cluster.hierarchy), 158, 181
maxRstat() (in module scipy.cluster.hierarchy), 159, 180
maxwell (in module scipy.stats), 758
mean() (in module scipy.ndimage.measurements), 374
mean() (scipy.stats.rv_continuous method), 650
mean() (scipy.stats.rv_discrete method), 659
medfilt() (in module scipy.signal), 469
medfilt2d() (in module scipy.signal), 469
median() (in module scipy.cluster.hierarchy), 156, 181
median() (scipy.stats.rv_continuous method), 650
median() (scipy.stats.rv_discrete method), 659
median_filter() (in module scipy.ndimage.filters), 354
mielke (in module scipy.stats), 760
minimum() (in module scipy.ndimage.measurements), 375
minimum_filter() (in module scipy.ndimage.filters), 355 minimum_filter1d() (in module scipy.ndimage.filters), 355
minimum_position() (in module scipy.ndimage.measurements), 376
minkowski() (in module scipy.spatial.distance), 595, 612
minres() (in module scipy.sparse.linalg), 576
mminfo() (in module scipy.io), 264
mmread() (in module scipy.io), 264
mmwrite() (in module scipy.io), 265
mode() (in module scipy.stats), 841
mode() (in module scipy.stats.mstats), 889
model (class in scipy.maxentropy), 308, 313
Model (class in scipy.odr), 410, 413
modfresnelm (in module scipy.special), 628
modfresnelp (in module scipy.special), 628
modstruve (in module scipy.special), 623
moment() (in module scipy.stats), 844
moment() (in module scipy.stats.mstats), 890
moment() (scipy.stats.rv_continuous method), 648
moment() (scipy.stats.rv_discrete method), 658
mood() (in module scipy.stats), 876
morlet() (in module scipy.signal), 506
morphological_gradient() (in module
scipy.ndimage.morphology), 402
morphological_laplace() (in module
scipy.ndimage.morphology), 403
mquantiles() (in module scipy.stats.mstats), 890
msign() (in module scipy.stats.mstats), 892
multigammaln() (in module scipy.special), 627

N

nakagami (in module scipy.stats), 762
nbdtr (in module scipy.special), 625
nbdtrc (in module scipy.special), 625
nbdtri (in module scipy.special), 625
nbinom (in module scipy.stats), 819
ncf (in module scipy.stats), 766
nct (in module scipy.stats), 770
ncx2 (in module scipy.stats), 764
ndtr (in module scipy.special), 625
ndtri (in module scipy.special), 625
NearestNDInterpolator (class in scipy.interpolate), 240
netcdf_file (class in scipy.io.netcdf), 267
netcdf_variable (class in scipy.io.netcdf), 268
newton() (in module scipy.optimize), 447
newton_krylov() (in module scipy.optimize), 455
nnls() (in module scipy.optimize), 435
norm (in module scipy.stats), 662
norm() (in module scipy.linalg), 272
normaltest() (in module scipy.stats), 847
normaltest() (in module scipy.stats.mstats), 892
normconst() (scipy.maxentropy.basemodel method), 313
nu2lambda() (in module scipy.constants), 203
num_obs_dm() (in module scipy.spatial.distance), 590, 607
num_obs_linkage() (in module scipy.cluster.hierarchy), 166, 182
num_obs_y() (in module scipy.spatial.distance), 590, 608 nuttall() (in module scipy.signal), 505

0

obl_ang1 (in module scipy.special), 635
obl_ang1_cv (in module scipy.special), 636
obl_cv (in module scipy.special), 635
obl_cv_seq() (in module scipy.special), 635
obl_rad1 (in module scipy.special), 635
obl_rad1_cv (in module scipy.special), 636
obl_rad2 (in module scipy.special), 635
obl_rad2_cv (in module scipy.special), 636
obrientransform() (in module scipy.stats), 853
obrientransform() (in module scipy.stats.mstats), 892
ode (class in scipy.integrate), 232
odeint() (in module scipy.integrate), 230
ODR (class in scipy.odr), 407, 415
odr() (in module scipy.odr), 412, 419
odr_error, 412, 419
odr_stop, 412, 419
oneway() (in module scipy.stats), 876
order_filter() (in module scipy.signal), 468
orth() (in module scipy.linalg), 286
Output (class in scipy.odr), 411, 418

P

pade() (in module scipy.misc), 333, 342
pareto (in module scipy.stats), 772
parzen() (in module scipy.signal), 505
pbdn_seq() (in module scipy.special), 633
pbdv (in module scipy.special), 633
pbdv_seq() (in module scipy.special), 633
pbvv (in module scipy.special), 633
pbvv_seq() (in module scipy.special), 633
pbwa (in module scipy.special), 633
$\operatorname{pdf}()$ (scipy.maxentropy.bigmodel method), 317
pdf() (scipy.stats.rv_continuous method), 645
pdf_function() (scipy.maxentropy.bigmodel method), 317
pdist() (in module scipy.spatial.distance), 582, 599
pdtr (in module scipy.special), 625
pdtrc (in module scipy.special), 625
pdtri (in module scipy.special), 625
pearsonr() (in module scipy.stats), 858
pearsonr() (in module scipy.stats.mstats), 892
percentile_filter() (in module scipy.ndimage.filters), 356
percentileofscore() (in module scipy.stats), 849
physical_constants (in module scipy.constants), 192
piecewise_polynomial_interpolate() (in module scipy.interpolate), 236
PiecewisePolynomial (class in scipy.interpolate), 235
pinv() (in module scipy.linalg), 275
pinv2() (in module scipy.linalg), 275
planck (in module scipy.stats), 829
plotting_positions() (in module scipy.stats.mstats), 889, 893
$\operatorname{pmf}()$ (scipy.stats.rv_discrete method), 655
pmf_function() (scipy.maxentropy.model method), 314
pointbiserialr() (in module scipy.stats), 861
pointbiserialr() (in module scipy.stats.mstats), 894
poisson (in module scipy.stats), 827
polygamma() (in module scipy.special), 627
powerlaw (in module scipy.stats), 774
powerlognorm (in module scipy.stats), 776
powernorm (in module scipy.stats), 778
ppcc_max() (in module scipy.stats), 878
ppcc_plot() (in module scipy.stats), 878
ppf() (scipy.stats.rv_continuous method), 647
$\operatorname{ppf}()$ (scipy.stats.rv_discrete method), 657
pprint() (scipy.odr.Output method), 419
pre_order() (scipy.cluster.hierarchy.ClusterNode method), 167
precision() (in module scipy.constants), 191
prewitt() (in module scipy.ndimage.filters), 356
pro_ang1 (in module scipy.special), 635
pro_ang1_cv (in module scipy.special), 636
pro_cv (in module scipy.special), 635
pro_cv_seq() (in module scipy.special), 635
pro_rad1 (in module scipy.special), 635
pro_rad1_cv (in module scipy.special), 636
pro_rad2 (in module scipy.special), 635
pro_rad2_cv (in module scipy.special), 636
probplot() (in module scipy.stats), 877
psi (in module scipy.special), 627
qmf() (in module scipy.signal), 507
qmr() (in module scipy.sparse.linalg), 577
qr() (in module scipy.linalg), 290
qspline1d() (in module scipy.signal), 467
qspline2d() (in module scipy.signal), 467
quad() (in module scipy.integrate), 218
quadrature() (in module scipy.integrate), 223

R

radian (in module scipy.special), 641
radon() (in module scipy.misc), 334
rand() (in module scipy.sparse), 534
randint (in module scipy.stats), 833
rank_filter() (in module scipy.ndimage.filters), 357
rankdata() (in module scipy.stats.mstats), 895
ranksums() (in module scipy.stats), 870
rayleigh (in module scipy.stats), 784
Rbf (class in scipy.interpolate), 241
rdist (in module scipy.stats), 780
read() (in module scipy.io.wavfile), 265
RealData (class in scipy.odr), 411
recipinvgauss (in module scipy.stats), 788
reciprocal (in module scipy.stats), 782
RectBivariateSpline (class in scipy.interpolate), 255
relfreq() (in module scipy.stats), 852
remez() (in module scipy.signal), 484
resample() (in module scipy.signal), 474
resample() (scipy.maxentropy.bigmodel method), 317
reset() (scipy.maxentropy.basemodel method), 313
residue() (in module scipy.signal), 487
residuez() (in module scipy.signal), 487
restart() (scipy.odr.ODR method), 417
rfft() (in module scipy.fftpack), 207
rfftfreq() (in module scipy.fftpack), 215
rgamma (in module scipy.special), 627
riccati_jn() (in module scipy.special), 623
riccati_yn() (in module scipy.special), 623
rice (in module scipy.stats), 786
ridder() (in module scipy.optimize), 444
robustlog() (in module scipy.maxentropy.maxentutils), 322
rogerstanimoto() (in module scipy.spatial.distance), 595, 613
$\operatorname{romb}()$ (in module scipy.integrate), 229
romberg() (in module scipy.integrate), 224
roots() (scipy.interpolate.UnivariateSpline method), 247
rotate() (in module scipy.ndimage.interpolation), 365
round (in module scipy.special), 641
rowmeans() (in module scipy.maxentropy.maxentutils), 322
rsf2csf() (in module scipy.linalg), 291
run() (scipy.odr.ODR method), 417
russellrao() (in module scipy.spatial.distance), 596, 613
rv_continuous (class in scipy.stats), 642
rv_discrete (class in scipy.stats), 652
rvs() (scipy.stats.rv_continuous method), 645
rvs() (scipy.stats.rv_discrete method), 655

S

sample_wr() (in module scipy.maxentropy.maxentutils), 322
save_as_module() (in module scipy.io), 265
savemat() (in module scipy.io), 263
sawtooth() (in module scipy.signal), 501
sc_diff() (in module scipy.fftpack), 212
schur() (in module scipy.linalg), 290
scipy.cluster (module), 189
scipy.cluster.hierarchy (module), 149
scipy.cluster.vq (module), 184
scipy.constants (module), 189
scipy.fftpack (module), 204
scipy.fftpack._fftpack (module), 216
scipy.fftpack.convolve (module), 215
scipy.integrate (module), 218
scipy.interpolate (module), 233
scipy.io (module), 262
scipy.io.arff (module), 97, 266
scipy.io.netcdf (module), 98, 267
scipy.io.wavfile (module), 97, 265
scipy.linalg (module), 269
scipy.maxentropy (module), 303
scipy.maxentropy.maxentropy (module), 303
scipy.maxentropy.maxentutils (module), 304, 320
scipy.misc (module), 323
scipy.misc.common (module), 323
scipy.misc.doccer (module), 324
scipy.misc.pilutil (module), 324
scipy.misc.setup (module), 325
scipy.misc.setupscons (module), 325
scipy.ndimage (module), 343
scipy.ndimage.filters (module), 344
scipy.ndimage.fourier (module), 359
scipy.ndimage.interpolation (module), 361
scipy.ndimage.measurements (module), 368
scipy.ndimage.morphology (module), 379
scipy.odr (module), 404
scipy.odr.models (module), 406
scipy.odr.odrpack (module), 404
scipy.optimize (module), 419
scipy.optimize.nonlin (module), 448
scipy.signal (module), 463
scipy.sparse (module), 507
scipy.sparse.base (module), 509
scipy.sparse.bsr (module), 509
scipy.sparse.compressed (module), 510
scipy.sparse.construct (module), 510
scipy.sparse.coo (module), 511
scipy.sparse.csc (module), 511
scipy.sparse.csgraph (module), 512
scipy.sparse.csr (module), 512
scipy.sparse.data (module), 512
scipy.sparse.dia (module), 513
scipy.sparse.dok (module), 513
scipy.sparse.extract (module), 513
scipy.sparse.lil (module), 513
scipy.sparse.linalg (module), 514, 556
scipy.sparse.sparsetools (module), 515
scipy.sparse.spfuncs (module), 516
scipy.sparse.sputils (module), 517
scipy.spatial (module), 580
scipy.spatial.distance (module), 582, 599
scipy.special (module), 615
scipy.stats (module), 641
scipy.stats.mstats (module), 878
scipy.weave (module), 909
scipy.weave.ext_tools (module), 912
scoreatpercentile() (in module scipy.stats), 848
scoreatpercentile() (in module scipy.stats.mstats), 895
sem() (in module scipy.stats), 854
sem() (in module scipy.stats.mstats), 895
semicircular (in module scipy.stats), 790
sepfir2d() (in module scipy.signal), 466
set_iprint() (scipy.odr.ODR method), 417
set_job() (scipy.odr.ODR method), 417
set_link_color_palette() (in module scipy.cluster.hierarchy), 182
set_meta() (scipy.odr.Data method), 413
set_meta() (scipy.odr.Model method), 414
set_smoothing_factor() (scipy.interpolate.UnivariateSpline method), 247
setcallback() (scipy.maxentropy.basemodel method), 313
setfeaturesandsamplespace() (scipy.maxentropy.model method), 314
setparams() (scipy.maxentropy.basemodel method), 313
setsampleFgen() (scipy.maxentropy.bigmodel method), 317
setsmooth() (scipy.maxentropy.basemodel method), 313
settestsamples() (scipy.maxentropy.bigmodel method), 318
seuclidean() (in module scipy.spatial.distance), 596, 614
sf() (scipy.stats.rv_continuous method), 646
sf() (scipy.stats.rv_discrete method), 656
sh_chebyt() (in module scipy.special), 632
sh_chebyu() (in module scipy.special), 632
sh_jacobi() (in module scipy.special), 632
sh_legendre() (in module scipy.special), 632
shapiro() (in module scipy.stats), 873
shichi (in module scipy.special), 638
shift() (in module scipy.fftpack), 213
shift() (in module scipy.ndimage.interpolation), 365
sici (in module scipy.special), 638
signaltonoise() (in module scipy.stats), 853
signaltonoise() (in module scipy.stats.mstats), 896
signm() (in module scipy.linalg), 295
simps() (in module scipy.integrate), 228
sindg (in module scipy.special), 641
single() (in module scipy.cluster.hierarchy), 154, 182
sinhm() (in module scipy.linalg), 294
sinm() (in module scipy.linalg), 294
skew() (in module scipy.stats), 845
skew() (in module scipy.stats.mstats), 896
skewtest() (in module scipy.stats), 846
skewtest() (in module scipy.stats.mstats), 896
slepian() (in module scipy.signal), 505
smirnov (in module scipy.special), 625
smirnovi (in module scipy.special), 626
SmoothBivariateSpline (class in scipy.interpolate), 257
sobel() (in module scipy.ndimage.filters), 357
sokalmichener() (in module scipy.spatial.distance), 596, 614
sokalsneath() (in module scipy.spatial.distance), 597, 614
solve() (in module scipy.linalg), 270
solve_banded() (in module scipy.linalg), 270
solve_triangular() (in module scipy.linalg), 272
solveh_banded() (in module scipy.linalg), 271
source() (in module scipy.misc), 334
spalde() (in module scipy.interpolate), 253
SparseEfficiencyWarning, 517, 556
sparsefeaturematrix() (in module scipy.maxentropy), 310
sparsefeaturematrix() (in module
scipy.maxentropy.maxentutils), 322
sparsefeatures() (in
scipy.maxentropy.maxentutils), 323
SparseWarning, 517, 556
spdiags() (in module scipy.sparse), 534, 551
spearmanr() (in module scipy.stats), 859
spearmanr() (in module scipy.stats.mstats), 897
spence (in module scipy.special), 639
sph_harm (in module scipy.special), 628
sph_in() (in module scipy.special), 622
sph_inkn() (in module scipy.special), 622
sph_jn() (in module scipy.special), 622
sph_jnyn() (in module scipy.special), 622
sph_kn() (in module scipy.special), 622
sph_yn() (in module scipy.special), 622
spilu() (in module scipy.sparse.linalg), 578
splev() (in module scipy.interpolate), 251
spline_filter() (in module scipy.ndimage.interpolation), 366
spline_filter() (in module scipy.signal), 467
spline_filter1d() (in module scipy.ndimage.interpolation), 366
splint() (in module scipy.interpolate), 252
splprep() (in module scipy.interpolate), 249
splrep() (in module scipy.interpolate), 248
splu() (in module scipy.sparse.linalg), 579
sproot() (in module scipy.interpolate), 252
spsolve() (in module scipy.sparse.linalg), 580
sqeuclidean() (in module scipy.spatial.distance), 597, 614
$\operatorname{sqrtm}()$ (in module scipy.linalg), 295
square() (in module scipy.signal), 502
squareform() (in module scipy.spatial.distance), 588, 606
ss2tf() (in module scipy.signal), 498
ss 2 zpk() (in module scipy.signal), 499
ss_diff() (in module scipy.fftpack), 212
standard_deviation() (in module scipy.ndimage.measurements), 376
stats() (scipy.stats.rv_continuous method), 648
stats() (scipy.stats.rv_discrete method), 658
$\operatorname{std}()$ (scipy.stats.rv_continuous method), 651
std() (scipy.stats.rv_discrete method), 660
stdtr (in module scipy.special), 625
stdtridf (in module scipy.special), 625
stdtrit (in module scipy.special), 625
step() (in module scipy.signal), 492, 496
step2() (in module scipy.signal), 496
stochapprox() (scipy.maxentropy.bigmodel method), 318
struve (in module scipy.special), 623
sum() (in module scipy.ndimage.measurements), 377
$\operatorname{svd}()$ (in module scipy.linalg), 285
svds() (in module scipy.sparse.linalg), 580
svdvals() (in module scipy.linalg), 286
sweep_poly() (in module scipy.signal), 502
symiirorderl() (in module scipy.signal), 470
symiirorder2() (in module scipy.signal), 470

T

t (in module scipy.stats), 768
tandg (in module scipy.special), 641
tanhm() (in module scipy.linalg), 294
tanm() (in module scipy.linalg), 294
test() (scipy.maxentropy.bigmodel method), 318
Tester (in module scipy.sparse.linalg), 559
tf2ss() (in module scipy.signal), 498
tf $2 \mathrm{zpk}($) (in module scipy.signal), 497
theilslopes() (in module scipy.stats.mstats), 897
threshold() (in module scipy.stats), 856
threshold() (in module scipy.stats.mstats), 898
tiecorrect() (in module scipy.stats), 869
tilbert() (in module scipy.fftpack), 210
tklmbda (in module scipy.special), 626
tmax() (in module scipy.stats), 843
tmax() (in module scipy.stats.mstats), 898
tmean() (in module scipy.stats), 841
tmean() (in module scipy.stats.mstats), 898
$\operatorname{tmin}()$ (in module scipy.stats), 842
$\operatorname{tmin}()$ (in module scipy.stats.mstats), 899
to_mlab_linkage() (in module scipy.cluster.hierarchy), 159, 182
to_tree() (in module scipy.cluster.hierarchy), 164, 183
toeplitz() (in module scipy.linalg), 301
toimage() (in module scipy.misc), 334, 336
tplquad() (in module scipy.integrate), 221
$\operatorname{trapz()}$ (in module scipy.integrate), 226
tri() (in module scipy.linalg), 301
triang (in module scipy.stats), 792
triang() (in module scipy.signal), 505
tril() (in module scipy.linalg), 302
tril() (in module scipy.sparse), 535, 552
trim() (in module scipy.stats.mstats), 899
trim1() (in module scipy.stats), 857
trima() (in module scipy.stats.mstats), 900
trimboth() (in module scipy.stats), 857
trimboth() (in module scipy.stats.mstats), 900
trimmed_stde() (in module scipy.stats.mstats), 901
trimr() (in module scipy.stats.mstats), 901
trimtail() (in module scipy.stats.mstats), 901
triu() (in module scipy.linalg), 302
triu() (in module scipy.sparse), 536, 553
truncexpon (in module scipy.stats), 794
truncnorm (in module scipy.stats), 796
tsearch() (in module scipy.spatial), 599
tsem() (in module scipy.stats), 843
tsem() (in module scipy.stats.mstats), 902
tstd() (in module scipy.stats), 843
ttest_1samp() (in module scipy.stats), 863
ttest_ind() (in module scipy.stats), 864
ttest_ind() (in module scipy.stats.mstats), 903
ttest_onesamp() (in module scipy.stats.mstats), 902, 904
ttest_rel() (in module scipy.stats), 865
ttest_rel() (in module scipy.stats.mstats), 905
tukeylambda (in module scipy.stats), 798
tvar() (in module scipy.stats), 842
tvar() (in module scipy.stats.mstats), 906

U

uniform (in module scipy.stats), 800
uniform_filter() (in module scipy.ndimage.filters), 358
uniform_filter1d() (in module scipy.ndimage.filters), 358
unique_roots() (in module scipy.signal), 486
unit() (in module scipy.constants), 190
UnivariateSpline (class in scipy.interpolate), 243
use_solver() (in module scipy.sparse.linalg), 580

V

value() (in module scipy.constants), 190
$\operatorname{var}()$ (scipy.stats.rv_continuous method), 651
$\operatorname{var}()$ (scipy.stats.rv_discrete method), 660
variance() (in module scipy.ndimage.measurements), 377
variation() (in module scipy.stats), 844
variation() (in module scipy.stats.mstats), 906
vonmises (in module scipy.stats), 801
vq() (in module scipy.cluster.vq), 186
vstack() (in module scipy.sparse), 537, 555

W

wald (in module scipy.stats), 803
ward() (in module scipy.cluster.hierarchy), 156, 183
watershed_ift() (in module
scipy.ndimage.measurements), 378
weibull_max (in module scipy.stats), 807
weibull_min (in module scipy.stats), 805
weighted() (in module scipy.cluster.hierarchy), 155, 184
white_tophat() (in module scipy.ndimage.morphology), 404
whiten() (in module scipy.cluster.vq), 185
who() (in module scipy.misc), 334
wiener() (in module scipy.signal), 469
wilcoxon() (in module scipy.stats), 870
winsorize() (in module scipy.stats.mstats), 907
wofz (in module scipy.special), 638
wrapcauchy (in module scipy.stats), 809
write() (in module scipy.io.wavfile), 266

Y

y0 (in module scipy.special), 621
y0_zeros() (in module scipy.special), 620
y1 (in module scipy.special), 621
y1_zeros() (in module scipy.special), 620
y1p_zeros() (in module scipy.special), 620
yn (in module scipy.special), 618
yn_zeros() (in module scipy.special), 620
ynp_zeros() (in module scipy.special), 620
yule() (in module scipy.spatial.distance), 597, 615
yv (in module scipy.special), 618
yve (in module scipy.special), 618
$\operatorname{yvp}()$ (in module scipy.special), 622

Z

zeta (in module scipy.special), 640
zetac (in module scipy.special), 640
zfft (in module scipy.fftpack._fftpack), 217
zfftnd (in module scipy.fftpack._fftpack), 217
zipf (in module scipy.stats), 835
zmap() (in module scipy.stats), 855
zmap() (in module scipy.stats.mstats), 907
zoom() (in module scipy.ndimage.interpolation), 367
zpk2ss() (in module scipy.signal), 499
zpk2tf() (in module scipy.signal), 498
zrfft (in module scipy.fftpack._fftpack), 217
zscore() (in module scipy.stats), 855
zscore() (in module scipy.stats.mstats), 908

[^0]: ${ }^{1}$ R.H.D. Townsend, "Fast calculation of the Lomb-Scargle

[^1]: ${ }^{2}$ A hermitian matrix \mathbf{D} satisfies $\mathbf{D}^{H}=\mathbf{D}$.
 ${ }^{3}$ A unitary matrix \mathbf{D} satisfies $\mathbf{D}^{H} \mathbf{D}=\mathbf{I}=\mathbf{D} \mathbf{D}^{H}$ so that $\mathbf{D}^{-1}=\mathbf{D}^{H}$.

[^2]: derivative2(input, axis, output, mode, cval, *extra_arguments, **extra_keywords)

[^3]: netcdf_file(filename[, mode, mmap, version]) A file object for NetCDF data.
 netcdf_variable(data, typecode, shape, ...) A data object for the netcdf module.

[^4]: label, standard_deviation, maximum, minimum, extrema

[^5]: Model(fcn[, fjacb, fjacd, extra_args, ...]) The Model class stores information about the function you wish to fit.

